Skip to content

Instantly share code, notes, and snippets.

@johndpope
Created March 11, 2024 21:07
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save johndpope/04879444d0979f244fb88c4929b989e9 to your computer and use it in GitHub Desktop.
Save johndpope/04879444d0979f244fb88c4929b989e9 to your computer and use it in GitHub Desktop.
diff user custom chatgpt prompt
As the PyTorch , your role is to provide expert assistance on all things related to PyTorch, the open-source machine learning library. You are equipped to handle a wide range of queries, from basic introductory questions about PyTorch's functionalities to more complex topics like model optimization, troubleshooting, and implementation of advanced features. Your responses should always be clear, concise, and accurate, tailored to the user's level of expertise. When faced with unclear or incomplete queries, politely request additional information to ensure you provide the most helpful guidance. Your focus should remain strictly on PyTorch-related topics, avoiding advice on unrelated subjects. Maintain a professional yet accessible tone, simplifying complex concepts for users with different levels of understanding in PyTorch and machine learning. you recognize the related / relevant code building blocks and provide clarity to end user when relevant. any pytorch model should include assertions where relevant. any code created from white - add comments - describe intention of neural network block. the attached models.txt maybe used in code to subclass from. the pipelines can be used / referenced to implement diffusion pipelines. suggest reviewing diffusers https://github.com/huggingface/diffusers to look at appropriate models.
when generating training code in - use slurm - refer to train.md sample
This file has been truncated, but you can view the full file.
from ..utils import deprecate
from .transformers.transformer_temporal import (
TransformerSpatioTemporalModel,
TransformerTemporalModel,
TransformerTemporalModelOutput,
)
class TransformerTemporalModelOutput(TransformerTemporalModelOutput):
deprecation_message = "Importing `TransformerTemporalModelOutput` from `diffusers.models.transformer_temporal` is deprecated and this will be removed in a future version. Please use `from diffusers.models.transformers.tranformer_temporal import TransformerTemporalModelOutput`, instead."
deprecate("TransformerTemporalModelOutput", "0.29", deprecation_message)
class TransformerTemporalModel(TransformerTemporalModel):
deprecation_message = "Importing `TransformerTemporalModel` from `diffusers.models.transformer_temporal` is deprecated and this will be removed in a future version. Please use `from diffusers.models.transformers.tranformer_temporal import TransformerTemporalModel`, instead."
deprecate("TransformerTemporalModel", "0.29", deprecation_message)
class TransformerSpatioTemporalModel(TransformerSpatioTemporalModel):
deprecation_message = "Importing `TransformerSpatioTemporalModel` from `diffusers.models.transformer_temporal` is deprecated and this will be removed in a future version. Please use `from diffusers.models.transformers.tranformer_temporal import TransformerSpatioTemporalModel`, instead."
deprecate("TransformerTemporalModelOutput", "0.29", deprecation_message)
from dataclasses import dataclass
from ..utils import BaseOutput
@dataclass
class AutoencoderKLOutput(BaseOutput):
"""
Output of AutoencoderKL encoding method.
Args:
latent_dist (`DiagonalGaussianDistribution`):
Encoded outputs of `Encoder` represented as the mean and logvar of `DiagonalGaussianDistribution`.
`DiagonalGaussianDistribution` allows for sampling latents from the distribution.
"""
latent_dist: "DiagonalGaussianDistribution" # noqa: F821
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch - Flax general utilities."""
import re
import jax.numpy as jnp
from flax.traverse_util import flatten_dict, unflatten_dict
from jax.random import PRNGKey
from ..utils import logging
logger = logging.get_logger(__name__)
def rename_key(key):
regex = r"\w+[.]\d+"
pats = re.findall(regex, key)
for pat in pats:
key = key.replace(pat, "_".join(pat.split(".")))
return key
#####################
# PyTorch => Flax #
#####################
# Adapted from https://github.com/huggingface/transformers/blob/c603c80f46881ae18b2ca50770ef65fa4033eacd/src/transformers/modeling_flax_pytorch_utils.py#L69
# and https://github.com/patil-suraj/stable-diffusion-jax/blob/main/stable_diffusion_jax/convert_diffusers_to_jax.py
def rename_key_and_reshape_tensor(pt_tuple_key, pt_tensor, random_flax_state_dict):
"""Rename PT weight names to corresponding Flax weight names and reshape tensor if necessary"""
# conv norm or layer norm
renamed_pt_tuple_key = pt_tuple_key[:-1] + ("scale",)
# rename attention layers
if len(pt_tuple_key) > 1:
for rename_from, rename_to in (
("to_out_0", "proj_attn"),
("to_k", "key"),
("to_v", "value"),
("to_q", "query"),
):
if pt_tuple_key[-2] == rename_from:
weight_name = pt_tuple_key[-1]
weight_name = "kernel" if weight_name == "weight" else weight_name
renamed_pt_tuple_key = pt_tuple_key[:-2] + (rename_to, weight_name)
if renamed_pt_tuple_key in random_flax_state_dict:
assert random_flax_state_dict[renamed_pt_tuple_key].shape == pt_tensor.T.shape
return renamed_pt_tuple_key, pt_tensor.T
if (
any("norm" in str_ for str_ in pt_tuple_key)
and (pt_tuple_key[-1] == "bias")
and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict)
and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict)
):
renamed_pt_tuple_key = pt_tuple_key[:-1] + ("scale",)
return renamed_pt_tuple_key, pt_tensor
elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict:
renamed_pt_tuple_key = pt_tuple_key[:-1] + ("scale",)
return renamed_pt_tuple_key, pt_tensor
# embedding
if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict:
pt_tuple_key = pt_tuple_key[:-1] + ("embedding",)
return renamed_pt_tuple_key, pt_tensor
# conv layer
renamed_pt_tuple_key = pt_tuple_key[:-1] + ("kernel",)
if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4:
pt_tensor = pt_tensor.transpose(2, 3, 1, 0)
return renamed_pt_tuple_key, pt_tensor
# linear layer
renamed_pt_tuple_key = pt_tuple_key[:-1] + ("kernel",)
if pt_tuple_key[-1] == "weight":
pt_tensor = pt_tensor.T
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm weight
renamed_pt_tuple_key = pt_tuple_key[:-1] + ("weight",)
if pt_tuple_key[-1] == "gamma":
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm bias
renamed_pt_tuple_key = pt_tuple_key[:-1] + ("bias",)
if pt_tuple_key[-1] == "beta":
return renamed_pt_tuple_key, pt_tensor
return pt_tuple_key, pt_tensor
def convert_pytorch_state_dict_to_flax(pt_state_dict, flax_model, init_key=42):
# Step 1: Convert pytorch tensor to numpy
pt_state_dict = {k: v.numpy() for k, v in pt_state_dict.items()}
# Step 2: Since the model is stateless, get random Flax params
random_flax_params = flax_model.init_weights(PRNGKey(init_key))
random_flax_state_dict = flatten_dict(random_flax_params)
flax_state_dict = {}
# Need to change some parameters name to match Flax names
for pt_key, pt_tensor in pt_state_dict.items():
renamed_pt_key = rename_key(pt_key)
pt_tuple_key = tuple(renamed_pt_key.split("."))
# Correctly rename weight parameters
flax_key, flax_tensor = rename_key_and_reshape_tensor(pt_tuple_key, pt_tensor, random_flax_state_dict)
if flax_key in random_flax_state_dict:
if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
raise ValueError(
f"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape "
f"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}."
)
# also add unexpected weight so that warning is thrown
flax_state_dict[flax_key] = jnp.asarray(flax_tensor)
return unflatten_dict(flax_state_dict)
from typing import TYPE_CHECKING
from ..utils import (
DIFFUSERS_SLOW_IMPORT,
_LazyModule,
is_flax_available,
is_torch_available,
)
_import_structure = {}
if is_torch_available():
_import_structure["adapter"] = ["MultiAdapter", "T2IAdapter"]
_import_structure["autoencoders.autoencoder_asym_kl"] = ["AsymmetricAutoencoderKL"]
_import_structure["autoencoders.autoencoder_kl"] = ["AutoencoderKL"]
_import_structure["autoencoders.autoencoder_kl_temporal_decoder"] = ["AutoencoderKLTemporalDecoder"]
_import_structure["autoencoders.autoencoder_tiny"] = ["AutoencoderTiny"]
_import_structure["autoencoders.consistency_decoder_vae"] = ["ConsistencyDecoderVAE"]
_import_structure["controlnet"] = ["ControlNetModel"]
_import_structure["dual_transformer_2d"] = ["DualTransformer2DModel"]
_import_structure["embeddings"] = ["ImageProjection"]
_import_structure["modeling_utils"] = ["ModelMixin"]
_import_structure["transformers.prior_transformer"] = ["PriorTransformer"]
_import_structure["transformers.t5_film_transformer"] = ["T5FilmDecoder"]
_import_structure["transformers.transformer_2d"] = ["Transformer2DModel"]
_import_structure["transformers.transformer_temporal"] = ["TransformerTemporalModel"]
_import_structure["unets.unet_1d"] = ["UNet1DModel"]
_import_structure["unets.unet_2d"] = ["UNet2DModel"]
_import_structure["unets.unet_2d_condition"] = ["UNet2DConditionModel"]
_import_structure["unets.unet_3d_condition"] = ["UNet3DConditionModel"]
_import_structure["unets.unet_i2vgen_xl"] = ["I2VGenXLUNet"]
_import_structure["unets.unet_kandinsky3"] = ["Kandinsky3UNet"]
_import_structure["unets.unet_motion_model"] = ["MotionAdapter", "UNetMotionModel"]
_import_structure["unets.unet_spatio_temporal_condition"] = ["UNetSpatioTemporalConditionModel"]
_import_structure["unets.unet_stable_cascade"] = ["StableCascadeUNet"]
_import_structure["unets.uvit_2d"] = ["UVit2DModel"]
_import_structure["vq_model"] = ["VQModel"]
if is_flax_available():
_import_structure["controlnet_flax"] = ["FlaxControlNetModel"]
_import_structure["unets.unet_2d_condition_flax"] = ["FlaxUNet2DConditionModel"]
_import_structure["vae_flax"] = ["FlaxAutoencoderKL"]
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
if is_torch_available():
from .adapter import MultiAdapter, T2IAdapter
from .autoencoders import (
AsymmetricAutoencoderKL,
AutoencoderKL,
AutoencoderKLTemporalDecoder,
AutoencoderTiny,
ConsistencyDecoderVAE,
)
from .controlnet import ControlNetModel
from .embeddings import ImageProjection
from .modeling_utils import ModelMixin
from .transformers import (
DualTransformer2DModel,
PriorTransformer,
T5FilmDecoder,
Transformer2DModel,
TransformerTemporalModel,
)
from .unets import (
I2VGenXLUNet,
Kandinsky3UNet,
MotionAdapter,
StableCascadeUNet,
UNet1DModel,
UNet2DConditionModel,
UNet2DModel,
UNet3DConditionModel,
UNetMotionModel,
UNetSpatioTemporalConditionModel,
UVit2DModel,
)
from .vq_model import VQModel
if is_flax_available():
from .controlnet_flax import FlaxControlNetModel
from .unets import FlaxUNet2DConditionModel
from .vae_flax import FlaxAutoencoderKL
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
from ..utils import deprecate
from .transformers.transformer_2d import Transformer2DModel, Transformer2DModelOutput
class Transformer2DModelOutput(Transformer2DModelOutput):
deprecation_message = "Importing `Transformer2DModelOutput` from `diffusers.models.transformer_2d` is deprecated and this will be removed in a future version. Please use `from diffusers.models.transformers.transformer_2d import Transformer2DModelOutput`, instead."
deprecate("Transformer2DModelOutput", "0.29", deprecation_message)
class Transformer2DModel(Transformer2DModel):
deprecation_message = "Importing `Transformer2DModel` from `diffusers.models.transformer_2d` is deprecated and this will be removed in a future version. Please use `from diffusers.models.transformers.transformer_2d import Transformer2DModel`, instead."
deprecate("Transformer2DModel", "0.29", deprecation_message)
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Union
import torch
from torch import nn
from torch.nn import functional as F
from ..configuration_utils import ConfigMixin, register_to_config
from ..loaders import FromOriginalControlNetMixin
from ..utils import BaseOutput, logging
from .attention_processor import (
ADDED_KV_ATTENTION_PROCESSORS,
CROSS_ATTENTION_PROCESSORS,
AttentionProcessor,
AttnAddedKVProcessor,
AttnProcessor,
)
from .embeddings import TextImageProjection, TextImageTimeEmbedding, TextTimeEmbedding, TimestepEmbedding, Timesteps
from .modeling_utils import ModelMixin
from .unets.unet_2d_blocks import (
CrossAttnDownBlock2D,
DownBlock2D,
UNetMidBlock2D,
UNetMidBlock2DCrossAttn,
get_down_block,
)
from .unets.unet_2d_condition import UNet2DConditionModel
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
@dataclass
class ControlNetOutput(BaseOutput):
"""
The output of [`ControlNetModel`].
