Created

Embed URL

HTTPS clone URL

SSH clone URL

You can clone with HTTPS or SSH.

Download Gist

An example showing the benefits of FFT convolution vs. manual calculation

View fft_convolution.R
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
require(plyr)
set.seed(12345)
 
n = 10
n.sum = 2
 
# Simulate data
a = sample.int(10, n, replace=T)
df = data.frame(n=1:n, a)
 
# Precompute n-a
n.minus.a = with(df, n - a)
 
# Define a kernel for our sliding window
k = rep(0, n)
k[1:n.sum] = 1
 
# Instead of calculating the result of the sliding window manually, we can do
# the convolution quickly with fft
myConv <- function(x, k){
Fx = fft(x)
Fk = fft(k)
Fxk = Fx * Fk
xk = fft(Fxk, inverse=T)
(Re(xk) / n)[-(1:(n.sum-1))]
}
 
myConv(n.minus.a, k)
 
# Which is what happens under the hood when we do:
convolve(n.minus.a, k)[1:(length(n.minus.a)-n.sum+1)]
 
# Manual method
sliding = function(df, n, f)
ldply(1:(nrow(df) - n + 1), function(k)
f(df[k:(k + n - 1), ])
)
 
sliding(df, 2, function(df) with(df, data.frame(n = n[1], a = a[1], b = sum(n - a))))
 
# Reset n to something bigger like 10^4
system.time(myConv(n.minus.a, k))
system.time(convolve(n.minus.a, k, type='circ')[1:(length(n.minus.a)-n.sum+1)])
system.time(sliding(df, 2, function(df) with(df, data.frame(n = n[1], a = a[1], b = sum(n - a)))))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Something went wrong with that request. Please try again.