Args:
down_block_res_samples (`tuple[torch.Tensor]`):
A tuple of downsample activations at different resolutions for each downsampling block. Each tensor should
be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be
used to condition the original UNet's downsampling activations.
mid_down_block_re_sample (`torch.Tensor`):
The activation of the midde block (the lowest sample resolution). Each tensor should be of shape
`(batch_size, channel * lowest_resolution, height // lowest_resolution, width // lowest_resolution)`.
Output can be used to condition the original UNet's middle block activation.
"""
down_block_res_samples: Tuple[torch.Tensor]
mid_block_res_sample: torch.Tensor
class ControlNetConditioningEmbedding(nn.Module):
"""
Quoting from https://arxiv.org/abs/2302.05543: "Stable Diffusion uses a pre-processing method similar to VQ-GAN
[11] to convert the entire dataset of 512 × 512 images into smaller 64 × 64 “latent images” for stabilized
training. This requires ControlNets to convert image-based conditions to 64 × 64 feature space to match the
convolution size. We use a tiny network E(·) of four convolution layers with 4 × 4 kernels and 2 × 2 strides
(activated by ReLU, channels are 16, 32, 64, 128, initialized with Gaussian weights, trained jointly with the full
model) to encode image-space conditions ... into feature maps ..."
"""
def __init__(
self,
conditioning_embedding_channels: int,
conditioning_channels: int = 3,
block_out_channels: Tuple[int, ...] = (16, 32, 96, 256),
):
super().__init__()
self.conv_in = nn.Conv2d(conditioning_channels, block_out_channels[0], kernel_size=3, padding=1)
self.blocks = nn.ModuleList([])
for i in range(len(block_out_channels) - 1):
channel_in = block_out_channels[i]
channel_out = block_out_channels[i + 1]
self.blocks.append(nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1))
self.blocks.append(nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=2))
self.conv_out = zero_module(
nn.Conv2d(block_out_channels[-1], conditioning_embedding_channels, kernel_size=3, padding=1)
)
def forward(self, conditioning):
embedding = self.conv_in(conditioning)
embedding = F.silu(embedding)
for block in self.blocks:
embedding = block(embedding)
embedding = F.silu(embedding)
embedding = self.conv_out(embedding)
return embedding
class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlNetMixin):
"""
A ControlNet model.
Args:
in_channels (`int`, defaults to 4):
The number of channels in the input sample.
flip_sin_to_cos (`bool`, defaults to `True`):
Whether to flip the sin to cos in the time embedding.
freq_shift (`int`, defaults to 0):
The frequency shift to apply to the time embedding.
down_block_types (`tuple[str]`, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
The tuple of downsample blocks to use.
only_cross_attention (`Union[bool, Tuple[bool]]`, defaults to `False`):
block_out_channels (`tuple[int]`, defaults to `(320, 640, 1280, 1280)`):
The tuple of output channels for each block.
layers_per_block (`int`, defaults to 2):
The number of layers per block.
downsample_padding (`int`, defaults to 1):
The padding to use for the downsampling convolution.
mid_block_scale_factor (`float`, defaults to 1):
The scale factor to use for the mid block.
act_fn (`str`, defaults to "silu"):
The activation function to use.
norm_num_groups (`int`, *optional*, defaults to 32):
The number of groups to use for the normalization. If None, normalization and activation layers is skipped
in post-processing.
norm_eps (`float`, defaults to 1e-5):
The epsilon to use for the normalization.
cross_attention_dim (`int`, defaults to 1280):
The dimension of the cross attention features.
transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
encoder_hid_dim (`int`, *optional*, defaults to None):
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
dimension to `cross_attention_dim`.
encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
attention_head_dim (`Union[int, Tuple[int]]`, defaults to 8):
The dimension of the attention heads.
use_linear_projection (`bool`, defaults to `False`):
class_embed_type (`str`, *optional*, defaults to `None`):
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from None,
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
addition_embed_type (`str`, *optional*, defaults to `None`):
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
"text". "text" will use the `TextTimeEmbedding` layer.
num_class_embeds (`int`, *optional*, defaults to 0):
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
class conditioning with `class_embed_type` equal to `None`.
upcast_attention (`bool`, defaults to `False`):
resnet_time_scale_shift (`str`, defaults to `"default"`):
Time scale shift config for ResNet blocks (see `ResnetBlock2D`). Choose from `default` or `scale_shift`.
projection_class_embeddings_input_dim (`int`, *optional*, defaults to `None`):
The dimension of the `class_labels` input when `class_embed_type="projection"`. Required when
`class_embed_type="projection"`.
controlnet_conditioning_channel_order (`str`, defaults to `"rgb"`):
The channel order of conditional image. Will convert to `rgb` if it's `bgr`.
conditioning_embedding_out_channels (`tuple[int]`, *optional*, defaults to `(16, 32, 96, 256)`):
The tuple of output channel for each block in the `conditioning_embedding` layer.
global_pool_conditions (`bool`, defaults to `False`):
TODO(Patrick) - unused parameter.
addition_embed_type_num_heads (`int`, defaults to 64):
The number of heads to use for the `TextTimeEmbedding` layer.
"""
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
in_channels: int = 4,
conditioning_channels: int = 3,
flip_sin_to_cos: bool = True,
freq_shift: int = 0,
down_block_types: Tuple[str, ...] = (
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"DownBlock2D",
),
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
only_cross_attention: Union[bool, Tuple[bool]] = False,
block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280),
layers_per_block: int = 2,
downsample_padding: int = 1,
mid_block_scale_factor: float = 1,
act_fn: str = "silu",
norm_num_groups: Optional[int] = 32,
norm_eps: float = 1e-5,
cross_attention_dim: int = 1280,
transformer_layers_per_block: Union[int, Tuple[int, ...]] = 1,
encoder_hid_dim: Optional[int] = None,
encoder_hid_dim_type: Optional[str] = None,
attention_head_dim: Union[int, Tuple[int, ...]] = 8,
num_attention_heads: Optional[Union[int, Tuple[int, ...]]] = None,
use_linear_projection: bool = False,
class_embed_type: Optional[str] = None,
addition_embed_type: Optional[str] = None,
addition_time_embed_dim: Optional[int] = None,
num_class_embeds: Optional[int] = None,
upcast_attention: bool = False,
resnet_time_scale_shift: str = "default",
projection_class_embeddings_input_dim: Optional[int] = None,
controlnet_conditioning_channel_order: str = "rgb",
conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256),
global_pool_conditions: bool = False,
addition_embed_type_num_heads: int = 64,
):
super().__init__()
# If `num_attention_heads` is not defined (which is the case for most models)
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
# The reason for this behavior is to correct for incorrectly named variables that were introduced
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
# which is why we correct for the naming here.
num_attention_heads = num_attention_heads or attention_head_dim
# Check inputs
if len(block_out_channels) != len(down_block_types):
raise ValueError(
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
)
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
raise ValueError(
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
)
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
raise ValueError(
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
)
if isinstance(transformer_layers_per_block, int):
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
# input
conv_in_kernel = 3
conv_in_padding = (conv_in_kernel - 1) // 2
self.conv_in = nn.Conv2d(
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
)
# time
time_embed_dim = block_out_channels[0] * 4
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
timestep_input_dim = block_out_channels[0]
self.time_embedding = TimestepEmbedding(
timestep_input_dim,
time_embed_dim,
act_fn=act_fn,
)
if encoder_hid_dim_type is None and encoder_hid_dim is not None:
encoder_hid_dim_type = "text_proj"
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
if encoder_hid_dim is None and encoder_hid_dim_type is not None:
raise ValueError(
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
)
if encoder_hid_dim_type == "text_proj":
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
elif encoder_hid_dim_type == "text_image_proj":
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
# case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
self.encoder_hid_proj = TextImageProjection(
text_embed_dim=encoder_hid_dim,
image_embed_dim=cross_attention_dim,
cross_attention_dim=cross_attention_dim,
)
elif encoder_hid_dim_type is not None:
raise ValueError(
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
)
else:
self.encoder_hid_proj = None
# class embedding
if class_embed_type is None and num_class_embeds is not None:
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
elif class_embed_type == "timestep":
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
elif class_embed_type == "identity":
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
elif class_embed_type == "projection":
if projection_class_embeddings_input_dim is None:
raise ValueError(
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
)
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
# 2. it projects from an arbitrary input dimension.
#
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
else:
self.class_embedding = None
if addition_embed_type == "text":
if encoder_hid_dim is not None:
text_time_embedding_from_dim = encoder_hid_dim
else:
text_time_embedding_from_dim = cross_attention_dim
self.add_embedding = TextTimeEmbedding(
text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
)
elif addition_embed_type == "text_image":
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
# case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
self.add_embedding = TextImageTimeEmbedding(
text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
)
elif addition_embed_type == "text_time":
self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
elif addition_embed_type is not None:
raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
# control net conditioning embedding
self.controlnet_cond_embedding = ControlNetConditioningEmbedding(
conditioning_embedding_channels=block_out_channels[0],
block_out_channels=conditioning_embedding_out_channels,
conditioning_channels=conditioning_channels,
)
self.down_blocks = nn.ModuleList([])
self.controlnet_down_blocks = nn.ModuleList([])
if isinstance(only_cross_attention, bool):
only_cross_attention = [only_cross_attention] * len(down_block_types)
if isinstance(attention_head_dim, int):
attention_head_dim = (attention_head_dim,) * len(down_block_types)
if isinstance(num_attention_heads, int):
num_attention_heads = (num_attention_heads,) * len(down_block_types)
# down
output_channel = block_out_channels[0]
controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
controlnet_block = zero_module(controlnet_block)
self.controlnet_down_blocks.append(controlnet_block)
for i, down_block_type in enumerate(down_block_types):
input_channel = output_channel
output_channel = block_out_channels[i]
is_final_block = i == len(block_out_channels) - 1
down_block = get_down_block(
down_block_type,
num_layers=layers_per_block,
transformer_layers_per_block=transformer_layers_per_block[i],
in_channels=input_channel,
out_channels=output_channel,
temb_channels=time_embed_dim,
add_downsample=not is_final_block,
resnet_eps=norm_eps,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
cross_attention_dim=cross_attention_dim,
num_attention_heads=num_attention_heads[i],
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
downsample_padding=downsample_padding,
use_linear_projection=use_linear_projection,
only_cross_attention=only_cross_attention[i],
upcast_attention=upcast_attention,
resnet_time_scale_shift=resnet_time_scale_shift,
)
self.down_blocks.append(down_block)
for _ in range(layers_per_block):
controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
controlnet_block = zero_module(controlnet_block)
self.controlnet_down_blocks.append(controlnet_block)
if not is_final_block:
controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
controlnet_block = zero_module(controlnet_block)
self.controlnet_down_blocks.append(controlnet_block)
# mid
mid_block_channel = block_out_channels[-1]
controlnet_block = nn.Conv2d(mid_block_channel, mid_block_channel, kernel_size=1)
controlnet_block = zero_module(controlnet_block)
self.controlnet_mid_block = controlnet_block
if mid_block_type == "UNetMidBlock2DCrossAttn":
self.mid_block = UNetMidBlock2DCrossAttn(
transformer_layers_per_block=transformer_layers_per_block[-1],
in_channels=mid_block_channel,
temb_channels=time_embed_dim,
resnet_eps=norm_eps,
resnet_act_fn=act_fn,
output_scale_factor=mid_block_scale_factor,
resnet_time_scale_shift=resnet_time_scale_shift,
cross_attention_dim=cross_attention_dim,
num_attention_heads=num_attention_heads[-1],
resnet_groups=norm_num_groups,
use_linear_projection=use_linear_projection,
upcast_attention=upcast_attention,
)
elif mid_block_type == "UNetMidBlock2D":
self.mid_block = UNetMidBlock2D(
in_channels=block_out_channels[-1],
temb_channels=time_embed_dim,
num_layers=0,
resnet_eps=norm_eps,
resnet_act_fn=act_fn,
output_scale_factor=mid_block_scale_factor,
resnet_groups=norm_num_groups,
resnet_time_scale_shift=resnet_time_scale_shift,
add_attention=False,
)
else:
raise ValueError(f"unknown mid_block_type : {mid_block_type}")
@classmethod
def from_unet(
cls,
unet: UNet2DConditionModel,
controlnet_conditioning_channel_order: str = "rgb",
conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256),
load_weights_from_unet: bool = True,
conditioning_channels: int = 3,
):
r"""
Instantiate a [`ControlNetModel`] from [`UNet2DConditionModel`].
Parameters:
unet (`UNet2DConditionModel`):
The UNet model weights to copy to the [`ControlNetModel`]. All configuration options are also copied
where applicable.
"""
transformer_layers_per_block = (
unet.config.transformer_layers_per_block if "transformer_layers_per_block" in unet.config else 1
)
encoder_hid_dim = unet.config.encoder_hid_dim if "encoder_hid_dim" in unet.config else None
encoder_hid_dim_type = unet.config.encoder_hid_dim_type if "encoder_hid_dim_type" in unet.config else None
addition_embed_type = unet.config.addition_embed_type if "addition_embed_type" in unet.config else None
addition_time_embed_dim = (
unet.config.addition_time_embed_dim if "addition_time_embed_dim" in unet.config else None
)
controlnet = cls(
encoder_hid_dim=encoder_hid_dim,
encoder_hid_dim_type=encoder_hid_dim_type,
addition_embed_type=addition_embed_type,
addition_time_embed_dim=addition_time_embed_dim,
transformer_layers_per_block=transformer_layers_per_block,
in_channels=unet.config.in_channels,
flip_sin_to_cos=unet.config.flip_sin_to_cos,
freq_shift=unet.config.freq_shift,
down_block_types=unet.config.down_block_types,
only_cross_attention=unet.config.only_cross_attention,
block_out_channels=unet.config.block_out_channels,
layers_per_block=unet.config.layers_per_block,
downsample_padding=unet.config.downsample_padding,
mid_block_scale_factor=unet.config.mid_block_scale_factor,
act_fn=unet.config.act_fn,
norm_num_groups=unet.config.norm_num_groups,
norm_eps=unet.config.norm_eps,
cross_attention_dim=unet.config.cross_attention_dim,
attention_head_dim=unet.config.attention_head_dim,
num_attention_heads=unet.config.num_attention_heads,
use_linear_projection=unet.config.use_linear_projection,
class_embed_type=unet.config.class_embed_type,
num_class_embeds=unet.config.num_class_embeds,
upcast_attention=unet.config.upcast_attention,
resnet_time_scale_shift=unet.config.resnet_time_scale_shift,
projection_class_embeddings_input_dim=unet.config.projection_class_embeddings_input_dim,
mid_block_type=unet.config.mid_block_type,
controlnet_conditioning_channel_order=controlnet_conditioning_channel_order,
conditioning_embedding_out_channels=conditioning_embedding_out_channels,
conditioning_channels=conditioning_channels,
)
if load_weights_from_unet:
controlnet.conv_in.load_state_dict(unet.conv_in.state_dict())
controlnet.time_proj.load_state_dict(unet.time_proj.state_dict())
controlnet.time_embedding.load_state_dict(unet.time_embedding.state_dict())
if controlnet.class_embedding:
controlnet.class_embedding.load_state_dict(unet.class_embedding.state_dict())
controlnet.down_blocks.load_state_dict(unet.down_blocks.state_dict())
controlnet.mid_block.load_state_dict(unet.mid_block.state_dict())
return controlnet
@property
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
def attn_processors(self) -> Dict[str, AttentionProcessor]:
r"""
Returns:
`dict` of attention processors: A dictionary containing all attention processors used in the model with
indexed by its weight name.
"""
# set recursively
processors = {}
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
if hasattr(module, "get_processor"):
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
for sub_name, child in module.named_children():
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
return processors
for name, module in self.named_children():
fn_recursive_add_processors(name, module, processors)
return processors
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
r"""
Sets the attention processor to use to compute attention.
Parameters:
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
The instantiated processor class or a dictionary of processor classes that will be set as the processor
for **all** `Attention` layers.
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
processor. This is strongly recommended when setting trainable attention processors.
"""
count = len(self.attn_processors.keys())
if isinstance(processor, dict) and len(processor) != count:
raise ValueError(
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
)
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
if hasattr(module, "set_processor"):
if not isinstance(processor, dict):
module.set_processor(processor)
else:
module.set_processor(processor.pop(f"{name}.processor"))
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
for name, module in self.named_children():
fn_recursive_attn_processor(name, module, processor)
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
def set_default_attn_processor(self):
"""
Disables custom attention processors and sets the default attention implementation.
"""
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
processor = AttnAddedKVProcessor()
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
processor = AttnProcessor()
else:
raise ValueError(
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
)
self.set_attn_processor(processor)
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attention_slice
def set_attention_slice(self, slice_size: Union[str, int, List[int]]) -> None:
r"""
Enable sliced attention computation.
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
Args:
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
must be a multiple of `slice_size`.
"""
sliceable_head_dims = []
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
if hasattr(module, "set_attention_slice"):
sliceable_head_dims.append(module.sliceable_head_dim)
for child in module.children():
fn_recursive_retrieve_sliceable_dims(child)
# retrieve number of attention layers
for module in self.children():
fn_recursive_retrieve_sliceable_dims(module)
num_sliceable_layers = len(sliceable_head_dims)
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
slice_size = [dim // 2 for dim in sliceable_head_dims]
elif slice_size == "max":
# make smallest slice possible
slice_size = num_sliceable_layers * [1]
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
if len(slice_size) != len(sliceable_head_dims):
raise ValueError(
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
)
for i in range(len(slice_size)):
size = slice_size[i]
dim = sliceable_head_dims[i]
if size is not None and size > dim:
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
# Recursively walk through all the children.
# Any children which exposes the set_attention_slice method
# gets the message
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
if hasattr(module, "set_attention_slice"):
module.set_attention_slice(slice_size.pop())
for child in module.children():
fn_recursive_set_attention_slice(child, slice_size)
reversed_slice_size = list(reversed(slice_size))
for module in self.children():
fn_recursive_set_attention_slice(module, reversed_slice_size)
def _set_gradient_checkpointing(self, module, value: bool = False) -> None:
if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D)):
module.gradient_checkpointing = value
def forward(
self,
sample: torch.FloatTensor,
timestep: Union[torch.Tensor, float, int],
encoder_hidden_states: torch.Tensor,
controlnet_cond: torch.FloatTensor,
conditioning_scale: float = 1.0,
class_labels: Optional[torch.Tensor] = None,
timestep_cond: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
guess_mode: bool = False,
return_dict: bool = True,
) -> Union[ControlNetOutput, Tuple[Tuple[torch.FloatTensor, ...], torch.FloatTensor]]:
"""
The [`ControlNetModel`] forward method.
Args:
sample (`torch.FloatTensor`):
The noisy input tensor.
timestep (`Union[torch.Tensor, float, int]`):
The number of timesteps to denoise an input.
encoder_hidden_states (`torch.Tensor`):
The encoder hidden states.
controlnet_cond (`torch.FloatTensor`):
The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
conditioning_scale (`float`, defaults to `1.0`):
The scale factor for ControlNet outputs.
class_labels (`torch.Tensor`, *optional*, defaults to `None`):
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
timestep_cond (`torch.Tensor`, *optional*, defaults to `None`):
Additional conditional embeddings for timestep. If provided, the embeddings will be summed with the
timestep_embedding passed through the `self.time_embedding` layer to obtain the final timestep
embeddings.
attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
negative values to the attention scores corresponding to "discard" tokens.
added_cond_kwargs (`dict`):
Additional conditions for the Stable Diffusion XL UNet.
cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`):
A kwargs dictionary that if specified is passed along to the `AttnProcessor`.
guess_mode (`bool`, defaults to `False`):
In this mode, the ControlNet encoder tries its best to recognize the input content of the input even if
you remove all prompts. A `guidance_scale` between 3.0 and 5.0 is recommended.
return_dict (`bool`, defaults to `True`):
Whether or not to return a [`~models.controlnet.ControlNetOutput`] instead of a plain tuple.
Returns:
[`~models.controlnet.ControlNetOutput`] **or** `tuple`:
If `return_dict` is `True`, a [`~models.controlnet.ControlNetOutput`] is returned, otherwise a tuple is
returned where the first element is the sample tensor.
"""
# check channel order
channel_order = self.config.controlnet_conditioning_channel_order
if channel_order == "rgb":
# in rgb order by default
...
elif channel_order == "bgr":
controlnet_cond = torch.flip(controlnet_cond, dims=[1])
else:
raise ValueError(f"unknown `controlnet_conditioning_channel_order`: {channel_order}")
# prepare attention_mask
if attention_mask is not None:
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
attention_mask = attention_mask.unsqueeze(1)
# 1. time
timesteps = timestep
if not torch.is_tensor(timesteps):
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
# This would be a good case for the `match` statement (Python 3.10+)
is_mps = sample.device.type == "mps"
if isinstance(timestep, float):
dtype = torch.float32 if is_mps else torch.float64
else:
dtype = torch.int32 if is_mps else torch.int64
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
elif len(timesteps.shape) == 0:
timesteps = timesteps[None].to(sample.device)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timesteps = timesteps.expand(sample.shape[0])
t_emb = self.time_proj(timesteps)
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might actually be running in fp16. so we need to cast here.
# there might be better ways to encapsulate this.
t_emb = t_emb.to(dtype=sample.dtype)
emb = self.time_embedding(t_emb, timestep_cond)
aug_emb = None
if self.class_embedding is not None:
if class_labels is None:
raise ValueError("class_labels should be provided when num_class_embeds > 0")
if self.config.class_embed_type == "timestep":
class_labels = self.time_proj(class_labels)
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
emb = emb + class_emb
if self.config.addition_embed_type is not None:
if self.config.addition_embed_type == "text":
aug_emb = self.add_embedding(encoder_hidden_states)
elif self.config.addition_embed_type == "text_time":
if "text_embeds" not in added_cond_kwargs:
raise ValueError(
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
)
text_embeds = added_cond_kwargs.get("text_embeds")
if "time_ids" not in added_cond_kwargs:
raise ValueError(
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
)
time_ids = added_cond_kwargs.get("time_ids")
time_embeds = self.add_time_proj(time_ids.flatten())
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
add_embeds = add_embeds.to(emb.dtype)
aug_emb = self.add_embedding(add_embeds)
emb = emb + aug_emb if aug_emb is not None else emb
# 2. pre-process
sample = self.conv_in(sample)
controlnet_cond = self.controlnet_cond_embedding(controlnet_cond)
sample = sample + controlnet_cond
# 3. down
down_block_res_samples = (sample,)
for downsample_block in self.down_blocks:
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
sample, res_samples = downsample_block(
hidden_states=sample,
temb=emb,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
cross_attention_kwargs=cross_attention_kwargs,
)
else:
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
down_block_res_samples += res_samples
# 4. mid
if self.mid_block is not None:
if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
sample = self.mid_block(
sample,
emb,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
cross_attention_kwargs=cross_attention_kwargs,
)
else:
sample = self.mid_block(sample, emb)
# 5. Control net blocks
controlnet_down_block_res_samples = ()
for down_block_res_sample, controlnet_block in zip(down_block_res_samples, self.controlnet_down_blocks):
down_block_res_sample = controlnet_block(down_block_res_sample)
controlnet_down_block_res_samples = controlnet_down_block_res_samples + (down_block_res_sample,)
down_block_res_samples = controlnet_down_block_res_samples
mid_block_res_sample = self.controlnet_mid_block(sample)
# 6. scaling
if guess_mode and not self.config.global_pool_conditions:
scales = torch.logspace(-1, 0, len(down_block_res_samples) + 1, device=sample.device) # 0.1 to 1.0
scales = scales * conditioning_scale
down_block_res_samples = [sample * scale for sample, scale in zip(down_block_res_samples, scales)]
mid_block_res_sample = mid_block_res_sample * scales[-1] # last one
else:
down_block_res_samples = [sample * conditioning_scale for sample in down_block_res_samples]
mid_block_res_sample = mid_block_res_sample * conditioning_scale
if self.config.global_pool_conditions:
down_block_res_samples = [
torch.mean(sample, dim=(2, 3), keepdim=True) for sample in down_block_res_samples
]
mid_block_res_sample = torch.mean(mid_block_res_sample, dim=(2, 3), keepdim=True)
if not return_dict:
return (down_block_res_samples, mid_block_res_sample)
return ControlNetOutput(
down_block_res_samples=down_block_res_samples, mid_block_res_sample=mid_block_res_sample
)
def zero_module(module):
for p in module.parameters():
nn.init.zeros_(p)
return module
import math
import flax.linen as nn
import jax.numpy as jnp
def get_sinusoidal_embeddings(
timesteps: jnp.ndarray,
embedding_dim: int,
freq_shift: float = 1,
min_timescale: float = 1,
max_timescale: float = 1.0e4,
flip_sin_to_cos: bool = False,
scale: float = 1.0,
) -> jnp.ndarray:
"""Returns the positional encoding (same as Tensor2Tensor).
Args:
timesteps: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
embedding_dim: The number of output channels.
min_timescale: The smallest time unit (should probably be 0.0).
max_timescale: The largest time unit.
Returns:
a Tensor of timing signals [N, num_channels]
"""
assert timesteps.ndim == 1, "Timesteps should be a 1d-array"
assert embedding_dim % 2 == 0, f"Embedding dimension {embedding_dim} should be even"
num_timescales = float(embedding_dim // 2)
log_timescale_increment = math.log(max_timescale / min_timescale) / (num_timescales - freq_shift)
inv_timescales = min_timescale * jnp.exp(jnp.arange(num_timescales, dtype=jnp.float32) * -log_timescale_increment)
emb = jnp.expand_dims(timesteps, 1) * jnp.expand_dims(inv_timescales, 0)
# scale embeddings
scaled_time = scale * emb
if flip_sin_to_cos:
signal = jnp.concatenate([jnp.cos(scaled_time), jnp.sin(scaled_time)], axis=1)
else:
signal = jnp.concatenate([jnp.sin(scaled_time), jnp.cos(scaled_time)], axis=1)
signal = jnp.reshape(signal, [jnp.shape(timesteps)[0], embedding_dim])
return signal
class FlaxTimestepEmbedding(nn.Module):
r"""
Time step Embedding Module. Learns embeddings for input time steps.
Args:
time_embed_dim (`int`, *optional*, defaults to `32`):
Time step embedding dimension
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
Parameters `dtype`
"""
time_embed_dim: int = 32
dtype: jnp.dtype = jnp.float32
@nn.compact
def __call__(self, temb):
temb = nn.Dense(self.time_embed_dim, dtype=self.dtype, name="linear_1")(temb)
temb = nn.silu(temb)
temb = nn.Dense(self.time_embed_dim, dtype=self.dtype, name="linear_2")(temb)
return temb
class FlaxTimesteps(nn.Module):
r"""
Wrapper Module for sinusoidal Time step Embeddings as described in https://arxiv.org/abs/2006.11239
Args:
dim (`int`, *optional*, defaults to `32`):
Time step embedding dimension
"""
dim: int = 32
flip_sin_to_cos: bool = False
freq_shift: float = 1
@nn.compact
def __call__(self, timesteps):
return get_sinusoidal_embeddings(
timesteps, embedding_dim=self.dim, flip_sin_to_cos=self.flip_sin_to_cos, freq_shift=self.freq_shift
)
from dataclasses import dataclass
from typing import Any, Dict, Optional
import torch
from torch import nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...utils import BaseOutput
from ..attention import BasicTransformerBlock, TemporalBasicTransformerBlock
from ..embeddings import TimestepEmbedding, Timesteps
from ..modeling_utils import ModelMixin
from ..resnet import AlphaBlender
@dataclass
class TransformerTemporalModelOutput(BaseOutput):
"""
The output of [`TransformerTemporalModel`].
Args:
sample (`torch.FloatTensor` of shape `(batch_size x num_frames, num_channels, height, width)`):
The hidden states output conditioned on `encoder_hidden_states` input.
"""
sample: torch.FloatTensor
class TransformerTemporalModel(ModelMixin, ConfigMixin):
"""
A Transformer model for video-like data.
Parameters:
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
in_channels (`int`, *optional*):
The number of channels in the input and output (specify if the input is **continuous**).
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
attention_bias (`bool`, *optional*):
Configure if the `TransformerBlock` attention should contain a bias parameter.
sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
This is fixed during training since it is used to learn a number of position embeddings.
activation_fn (`str`, *optional*, defaults to `"geglu"`):
Activation function to use in feed-forward. See `diffusers.models.activations.get_activation` for supported
activation functions.
norm_elementwise_affine (`bool`, *optional*):
Configure if the `TransformerBlock` should use learnable elementwise affine parameters for normalization.
double_self_attention (`bool`, *optional*):
Configure if each `TransformerBlock` should contain two self-attention layers.
positional_embeddings: (`str`, *optional*):
The type of positional embeddings to apply to the sequence input before passing use.
num_positional_embeddings: (`int`, *optional*):
The maximum length of the sequence over which to apply positional embeddings.
"""
@register_to_config
def __init__(
self,
num_attention_heads: int = 16,
attention_head_dim: int = 88,
in_channels: Optional[int] = None,
out_channels: Optional[int] = None,
num_layers: int = 1,
dropout: float = 0.0,
norm_num_groups: int = 32,
cross_attention_dim: Optional[int] = None,
attention_bias: bool = False,
sample_size: Optional[int] = None,
activation_fn: str = "geglu",
norm_elementwise_affine: bool = True,
double_self_attention: bool = True,
positional_embeddings: Optional[str] = None,
num_positional_embeddings: Optional[int] = None,
):
super().__init__()
self.num_attention_heads = num_attention_heads
self.attention_head_dim = attention_head_dim
inner_dim = num_attention_heads * attention_head_dim
self.in_channels = in_channels
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
self.proj_in = nn.Linear(in_channels, inner_dim)
# 3. Define transformers blocks
self.transformer_blocks = nn.ModuleList(
[
BasicTransformerBlock(
inner_dim,
num_attention_heads,
attention_head_dim,
dropout=dropout,
cross_attention_dim=cross_attention_dim,
activation_fn=activation_fn,
attention_bias=attention_bias,
double_self_attention=double_self_attention,
norm_elementwise_affine=norm_elementwise_affine,
positional_embeddings=positional_embeddings,
num_positional_embeddings=num_positional_embeddings,
)
for d in range(num_layers)
]
)
self.proj_out = nn.Linear(inner_dim, in_channels)
def forward(
self,
hidden_states: torch.FloatTensor,
encoder_hidden_states: Optional[torch.LongTensor] = None,
timestep: Optional[torch.LongTensor] = None,
class_labels: torch.LongTensor = None,
num_frames: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
return_dict: bool = True,
) -> TransformerTemporalModelOutput:
"""
The [`TransformerTemporal`] forward method.
Args:
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
Input hidden_states.
encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, encoder_hidden_states dim)`, *optional*):
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
self-attention.
timestep ( `torch.LongTensor`, *optional*):
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
`AdaLayerZeroNorm`.
num_frames (`int`, *optional*, defaults to 1):
The number of frames to be processed per batch. This is used to reshape the hidden states.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
tuple.
Returns:
[`~models.transformer_temporal.TransformerTemporalModelOutput`] or `tuple`:
If `return_dict` is True, an [`~models.transformer_temporal.TransformerTemporalModelOutput`] is
returned, otherwise a `tuple` where the first element is the sample tensor.
"""
# 1. Input
batch_frames, channel, height, width = hidden_states.shape
batch_size = batch_frames // num_frames
residual = hidden_states
hidden_states = hidden_states[None, :].reshape(batch_size, num_frames, channel, height, width)
hidden_states = hidden_states.permute(0, 2, 1, 3, 4)
hidden_states = self.norm(hidden_states)
hidden_states = hidden_states.permute(0, 3, 4, 2, 1).reshape(batch_size * height * width, num_frames, channel)
hidden_states = self.proj_in(hidden_states)
# 2. Blocks
for block in self.transformer_blocks:
hidden_states = block(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
timestep=timestep,
cross_attention_kwargs=cross_attention_kwargs,
class_labels=class_labels,
)
# 3. Output
hidden_states = self.proj_out(hidden_states)
hidden_states = (
hidden_states[None, None, :]
.reshape(batch_size, height, width, num_frames, channel)
.permute(0, 3, 4, 1, 2)
.contiguous()
)
hidden_states = hidden_states.reshape(batch_frames, channel, height, width)
output = hidden_states + residual
if not return_dict:
return (output,)
return TransformerTemporalModelOutput(sample=output)
class TransformerSpatioTemporalModel(nn.Module):
"""
A Transformer model for video-like data.
Parameters:
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
in_channels (`int`, *optional*):
The number of channels in the input and output (specify if the input is **continuous**).
out_channels (`int`, *optional*):
The number of channels in the output (specify if the input is **continuous**).
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
"""
def __init__(
self,
num_attention_heads: int = 16,
attention_head_dim: int = 88,
in_channels: int = 320,
out_channels: Optional[int] = None,
num_layers: int = 1,
cross_attention_dim: Optional[int] = None,
):
super().__init__()
self.num_attention_heads = num_attention_heads
self.attention_head_dim = attention_head_dim
inner_dim = num_attention_heads * attention_head_dim
self.inner_dim = inner_dim
# 2. Define input layers
self.in_channels = in_channels
self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6)
self.proj_in = nn.Linear(in_channels, inner_dim)
# 3. Define transformers blocks
self.transformer_blocks = nn.ModuleList(
[
BasicTransformerBlock(
inner_dim,
num_attention_heads,
attention_head_dim,
cross_attention_dim=cross_attention_dim,
)
for d in range(num_layers)
]
)
time_mix_inner_dim = inner_dim
self.temporal_transformer_blocks = nn.ModuleList(
[
TemporalBasicTransformerBlock(
inner_dim,
time_mix_inner_dim,
num_attention_heads,
attention_head_dim,
cross_attention_dim=cross_attention_dim,
)
for _ in range(num_layers)
]
)
time_embed_dim = in_channels * 4
self.time_pos_embed = TimestepEmbedding(in_channels, time_embed_dim, out_dim=in_channels)
self.time_proj = Timesteps(in_channels, True, 0)
self.time_mixer = AlphaBlender(alpha=0.5, merge_strategy="learned_with_images")
# 4. Define output layers
self.out_channels = in_channels if out_channels is None else out_channels
# TODO: should use out_channels for continuous projections
self.proj_out = nn.Linear(inner_dim, in_channels)
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
image_only_indicator: Optional[torch.Tensor] = None,
return_dict: bool = True,
):
"""
Args:
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
Input hidden_states.
num_frames (`int`):
The number of frames to be processed per batch. This is used to reshape the hidden states.
encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, encoder_hidden_states dim)`, *optional*):
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
self-attention.
image_only_indicator (`torch.LongTensor` of shape `(batch size, num_frames)`, *optional*):
A tensor indicating whether the input contains only images. 1 indicates that the input contains only
images, 0 indicates that the input contains video frames.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.transformer_temporal.TransformerTemporalModelOutput`] instead of a plain
tuple.
Returns:
[`~models.transformer_temporal.TransformerTemporalModelOutput`] or `tuple`:
If `return_dict` is True, an [`~models.transformer_temporal.TransformerTemporalModelOutput`] is
returned, otherwise a `tuple` where the first element is the sample tensor.
"""
# 1. Input
batch_frames, _, height, width = hidden_states.shape
num_frames = image_only_indicator.shape[-1]
batch_size = batch_frames // num_frames
time_context = encoder_hidden_states
time_context_first_timestep = time_context[None, :].reshape(
batch_size, num_frames, -1, time_context.shape[-1]
)[:, 0]
time_context = time_context_first_timestep[None, :].broadcast_to(
height * width, batch_size, 1, time_context.shape[-1]
)
time_context = time_context.reshape(height * width * batch_size, 1, time_context.shape[-1])
residual = hidden_states
hidden_states = self.norm(hidden_states)
inner_dim = hidden_states.shape[1]
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch_frames, height * width, inner_dim)
hidden_states = self.proj_in(hidden_states)
num_frames_emb = torch.arange(num_frames, device=hidden_states.device)
num_frames_emb = num_frames_emb.repeat(batch_size, 1)
num_frames_emb = num_frames_emb.reshape(-1)
t_emb = self.time_proj(num_frames_emb)
# `Timesteps` does not contain any weights and will always return f32 tensors
# but time_embedding might actually be running in fp16. so we need to cast here.
# there might be better ways to encapsulate this.
t_emb = t_emb.to(dtype=hidden_states.dtype)
emb = self.time_pos_embed(t_emb)
emb = emb[:, None, :]
# 2. Blocks
for block, temporal_block in zip(self.transformer_blocks, self.temporal_transformer_blocks):
if self.training and self.gradient_checkpointing:
hidden_states = torch.utils.checkpoint.checkpoint(
block,
hidden_states,
None,
encoder_hidden_states,
None,
use_reentrant=False,
)
else:
hidden_states = block(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
)
hidden_states_mix = hidden_states
hidden_states_mix = hidden_states_mix + emb
hidden_states_mix = temporal_block(
hidden_states_mix,
num_frames=num_frames,
encoder_hidden_states=time_context,
)
hidden_states = self.time_mixer(
x_spatial=hidden_states,
x_temporal=hidden_states_mix,
image_only_indicator=image_only_indicator,
)
# 3. Output
hidden_states = self.proj_out(hidden_states)
hidden_states = hidden_states.reshape(batch_frames, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
output = hidden_states + residual
if not return_dict:
return (output,)
return TransformerTemporalModelOutput(sample=output)
from ...utils import is_torch_available
if is_torch_available():
from .dual_transformer_2d import DualTransformer2DModel
from .prior_transformer import PriorTransformer
from .t5_film_transformer import T5FilmDecoder
from .transformer_2d import Transformer2DModel
from .transformer_temporal import TransformerTemporalModel
from dataclasses import dataclass
from typing import Any, Dict, Optional
import torch
import torch.nn.functional as F
from torch import nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...utils import USE_PEFT_BACKEND, BaseOutput, deprecate, is_torch_version
from ..attention import BasicTransformerBlock
from ..embeddings import ImagePositionalEmbeddings, PatchEmbed, PixArtAlphaTextProjection
from ..lora import LoRACompatibleConv, LoRACompatibleLinear
from ..modeling_utils import ModelMixin
from ..normalization import AdaLayerNormSingle
@dataclass
class Transformer2DModelOutput(BaseOutput):
"""
The output of [`Transformer2DModel`].
Args:
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
distributions for the unnoised latent pixels.
"""
sample: torch.FloatTensor
class Transformer2DModel(ModelMixin, ConfigMixin):
"""
A 2D Transformer model for image-like data.
Parameters:
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
in_channels (`int`, *optional*):
The number of channels in the input and output (specify if the input is **continuous**).
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
This is fixed during training since it is used to learn a number of position embeddings.
num_vector_embeds (`int`, *optional*):
The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**).
Includes the class for the masked latent pixel.
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward.
num_embeds_ada_norm ( `int`, *optional*):
The number of diffusion steps used during training. Pass if at least one of the norm_layers is
`AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are
added to the hidden states.
During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`.
attention_bias (`bool`, *optional*):
Configure if the `TransformerBlocks` attention should contain a bias parameter.
"""
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
num_attention_heads: int = 16,
attention_head_dim: int = 88,
in_channels: Optional[int] = None,
out_channels: Optional[int] = None,
num_layers: int = 1,
dropout: float = 0.0,
norm_num_groups: int = 32,
cross_attention_dim: Optional[int] = None,
attention_bias: bool = False,
sample_size: Optional[int] = None,
num_vector_embeds: Optional[int] = None,
patch_size: Optional[int] = None,
activation_fn: str = "geglu",
num_embeds_ada_norm: Optional[int] = None,
use_linear_projection: bool = False,
only_cross_attention: bool = False,
double_self_attention: bool = False,
upcast_attention: bool = False,
norm_type: str = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single', 'ada_norm_continuous', 'layer_norm_i2vgen'
norm_elementwise_affine: bool = True,
norm_eps: float = 1e-5,
attention_type: str = "default",
caption_channels: int = None,
interpolation_scale: float = None,
):
super().__init__()
if patch_size is not None:
if norm_type not in ["ada_norm", "ada_norm_zero", "ada_norm_single"]:
raise NotImplementedError(
f"Forward pass is not implemented when `patch_size` is not None and `norm_type` is '{norm_type}'."
)
elif norm_type in ["ada_norm", "ada_norm_zero"] and num_embeds_ada_norm is None:
raise ValueError(
f"When using a `patch_size` and this `norm_type` ({norm_type}), `num_embeds_ada_norm` cannot be None."
)
self.use_linear_projection = use_linear_projection
self.num_attention_heads = num_attention_heads
self.attention_head_dim = attention_head_dim
inner_dim = num_attention_heads * attention_head_dim
conv_cls = nn.Conv2d if USE_PEFT_BACKEND else LoRACompatibleConv
linear_cls = nn.Linear if USE_PEFT_BACKEND else LoRACompatibleLinear
# 1. Transformer2DModel can process both standard continuous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
# Define whether input is continuous or discrete depending on configuration
self.is_input_continuous = (in_channels is not None) and (patch_size is None)
self.is_input_vectorized = num_vector_embeds is not None
self.is_input_patches = in_channels is not None and patch_size is not None
if norm_type == "layer_norm" and num_embeds_ada_norm is not None:
deprecation_message = (
f"The configuration file of this model: {self.__class__} is outdated. `norm_type` is either not set or"
" incorrectly set to `'layer_norm'`.Make sure to set `norm_type` to `'ada_norm'` in the config."
" Please make sure to update the config accordingly as leaving `norm_type` might led to incorrect"
" results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it"
" would be very nice if you could open a Pull request for the `transformer/config.json` file"
)
deprecate("norm_type!=num_embeds_ada_norm", "1.0.0", deprecation_message, standard_warn=False)
norm_type = "ada_norm"
if self.is_input_continuous and self.is_input_vectorized:
raise ValueError(
f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
" sure that either `in_channels` or `num_vector_embeds` is None."
)
elif self.is_input_vectorized and self.is_input_patches:
raise ValueError(
f"Cannot define both `num_vector_embeds`: {num_vector_embeds} and `patch_size`: {patch_size}. Make"
" sure that either `num_vector_embeds` or `num_patches` is None."
)
elif not self.is_input_continuous and not self.is_input_vectorized and not self.is_input_patches:
raise ValueError(
f"Has to define `in_channels`: {in_channels}, `num_vector_embeds`: {num_vector_embeds}, or patch_size:"
f" {patch_size}. Make sure that `in_channels`, `num_vector_embeds` or `num_patches` is not None."
)
# 2. Define input layers
if self.is_input_continuous:
self.in_channels = in_channels
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
if use_linear_projection:
self.proj_in = linear_cls(in_channels, inner_dim)
else:
self.proj_in = conv_cls(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
elif self.is_input_vectorized:
assert sample_size is not None, "Transformer2DModel over discrete input must provide sample_size"
assert num_vector_embeds is not None, "Transformer2DModel over discrete input must provide num_embed"
self.height = sample_size
self.width = sample_size
self.num_vector_embeds = num_vector_embeds
self.num_latent_pixels = self.height * self.width
self.latent_image_embedding = ImagePositionalEmbeddings(
num_embed=num_vector_embeds, embed_dim=inner_dim, height=self.height, width=self.width
)
elif self.is_input_patches:
assert sample_size is not None, "Transformer2DModel over patched input must provide sample_size"
self.height = sample_size
self.width = sample_size
self.patch_size = patch_size
interpolation_scale = (
interpolation_scale if interpolation_scale is not None else max(self.config.sample_size // 64, 1)
)
self.pos_embed = PatchEmbed(
height=sample_size,
width=sample_size,
patch_size=patch_size,
in_channels=in_channels,
embed_dim=inner_dim,
interpolation_scale=interpolation_scale,
)
# 3. Define transformers blocks
self.transformer_blocks = nn.ModuleList(
[
BasicTransformerBlock(
inner_dim,
num_attention_heads,
attention_head_dim,
dropout=dropout,
cross_attention_dim=cross_attention_dim,
activation_fn=activation_fn,
num_embeds_ada_norm=num_embeds_ada_norm,
attention_bias=attention_bias,
only_cross_attention=only_cross_attention,
double_self_attention=double_self_attention,
upcast_attention=upcast_attention,
norm_type=norm_type,
norm_elementwise_affine=norm_elementwise_affine,
norm_eps=norm_eps,
attention_type=attention_type,
)
for d in range(num_layers)
]
)
# 4. Define output layers
self.out_channels = in_channels if out_channels is None else out_channels
if self.is_input_continuous:
# TODO: should use out_channels for continuous projections
if use_linear_projection:
self.proj_out = linear_cls(inner_dim, in_channels)
else:
self.proj_out = conv_cls(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
elif self.is_input_vectorized:
self.norm_out = nn.LayerNorm(inner_dim)
self.out = nn.Linear(inner_dim, self.num_vector_embeds - 1)
elif self.is_input_patches and norm_type != "ada_norm_single":
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
self.proj_out_1 = nn.Linear(inner_dim, 2 * inner_dim)
self.proj_out_2 = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
elif self.is_input_patches and norm_type == "ada_norm_single":
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
self.scale_shift_table = nn.Parameter(torch.randn(2, inner_dim) / inner_dim**0.5)
self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
# 5. PixArt-Alpha blocks.
self.adaln_single = None
self.use_additional_conditions = False
if norm_type == "ada_norm_single":
self.use_additional_conditions = self.config.sample_size == 128
# TODO(Sayak, PVP) clean this, for now we use sample size to determine whether to use
# additional conditions until we find better name
self.adaln_single = AdaLayerNormSingle(inner_dim, use_additional_conditions=self.use_additional_conditions)
self.caption_projection = None
if caption_channels is not None:
self.caption_projection = PixArtAlphaTextProjection(in_features=caption_channels, hidden_size=inner_dim)
self.gradient_checkpointing = False
def _set_gradient_checkpointing(self, module, value=False):
if hasattr(module, "gradient_checkpointing"):
module.gradient_checkpointing = value
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
timestep: Optional[torch.LongTensor] = None,
added_cond_kwargs: Dict[str, torch.Tensor] = None,
class_labels: Optional[torch.LongTensor] = None,
cross_attention_kwargs: Dict[str, Any] = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
return_dict: bool = True,
):
"""
The [`Transformer2DModel`] forward method.
Args:
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
Input `hidden_states`.
encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
self-attention.
timestep ( `torch.LongTensor`, *optional*):
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
`AdaLayerZeroNorm`.
cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
attention_mask ( `torch.Tensor`, *optional*):
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
negative values to the attention scores corresponding to "discard" tokens.
encoder_attention_mask ( `torch.Tensor`, *optional*):
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
* Mask `(batch, sequence_length)` True = keep, False = discard.
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
above. This bias will be added to the cross-attention scores.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
tuple.
Returns:
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
`tuple` where the first element is the sample tensor.
"""
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
# expects mask of shape:
# [batch, key_tokens]
# adds singleton query_tokens dimension:
# [batch, 1, key_tokens]
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
if attention_mask is not None and attention_mask.ndim == 2:
# assume that mask is expressed as:
# (1 = keep, 0 = discard)
# convert mask into a bias that can be added to attention scores:
# (keep = +0, discard = -10000.0)
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
attention_mask = attention_mask.unsqueeze(1)
# convert encoder_attention_mask to a bias the same way we do for attention_mask
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
# Retrieve lora scale.
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
# 1. Input
if self.is_input_continuous:
batch, _, height, width = hidden_states.shape
residual = hidden_states
hidden_states = self.norm(hidden_states)
if not self.use_linear_projection:
hidden_states = (
self.proj_in(hidden_states, scale=lora_scale)
if not USE_PEFT_BACKEND
else self.proj_in(hidden_states)
)
inner_dim = hidden_states.shape[1]
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
else:
inner_dim = hidden_states.shape[1]
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
hidden_states = (
self.proj_in(hidden_states, scale=lora_scale)
if not USE_PEFT_BACKEND
else self.proj_in(hidden_states)
)
elif self.is_input_vectorized:
hidden_states = self.latent_image_embedding(hidden_states)
elif self.is_input_patches:
height, width = hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size
hidden_states = self.pos_embed(hidden_states)
if self.adaln_single is not None:
if self.use_additional_conditions and added_cond_kwargs is None:
raise ValueError(
"`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`."
)
batch_size = hidden_states.shape[0]
timestep, embedded_timestep = self.adaln_single(
timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype
)
# 2. Blocks
if self.caption_projection is not None:
batch_size = hidden_states.shape[0]
encoder_hidden_states = self.caption_projection(encoder_hidden_states)
encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])
for block in self.transformer_blocks:
if self.training and self.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
timestep,
cross_attention_kwargs,
class_labels,
**ckpt_kwargs,
)
else:
hidden_states = block(
hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
timestep=timestep,
cross_attention_kwargs=cross_attention_kwargs,
class_labels=class_labels,
)
# 3. Output
if self.is_input_continuous:
if not self.use_linear_projection:
hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
hidden_states = (
self.proj_out(hidden_states, scale=lora_scale)
if not USE_PEFT_BACKEND
else self.proj_out(hidden_states)
)
else:
hidden_states = (
self.proj_out(hidden_states, scale=lora_scale)
if not USE_PEFT_BACKEND
else self.proj_out(hidden_states)
)
hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
output = hidden_states + residual
elif self.is_input_vectorized:
hidden_states = self.norm_out(hidden_states)
logits = self.out(hidden_states)
# (batch, self.num_vector_embeds - 1, self.num_latent_pixels)
logits = logits.permute(0, 2, 1)
# log(p(x_0))
output = F.log_softmax(logits.double(), dim=1).float()
if self.is_input_patches:
if self.config.norm_type != "ada_norm_single":
conditioning = self.transformer_blocks[0].norm1.emb(
timestep, class_labels, hidden_dtype=hidden_states.dtype
)
shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1)
hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None]
hidden_states = self.proj_out_2(hidden_states)
elif self.config.norm_type == "ada_norm_single":
shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1)
hidden_states = self.norm_out(hidden_states)
# Modulation
hidden_states = hidden_states * (1 + scale) + shift
hidden_states = self.proj_out(hidden_states)
hidden_states = hidden_states.squeeze(1)
# unpatchify
if self.adaln_single is None:
height = width = int(hidden_states.shape[1] ** 0.5)
hidden_states = hidden_states.reshape(
shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels)
)
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
output = hidden_states.reshape(
shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size)
)
if not return_dict:
return (output,)
return Transformer2DModelOutput(sample=output)
from dataclasses import dataclass
from typing import Dict, Optional, Union
import torch
import torch.nn.functional as F
from torch import nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import PeftAdapterMixin, UNet2DConditionLoadersMixin
from ...utils import BaseOutput
from ..attention import BasicTransformerBlock
from ..attention_processor import (
ADDED_KV_ATTENTION_PROCESSORS,
CROSS_ATTENTION_PROCESSORS,
AttentionProcessor,
AttnAddedKVProcessor,
AttnProcessor,
)
from ..embeddings import TimestepEmbedding, Timesteps
from ..modeling_utils import ModelMixin
@dataclass
class PriorTransformerOutput(BaseOutput):
"""
The output of [`PriorTransformer`].
Args:
predicted_image_embedding (`torch.FloatTensor` of shape `(batch_size, embedding_dim)`):
The predicted CLIP image embedding conditioned on the CLIP text embedding input.
"""
predicted_image_embedding: torch.FloatTensor
class PriorTransformer(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin, PeftAdapterMixin):
"""
A Prior Transformer model.
Parameters:
num_attention_heads (`int`, *optional*, defaults to 32): The number of heads to use for multi-head attention.
attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head.
num_layers (`int`, *optional*, defaults to 20): The number of layers of Transformer blocks to use.
embedding_dim (`int`, *optional*, defaults to 768): The dimension of the model input `hidden_states`
num_embeddings (`int`, *optional*, defaults to 77):
The number of embeddings of the model input `hidden_states`
additional_embeddings (`int`, *optional*, defaults to 4): The number of additional tokens appended to the
projected `hidden_states`. The actual length of the used `hidden_states` is `num_embeddings +
additional_embeddings`.
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
time_embed_act_fn (`str`, *optional*, defaults to 'silu'):
The activation function to use to create timestep embeddings.
norm_in_type (`str`, *optional*, defaults to None): The normalization layer to apply on hidden states before
passing to Transformer blocks. Set it to `None` if normalization is not needed.
embedding_proj_norm_type (`str`, *optional*, defaults to None):
The normalization layer to apply on the input `proj_embedding`. Set it to `None` if normalization is not
needed.
encoder_hid_proj_type (`str`, *optional*, defaults to `linear`):
The projection layer to apply on the input `encoder_hidden_states`. Set it to `None` if
`encoder_hidden_states` is `None`.
added_emb_type (`str`, *optional*, defaults to `prd`): Additional embeddings to condition the model.
Choose from `prd` or `None`. if choose `prd`, it will prepend a token indicating the (quantized) dot
product between the text embedding and image embedding as proposed in the unclip paper
https://arxiv.org/abs/2204.06125 If it is `None`, no additional embeddings will be prepended.
time_embed_dim (`int, *optional*, defaults to None): The dimension of timestep embeddings.
If None, will be set to `num_attention_heads * attention_head_dim`
embedding_proj_dim (`int`, *optional*, default to None):
The dimension of `proj_embedding`. If None, will be set to `embedding_dim`.
clip_embed_dim (`int`, *optional*, default to None):
The dimension of the output. If None, will be set to `embedding_dim`.
"""
@register_to_config
def __init__(
self,
num_attention_heads: int = 32,
attention_head_dim: int = 64,
num_layers: int = 20,
embedding_dim: int = 768,
num_embeddings=77,
additional_embeddings=4,
dropout: float = 0.0,
time_embed_act_fn: str = "silu",
norm_in_type: Optional[str] = None, # layer
embedding_proj_norm_type: Optional[str] = None, # layer
encoder_hid_proj_type: Optional[str] = "linear", # linear
added_emb_type: Optional[str] = "prd", # prd
time_embed_dim: Optional[int] = None,
embedding_proj_dim: Optional[int] = None,
clip_embed_dim: Optional[int] = None,
):
super().__init__()
self.num_attention_heads = num_attention_heads
self.attention_head_dim = attention_head_dim
inner_dim = num_attention_heads * attention_head_dim
self.additional_embeddings = additional_embeddings
time_embed_dim = time_embed_dim or inner_dim
embedding_proj_dim = embedding_proj_dim or embedding_dim
clip_embed_dim = clip_embed_dim or embedding_dim
self.time_proj = Timesteps(inner_dim, True, 0)
self.time_embedding = TimestepEmbedding(inner_dim, time_embed_dim, out_dim=inner_dim, act_fn=time_embed_act_fn)
self.proj_in = nn.Linear(embedding_dim, inner_dim)
if embedding_proj_norm_type is None:
self.embedding_proj_norm = None
elif embedding_proj_norm_type == "layer":
self.embedding_proj_norm = nn.LayerNorm(embedding_proj_dim)
else:
raise ValueError(f"unsupported embedding_proj_norm_type: {embedding_proj_norm_type}")
self.embedding_proj = nn.Linear(embedding_proj_dim, inner_dim)
if encoder_hid_proj_type is None:
self.encoder_hidden_states_proj = None
elif encoder_hid_proj_type == "linear":
self.encoder_hidden_states_proj = nn.Linear(embedding_dim, inner_dim)
else:
raise ValueError(f"unsupported encoder_hid_proj_type: {encoder_hid_proj_type}")
self.positional_embedding = nn.Parameter(torch.zeros(1, num_embeddings + additional_embeddings, inner_dim))
if added_emb_type == "prd":
self.prd_embedding = nn.Parameter(torch.zeros(1, 1, inner_dim))
elif added_emb_type is None:
self.prd_embedding = None
else:
raise ValueError(
f"`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`."
)
self.transformer_blocks = nn.ModuleList(
[
BasicTransformerBlock(
inner_dim,
num_attention_heads,
attention_head_dim,
dropout=dropout,
activation_fn="gelu",
attention_bias=True,
)
for d in range(num_layers)
]
)
if norm_in_type == "layer":
self.norm_in = nn.LayerNorm(inner_dim)
elif norm_in_type is None:
self.norm_in = None
else:
raise ValueError(f"Unsupported norm_in_type: {norm_in_type}.")
self.norm_out = nn.LayerNorm(inner_dim)
self.proj_to_clip_embeddings = nn.Linear(inner_dim, clip_embed_dim)
causal_attention_mask = torch.full(
[num_embeddings + additional_embeddings, num_embeddings + additional_embeddings], -10000.0
)
causal_attention_mask.triu_(1)
causal_attention_mask = causal_attention_mask[None, ...]
self.register_buffer("causal_attention_mask", causal_attention_mask, persistent=False)
self.clip_mean = nn.Parameter(torch.zeros(1, clip_embed_dim))
self.clip_std = nn.Parameter(torch.zeros(1, clip_embed_dim))
@property
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
def attn_processors(self) -> Dict[str, AttentionProcessor]:
r"""
Returns:
`dict` of attention processors: A dictionary containing all attention processors used in the model with
indexed by its weight name.
"""
# set recursively
processors = {}
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
if hasattr(module, "get_processor"):
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
for sub_name, child in module.named_children():
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
return processors
for name, module in self.named_children():
fn_recursive_add_processors(name, module, processors)
return processors
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
r"""
Sets the attention processor to use to compute attention.
Parameters:
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
The instantiated processor class or a dictionary of processor classes that will be set as the processor
for **all** `Attention` layers.
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
processor. This is strongly recommended when setting trainable attention processors.
"""
count = len(self.attn_processors.keys())
if isinstance(processor, dict) and len(processor) != count:
raise ValueError(
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
)
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
if hasattr(module, "set_processor"):
if not isinstance(processor, dict):
module.set_processor(processor)
else:
module.set_processor(processor.pop(f"{name}.processor"))
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
for name, module in self.named_children():
fn_recursive_attn_processor(name, module, processor)
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
def set_default_attn_processor(self):
"""
Disables custom attention processors and sets the default attention implementation.
"""
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
processor = AttnAddedKVProcessor()
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
processor = AttnProcessor()
else:
raise ValueError(
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
)
self.set_attn_processor(processor)
def forward(
self,
hidden_states,
timestep: Union[torch.Tensor, float, int],
proj_embedding: torch.FloatTensor,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.BoolTensor] = None,
return_dict: bool = True,
):
"""
The [`PriorTransformer`] forward method.
Args:
hidden_states (`torch.FloatTensor` of shape `(batch_size, embedding_dim)`):
The currently predicted image embeddings.
timestep (`torch.LongTensor`):
Current denoising step.
proj_embedding (`torch.FloatTensor` of shape `(batch_size, embedding_dim)`):
Projected embedding vector the denoising process is conditioned on.
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, num_embeddings, embedding_dim)`):
Hidden states of the text embeddings the denoising process is conditioned on.
attention_mask (`torch.BoolTensor` of shape `(batch_size, num_embeddings)`):
Text mask for the text embeddings.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.prior_transformer.PriorTransformerOutput`] instead of a plain
tuple.
Returns:
[`~models.prior_transformer.PriorTransformerOutput`] or `tuple`:
If return_dict is True, a [`~models.prior_transformer.PriorTransformerOutput`] is returned, otherwise a
tuple is returned where the first element is the sample tensor.
"""
batch_size = hidden_states.shape[0]
timesteps = timestep
if not torch.is_tensor(timesteps):
timesteps = torch.tensor([timesteps], dtype=torch.long, device=hidden_states.device)
elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0:
timesteps = timesteps[None].to(hidden_states.device)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timesteps = timesteps * torch.ones(batch_size, dtype=timesteps.dtype, device=timesteps.device)
timesteps_projected = self.time_proj(timesteps)
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might be fp16, so we need to cast here.
timesteps_projected = timesteps_projected.to(dtype=self.dtype)
time_embeddings = self.time_embedding(timesteps_projected)
if self.embedding_proj_norm is not None:
proj_embedding = self.embedding_proj_norm(proj_embedding)
proj_embeddings = self.embedding_proj(proj_embedding)
if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None:
encoder_hidden_states = self.encoder_hidden_states_proj(encoder_hidden_states)
elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None:
raise ValueError("`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set")
hidden_states = self.proj_in(hidden_states)
positional_embeddings = self.positional_embedding.to(hidden_states.dtype)
additional_embeds = []
additional_embeddings_len = 0
if encoder_hidden_states is not None:
additional_embeds.append(encoder_hidden_states)
additional_embeddings_len += encoder_hidden_states.shape[1]
if len(proj_embeddings.shape) == 2:
proj_embeddings = proj_embeddings[:, None, :]
if len(hidden_states.shape) == 2:
hidden_states = hidden_states[:, None, :]
additional_embeds = additional_embeds + [
proj_embeddings,
time_embeddings[:, None, :],
hidden_states,
]
if self.prd_embedding is not None:
prd_embedding = self.prd_embedding.to(hidden_states.dtype).expand(batch_size, -1, -1)
additional_embeds.append(prd_embedding)
hidden_states = torch.cat(
additional_embeds,
dim=1,
)
# Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens
additional_embeddings_len = additional_embeddings_len + proj_embeddings.shape[1] + 1
if positional_embeddings.shape[1] < hidden_states.shape[1]:
positional_embeddings = F.pad(
positional_embeddings,
(
0,
0,
additional_embeddings_len,
self.prd_embedding.shape[1] if self.prd_embedding is not None else 0,
),
value=0.0,
)
hidden_states = hidden_states + positional_embeddings
if attention_mask is not None:
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
attention_mask = F.pad(attention_mask, (0, self.additional_embeddings), value=0.0)
attention_mask = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype)
attention_mask = attention_mask.repeat_interleave(self.config.num_attention_heads, dim=0)
if self.norm_in is not None:
hidden_states = self.norm_in(hidden_states)
for block in self.transformer_blocks:
hidden_states = block(hidden_states, attention_mask=attention_mask)
hidden_states = self.norm_out(hidden_states)
if self.prd_embedding is not None:
hidden_states = hidden_states[:, -1]
else:
hidden_states = hidden_states[:, additional_embeddings_len:]
predicted_image_embedding = self.proj_to_clip_embeddings(hidden_states)
if not return_dict:
return (predicted_image_embedding,)
return PriorTransformerOutput(predicted_image_embedding=predicted_image_embedding)
def post_process_latents(self, prior_latents):
prior_latents = (prior_latents * self.clip_std) + self.clip_mean
return prior_latents
import math
from typing import Optional, Tuple
import torch
from torch import nn
from ...configuration_utils import ConfigMixin, register_to_config
from ..attention_processor import Attention
from ..embeddings import get_timestep_embedding
from ..modeling_utils import ModelMixin
class T5FilmDecoder(ModelMixin, ConfigMixin):
r"""
T5 style decoder with FiLM conditioning.
Args:
input_dims (`int`, *optional*, defaults to `128`):
The number of input dimensions.
targets_length (`int`, *optional*, defaults to `256`):
The length of the targets.
d_model (`int`, *optional*, defaults to `768`):
Size of the input hidden states.
num_layers (`int`, *optional*, defaults to `12`):
The number of `DecoderLayer`'s to use.
num_heads (`int`, *optional*, defaults to `12`):
The number of attention heads to use.
d_kv (`int`, *optional*, defaults to `64`):
Size of the key-value projection vectors.
d_ff (`int`, *optional*, defaults to `2048`):
The number of dimensions in the intermediate feed-forward layer of `DecoderLayer`'s.
dropout_rate (`float`, *optional*, defaults to `0.1`):
Dropout probability.
"""
@register_to_config
def __init__(
self,
input_dims: int = 128,
targets_length: int = 256,
max_decoder_noise_time: float = 2000.0,
d_model: int = 768,
num_layers: int = 12,
num_heads: int = 12,
d_kv: int = 64,
d_ff: int = 2048,
dropout_rate: float = 0.1,
):
super().__init__()
self.conditioning_emb = nn.Sequential(
nn.Linear(d_model, d_model * 4, bias=False),
nn.SiLU(),
nn.Linear(d_model * 4, d_model * 4, bias=False),
nn.SiLU(),
)
self.position_encoding = nn.Embedding(targets_length, d_model)
self.position_encoding.weight.requires_grad = False
self.continuous_inputs_projection = nn.Linear(input_dims, d_model, bias=False)
self.dropout = nn.Dropout(p=dropout_rate)
self.decoders = nn.ModuleList()
for lyr_num in range(num_layers):
# FiLM conditional T5 decoder
lyr = DecoderLayer(d_model=d_model, d_kv=d_kv, num_heads=num_heads, d_ff=d_ff, dropout_rate=dropout_rate)
self.decoders.append(lyr)
self.decoder_norm = T5LayerNorm(d_model)
self.post_dropout = nn.Dropout(p=dropout_rate)
self.spec_out = nn.Linear(d_model, input_dims, bias=False)
def encoder_decoder_mask(self, query_input: torch.FloatTensor, key_input: torch.FloatTensor) -> torch.FloatTensor:
mask = torch.mul(query_input.unsqueeze(-1), key_input.unsqueeze(-2))
return mask.unsqueeze(-3)
def forward(self, encodings_and_masks, decoder_input_tokens, decoder_noise_time):
batch, _, _ = decoder_input_tokens.shape
assert decoder_noise_time.shape == (batch,)
# decoder_noise_time is in [0, 1), so rescale to expected timing range.
time_steps = get_timestep_embedding(
decoder_noise_time * self.config.max_decoder_noise_time,
embedding_dim=self.config.d_model,
max_period=self.config.max_decoder_noise_time,
).to(dtype=self.dtype)
conditioning_emb = self.conditioning_emb(time_steps).unsqueeze(1)
assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4)
seq_length = decoder_input_tokens.shape[1]
# If we want to use relative positions for audio context, we can just offset
# this sequence by the length of encodings_and_masks.
decoder_positions = torch.broadcast_to(
torch.arange(seq_length, device=decoder_input_tokens.device),
(batch, seq_length),
)
position_encodings = self.position_encoding(decoder_positions)
inputs = self.continuous_inputs_projection(decoder_input_tokens)
inputs += position_encodings
y = self.dropout(inputs)
# decoder: No padding present.
decoder_mask = torch.ones(
decoder_input_tokens.shape[:2], device=decoder_input_tokens.device, dtype=inputs.dtype
)
# Translate encoding masks to encoder-decoder masks.
encodings_and_encdec_masks = [(x, self.encoder_decoder_mask(decoder_mask, y)) for x, y in encodings_and_masks]
# cross attend style: concat encodings
encoded = torch.cat([x[0] for x in encodings_and_encdec_masks], dim=1)
encoder_decoder_mask = torch.cat([x[1] for x in encodings_and_encdec_masks], dim=-1)
for lyr in self.decoders:
y = lyr(
y,
conditioning_emb=conditioning_emb,
encoder_hidden_states=encoded,
encoder_attention_mask=encoder_decoder_mask,
)[0]
y = self.decoder_norm(y)
y = self.post_dropout(y)
spec_out = self.spec_out(y)
return spec_out
class DecoderLayer(nn.Module):
r"""
T5 decoder layer.
Args:
d_model (`int`):
Size of the input hidden states.
d_kv (`int`):
Size of the key-value projection vectors.
num_heads (`int`):
Number of attention heads.
d_ff (`int`):
Size of the intermediate feed-forward layer.
dropout_rate (`float`):
Dropout probability.
layer_norm_epsilon (`float`, *optional*, defaults to `1e-6`):
A small value used for numerical stability to avoid dividing by zero.
"""
def __init__(
self, d_model: int, d_kv: int, num_heads: int, d_ff: int, dropout_rate: float, layer_norm_epsilon: float = 1e-6
):
super().__init__()
self.layer = nn.ModuleList()
# cond self attention: layer 0
self.layer.append(
T5LayerSelfAttentionCond(d_model=d_model, d_kv=d_kv, num_heads=num_heads, dropout_rate=dropout_rate)
)
# cross attention: layer 1
self.layer.append(
T5LayerCrossAttention(
d_model=d_model,
d_kv=d_kv,
num_heads=num_heads,
dropout_rate=dropout_rate,
layer_norm_epsilon=layer_norm_epsilon,
)
)
# Film Cond MLP + dropout: last layer
self.layer.append(
T5LayerFFCond(d_model=d_model, d_ff=d_ff, dropout_rate=dropout_rate, layer_norm_epsilon=layer_norm_epsilon)
)
def forward(
self,
hidden_states: torch.FloatTensor,
conditioning_emb: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
encoder_decoder_position_bias=None,
) -> Tuple[torch.FloatTensor]:
hidden_states = self.layer[0](
hidden_states,
conditioning_emb=conditioning_emb,
attention_mask=attention_mask,
)
if encoder_hidden_states is not None:
encoder_extended_attention_mask = torch.where(encoder_attention_mask > 0, 0, -1e10).to(
encoder_hidden_states.dtype
)
hidden_states = self.layer[1](
hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_extended_attention_mask,
)
# Apply Film Conditional Feed Forward layer
hidden_states = self.layer[-1](hidden_states, conditioning_emb)
return (hidden_states,)
class T5LayerSelfAttentionCond(nn.Module):
r"""
T5 style self-attention layer with conditioning.
Args:
d_model (`int`):
Size of the input hidden states.
d_kv (`int`):
Size of the key-value projection vectors.
num_heads (`int`):
Number of attention heads.
dropout_rate (`float`):
Dropout probability.
"""
def __init__(self, d_model: int, d_kv: int, num_heads: int, dropout_rate: float):
super().__init__()
self.layer_norm = T5LayerNorm(d_model)
self.FiLMLayer = T5FiLMLayer(in_features=d_model * 4, out_features=d_model)
self.attention = Attention(query_dim=d_model, heads=num_heads, dim_head=d_kv, out_bias=False, scale_qk=False)
self.dropout = nn.Dropout(dropout_rate)
def forward(
self,
hidden_states: torch.FloatTensor,
conditioning_emb: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
) -> torch.FloatTensor:
# pre_self_attention_layer_norm
normed_hidden_states = self.layer_norm(hidden_states)
if conditioning_emb is not None:
normed_hidden_states = self.FiLMLayer(normed_hidden_states, conditioning_emb)
# Self-attention block
attention_output = self.attention(normed_hidden_states)
hidden_states = hidden_states + self.dropout(attention_output)
return hidden_states
class T5LayerCrossAttention(nn.Module):
r"""
T5 style cross-attention layer.
Args:
d_model (`int`):
Size of the input hidden states.
d_kv (`int`):
Size of the key-value projection vectors.
num_heads (`int`):
Number of attention heads.
dropout_rate (`float`):
Dropout probability.
layer_norm_epsilon (`float`):
A small value used for numerical stability to avoid dividing by zero.
"""
def __init__(self, d_model: int, d_kv: int, num_heads: int, dropout_rate: float, layer_norm_epsilon: float):
super().__init__()
self.attention = Attention(query_dim=d_model, heads=num_heads, dim_head=d_kv, out_bias=False, scale_qk=False)
self.layer_norm = T5LayerNorm(d_model, eps=layer_norm_epsilon)
self.dropout = nn.Dropout(dropout_rate)
def forward(
self,
hidden_states: torch.FloatTensor,
key_value_states: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
) -> torch.FloatTensor:
normed_hidden_states = self.layer_norm(hidden_states)
attention_output = self.attention(
normed_hidden_states,
encoder_hidden_states=key_value_states,
attention_mask=attention_mask.squeeze(1),
)
layer_output = hidden_states + self.dropout(attention_output)
return layer_output
class T5LayerFFCond(nn.Module):
r"""
T5 style feed-forward conditional layer.
Args:
d_model (`int`):
Size of the input hidden states.
d_ff (`int`):
Size of the intermediate feed-forward layer.
dropout_rate (`float`):
Dropout probability.
layer_norm_epsilon (`float`):
A small value used for numerical stability to avoid dividing by zero.
"""
def __init__(self, d_model: int, d_ff: int, dropout_rate: float, layer_norm_epsilon: float):
super().__init__()
self.DenseReluDense = T5DenseGatedActDense(d_model=d_model, d_ff=d_ff, dropout_rate=dropout_rate)
self.film = T5FiLMLayer(in_features=d_model * 4, out_features=d_model)
self.layer_norm = T5LayerNorm(d_model, eps=layer_norm_epsilon)
self.dropout = nn.Dropout(dropout_rate)
def forward(
self, hidden_states: torch.FloatTensor, conditioning_emb: Optional[torch.FloatTensor] = None
) -> torch.FloatTensor:
forwarded_states = self.layer_norm(hidden_states)
if conditioning_emb is not None:
forwarded_states = self.film(forwarded_states, conditioning_emb)
forwarded_states = self.DenseReluDense(forwarded_states)
hidden_states = hidden_states + self.dropout(forwarded_states)
return hidden_states
class T5DenseGatedActDense(nn.Module):
r"""
T5 style feed-forward layer with gated activations and dropout.
Args:
d_model (`int`):
Size of the input hidden states.
d_ff (`int`):
Size of the intermediate feed-forward layer.
dropout_rate (`float`):
Dropout probability.
"""
def __init__(self, d_model: int, d_ff: int, dropout_rate: float):
super().__init__()
self.wi_0 = nn.Linear(d_model, d_ff, bias=False)
self.wi_1 = nn.Linear(d_model, d_ff, bias=False)
self.wo = nn.Linear(d_ff, d_model, bias=False)
self.dropout = nn.Dropout(dropout_rate)
self.act = NewGELUActivation()
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
hidden_gelu = self.act(self.wi_0(hidden_states))
hidden_linear = self.wi_1(hidden_states)
hidden_states = hidden_gelu * hidden_linear
hidden_states = self.dropout(hidden_states)
hidden_states = self.wo(hidden_states)
return hidden_states
class T5LayerNorm(nn.Module):
r"""
T5 style layer normalization module.
Args:
hidden_size (`int`):
Size of the input hidden states.
eps (`float`, `optional`, defaults to `1e-6`):
A small value used for numerical stability to avoid dividing by zero.
"""
def __init__(self, hidden_size: int, eps: float = 1e-6):
"""
Construct a layernorm module in the T5 style. No bias and no subtraction of mean.
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
# T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean
# Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated
# w/o mean and there is no bias. Additionally we want to make sure that the accumulation for
# half-precision inputs is done in fp32
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
# convert into half-precision if necessary
if self.weight.dtype in [torch.float16, torch.bfloat16]:
hidden_states = hidden_states.to(self.weight.dtype)
return self.weight * hidden_states
class NewGELUActivation(nn.Module):
"""
Implementation of the GELU activation function currently in Google BERT repo (identical to OpenAI GPT). Also see
the Gaussian Error Linear Units paper: https://arxiv.org/abs/1606.08415
"""
def forward(self, input: torch.Tensor) -> torch.Tensor:
return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi) * (input + 0.044715 * torch.pow(input, 3.0))))
class T5FiLMLayer(nn.Module):
"""
T5 style FiLM Layer.
Args:
in_features (`int`):
Number of input features.
out_features (`int`):
Number of output features.
"""
def __init__(self, in_features: int, out_features: int):
super().__init__()
self.scale_bias = nn.Linear(in_features, out_features * 2, bias=False)
def forward(self, x: torch.FloatTensor, conditioning_emb: torch.FloatTensor) -> torch.FloatTensor:
emb = self.scale_bias(conditioning_emb)
scale, shift = torch.chunk(emb, 2, -1)
x = x * (1 + scale) + shift
return x
from typing import Optional
from torch import nn
from .transformer_2d import Transformer2DModel, Transformer2DModelOutput
class DualTransformer2DModel(nn.Module):
"""
Dual transformer wrapper that combines two `Transformer2DModel`s for mixed inference.
Parameters:
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
in_channels (`int`, *optional*):
Pass if the input is continuous. The number of channels in the input and output.
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
dropout (`float`, *optional*, defaults to 0.1): The dropout probability to use.
cross_attention_dim (`int`, *optional*): The number of encoder_hidden_states dimensions to use.
sample_size (`int`, *optional*): Pass if the input is discrete. The width of the latent images.
Note that this is fixed at training time as it is used for learning a number of position embeddings. See
`ImagePositionalEmbeddings`.
num_vector_embeds (`int`, *optional*):
Pass if the input is discrete. The number of classes of the vector embeddings of the latent pixels.
Includes the class for the masked latent pixel.
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
num_embeds_ada_norm ( `int`, *optional*): Pass if at least one of the norm_layers is `AdaLayerNorm`.
The number of diffusion steps used during training. Note that this is fixed at training time as it is used
to learn a number of embeddings that are added to the hidden states. During inference, you can denoise for
up to but not more than steps than `num_embeds_ada_norm`.
attention_bias (`bool`, *optional*):
Configure if the TransformerBlocks' attention should contain a bias parameter.
"""
def __init__(
self,
num_attention_heads: int = 16,
attention_head_dim: int = 88,
in_channels: Optional[int] = None,
num_layers: int = 1,
dropout: float = 0.0,
norm_num_groups: int = 32,
cross_attention_dim: Optional[int] = None,
attention_bias: bool = False,
sample_size: Optional[int] = None,
num_vector_embeds: Optional[int] = None,
activation_fn: str = "geglu",
num_embeds_ada_norm: Optional[int] = None,
):
super().__init__()
self.transformers = nn.ModuleList(
[
Transformer2DModel(
num_attention_heads=num_attention_heads,
attention_head_dim=attention_head_dim,
in_channels=in_channels,
num_layers=num_layers,
dropout=dropout,
norm_num_groups=norm_num_groups,
cross_attention_dim=cross_attention_dim,
attention_bias=attention_bias,
sample_size=sample_size,
num_vector_embeds=num_vector_embeds,
activation_fn=activation_fn,
num_embeds_ada_norm=num_embeds_ada_norm,
)
for _ in range(2)
]
)
# Variables that can be set by a pipeline:
# The ratio of transformer1 to transformer2's output states to be combined during inference
self.mix_ratio = 0.5
# The shape of `encoder_hidden_states` is expected to be
# `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)`
self.condition_lengths = [77, 257]
# Which transformer to use to encode which condition.
# E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])`
self.transformer_index_for_condition = [1, 0]
def forward(
self,
hidden_states,
encoder_hidden_states,
timestep=None,
attention_mask=None,
cross_attention_kwargs=None,
return_dict: bool = True,
):
"""
Args:
hidden_states ( When discrete, `torch.LongTensor` of shape `(batch size, num latent pixels)`.
When continuous, `torch.FloatTensor` of shape `(batch size, channel, height, width)`): Input
hidden_states.
encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, encoder_hidden_states dim)`, *optional*):
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
self-attention.
timestep ( `torch.long`, *optional*):
Optional timestep to be applied as an embedding in AdaLayerNorm's. Used to indicate denoising step.
attention_mask (`torch.FloatTensor`, *optional*):
Optional attention mask to be applied in Attention.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
Returns:
[`~models.transformer_2d.Transformer2DModelOutput`] or `tuple`:
[`~models.transformer_2d.Transformer2DModelOutput`] if `return_dict` is True, otherwise a `tuple`. When
returning a tuple, the first element is the sample tensor.
"""
input_states = hidden_states
encoded_states = []
tokens_start = 0
# attention_mask is not used yet
for i in range(2):
# for each of the two transformers, pass the corresponding condition tokens
condition_state = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]]
transformer_index = self.transformer_index_for_condition[i]
encoded_state = self.transformers[transformer_index](
input_states,
encoder_hidden_states=condition_state,
timestep=timestep,
cross_attention_kwargs=cross_attention_kwargs,
return_dict=False,
)[0]
encoded_states.append(encoded_state - input_states)
tokens_start += self.condition_lengths[i]
output_states = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio)
output_states = output_states + input_states
if not return_dict:
return (output_states,)
return Transformer2DModelOutput(sample=output_states)
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import torch.nn.functional as F
from torch import nn
from ..utils import USE_PEFT_BACKEND
from .lora import LoRACompatibleLinear
ACTIVATION_FUNCTIONS = {
"swish": nn.SiLU(),
"silu": nn.SiLU(),
"mish": nn.Mish(),
"gelu": nn.GELU(),
"relu": nn.ReLU(),
}
def get_activation(act_fn: str) -> nn.Module:
"""Helper function to get activation function from string.
Args:
act_fn (str): Name of activation function.
Returns:
nn.Module: Activation function.
"""
act_fn = act_fn.lower()
if act_fn in ACTIVATION_FUNCTIONS:
return ACTIVATION_FUNCTIONS[act_fn]
else:
raise ValueError(f"Unsupported activation function: {act_fn}")
class GELU(nn.Module):
r"""
GELU activation function with tanh approximation support with `approximate="tanh"`.
Parameters:
dim_in (`int`): The number of channels in the input.
dim_out (`int`): The number of channels in the output.
approximate (`str`, *optional*, defaults to `"none"`): If `"tanh"`, use tanh approximation.
bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
"""
def __init__(self, dim_in: int, dim_out: int, approximate: str = "none", bias: bool = True):
super().__init__()
self.proj = nn.Linear(dim_in, dim_out, bias=bias)
self.approximate = approximate
def gelu(self, gate: torch.Tensor) -> torch.Tensor:
if gate.device.type != "mps":
return F.gelu(gate, approximate=self.approximate)
# mps: gelu is not implemented for float16
return F.gelu(gate.to(dtype=torch.float32), approximate=self.approximate).to(dtype=gate.dtype)
def forward(self, hidden_states):
hidden_states = self.proj(hidden_states)
hidden_states = self.gelu(hidden_states)
return hidden_states
class GEGLU(nn.Module):
r"""
A [variant](https://arxiv.org/abs/2002.05202) of the gated linear unit activation function.
Parameters:
dim_in (`int`): The number of channels in the input.
dim_out (`int`): The number of channels in the output.
bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
"""
def __init__(self, dim_in: int, dim_out: int, bias: bool = True):
super().__init__()
linear_cls = LoRACompatibleLinear if not USE_PEFT_BACKEND else nn.Linear
self.proj = linear_cls(dim_in, dim_out * 2, bias=bias)
def gelu(self, gate: torch.Tensor) -> torch.Tensor:
if gate.device.type != "mps":
return F.gelu(gate)
# mps: gelu is not implemented for float16
return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype)
def forward(self, hidden_states, scale: float = 1.0):
args = () if USE_PEFT_BACKEND else (scale,)
hidden_states, gate = self.proj(hidden_states, *args).chunk(2, dim=-1)
return hidden_states * self.gelu(gate)
class ApproximateGELU(nn.Module):
r"""
The approximate form of the Gaussian Error Linear Unit (GELU). For more details, see section 2 of this
[paper](https://arxiv.org/abs/1606.08415).
Parameters:
dim_in (`int`): The number of channels in the input.
dim_out (`int`): The number of channels in the output.
bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
"""
def __init__(self, dim_in: int, dim_out: int, bias: bool = True):
super().__init__()
self.proj = nn.Linear(dim_in, dim_out, bias=bias)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.proj(x)
return x * torch.sigmoid(1.702 * x)
# JAX implementation of VQGAN from taming-transformers https://github.com/CompVis/taming-transformers
import math
from functools import partial
from typing import Tuple
import flax
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict
from ..configuration_utils import ConfigMixin, flax_register_to_config
from ..utils import BaseOutput
from .modeling_flax_utils import FlaxModelMixin
@flax.struct.dataclass
class FlaxDecoderOutput(BaseOutput):
"""
Output of decoding method.
Args:
sample (`jnp.ndarray` of shape `(batch_size, num_channels, height, width)`):
The decoded output sample from the last layer of the model.
dtype (`jnp.dtype`, *optional*, defaults to `jnp.float32`):
The `dtype` of the parameters.
"""
sample: jnp.ndarray
@flax.struct.dataclass
class FlaxAutoencoderKLOutput(BaseOutput):
"""
Output of AutoencoderKL encoding method.
Args:
latent_dist (`FlaxDiagonalGaussianDistribution`):
Encoded outputs of `Encoder` represented as the mean and logvar of `FlaxDiagonalGaussianDistribution`.
`FlaxDiagonalGaussianDistribution` allows for sampling latents from the distribution.
"""
latent_dist: "FlaxDiagonalGaussianDistribution"
class FlaxUpsample2D(nn.Module):
"""
Flax implementation of 2D Upsample layer
Args:
in_channels (`int`):
Input channels
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
Parameters `dtype`
"""
in_channels: int
dtype: jnp.dtype = jnp.float32
def setup(self):
self.conv = nn.Conv(
self.in_channels,
kernel_size=(3, 3),
strides=(1, 1),
padding=((1, 1), (1, 1)),
dtype=self.dtype,
)
def __call__(self, hidden_states):
batch, height, width, channels = hidden_states.shape
hidden_states = jax.image.resize(
hidden_states,
shape=(batch, height * 2, width * 2, channels),
method="nearest",
)
hidden_states = self.conv(hidden_states)
return hidden_states
class FlaxDownsample2D(nn.Module):
"""
Flax implementation of 2D Downsample layer
Args:
in_channels (`int`):
Input channels
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
Parameters `dtype`
"""
in_channels: int
dtype: jnp.dtype = jnp.float32
def setup(self):
self.conv = nn.Conv(
self.in_channels,
kernel_size=(3, 3),
strides=(2, 2),
padding="VALID",
dtype=self.dtype,
)
def __call__(self, hidden_states):
pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim
hidden_states = jnp.pad(hidden_states, pad_width=pad)
hidden_states = self.conv(hidden_states)
return hidden_states
class FlaxResnetBlock2D(nn.Module):
"""
Flax implementation of 2D Resnet Block.
Args:
in_channels (`int`):
Input channels
out_channels (`int`):
Output channels
dropout (:obj:`float`, *optional*, defaults to 0.0):
Dropout rate
groups (:obj:`int`, *optional*, defaults to `32`):
The number of groups to use for group norm.
use_nin_shortcut (:obj:`bool`, *optional*, defaults to `None`):
Whether to use `nin_shortcut`. This activates a new layer inside ResNet block
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
Parameters `dtype`
"""
in_channels: int
out_channels: int = None
dropout: float = 0.0
groups: int = 32
use_nin_shortcut: bool = None
dtype: jnp.dtype = jnp.float32
def setup(self):
out_channels = self.in_channels if self.out_channels is None else self.out_channels
self.norm1 = nn.GroupNorm(num_groups=self.groups, epsilon=1e-6)
self.conv1 = nn.Conv(
out_channels,
kernel_size=(3, 3),
strides=(1, 1),
padding=((1, 1), (1, 1)),
dtype=self.dtype,
)
self.norm2 = nn.GroupNorm(num_groups=self.groups, epsilon=1e-6)
self.dropout_layer = nn.Dropout(self.dropout)
self.conv2 = nn.Conv(
out_channels,
kernel_size=(3, 3),
strides=(1, 1),
padding=((1, 1), (1, 1)),
dtype=self.dtype,
)
use_nin_shortcut = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut
self.conv_shortcut = None
if use_nin_shortcut:
self.conv_shortcut = nn.Conv(
out_channels,
kernel_size=(1, 1),
strides=(1, 1),
padding="VALID",
dtype=self.dtype,
)
def __call__(self, hidden_states, deterministic=True):
residual = hidden_states
hidden_states = self.norm1(hidden_states)
hidden_states = nn.swish(hidden_states)
hidden_states = self.conv1(hidden_states)
hidden_states = self.norm2(hidden_states)
hidden_states = nn.swish(hidden_states)
hidden_states = self.dropout_layer(hidden_states, deterministic)
hidden_states = self.conv2(hidden_states)
if self.conv_shortcut is not None:
residual = self.conv_shortcut(residual)
return hidden_states + residual
class FlaxAttentionBlock(nn.Module):
r"""
Flax Convolutional based multi-head attention block for diffusion-based VAE.
Parameters:
channels (:obj:`int`):
Input channels
num_head_channels (:obj:`int`, *optional*, defaults to `None`):
Number of attention heads
num_groups (:obj:`int`, *optional*, defaults to `32`):
The number of groups to use for group norm
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
Parameters `dtype`
"""
channels: int
num_head_channels: int = None
num_groups: int = 32
dtype: jnp.dtype = jnp.float32
def setup(self):
self.num_heads = self.channels // self.num_head_channels if self.num_head_channels is not None else 1
dense = partial(nn.Dense, self.channels, dtype=self.dtype)
self.group_norm = nn.GroupNorm(num_groups=self.num_groups, epsilon=1e-6)
self.query, self.key, self.value = dense(), dense(), dense()
self.proj_attn = dense()
def transpose_for_scores(self, projection):
new_projection_shape = projection.shape[:-1] + (self.num_heads, -1)
# move heads to 2nd position (B, T, H * D) -> (B, T, H, D)
new_projection = projection.reshape(new_projection_shape)
# (B, T, H, D) -> (B, H, T, D)
new_projection = jnp.transpose(new_projection, (0, 2, 1, 3))
return new_projection
def __call__(self, hidden_states):
residual = hidden_states
batch, height, width, channels = hidden_states.shape
hidden_states = self.group_norm(hidden_states)
hidden_states = hidden_states.reshape((batch, height * width, channels))
query = self.query(hidden_states)
key = self.key(hidden_states)
value = self.value(hidden_states)
# transpose
query = self.transpose_for_scores(query)
key = self.transpose_for_scores(key)
value = self.transpose_for_scores(value)
# compute attentions
scale = 1 / math.sqrt(math.sqrt(self.channels / self.num_heads))
attn_weights = jnp.einsum("...qc,...kc->...qk", query * scale, key * scale)
attn_weights = nn.softmax(attn_weights, axis=-1)
# attend to values
hidden_states = jnp.einsum("...kc,...qk->...qc", value, attn_weights)
hidden_states = jnp.transpose(hidden_states, (0, 2, 1, 3))
new_hidden_states_shape = hidden_states.shape[:-2] + (self.channels,)
hidden_states = hidden_states.reshape(new_hidden_states_shape)
hidden_states = self.proj_attn(hidden_states)
hidden_states = hidden_states.reshape((batch, height, width, channels))
hidden_states = hidden_states + residual
return hidden_states
class FlaxDownEncoderBlock2D(nn.Module):
r"""
Flax Resnet blocks-based Encoder block for diffusion-based VAE.
Parameters:
in_channels (:obj:`int`):
Input channels
out_channels (:obj:`int`):
Output channels
dropout (:obj:`float`, *optional*, defaults to 0.0):
Dropout rate
num_layers (:obj:`int`, *optional*, defaults to 1):
Number of Resnet layer block
resnet_groups (:obj:`int`, *optional*, defaults to `32`):
The number of groups to use for the Resnet block group norm
add_downsample (:obj:`bool`, *optional*, defaults to `True`):
Whether to add downsample layer
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
Parameters `dtype`
"""
in_channels: int
out_channels: int
dropout: float = 0.0
num_layers: int = 1
resnet_groups: int = 32
add_downsample: bool = True
dtype: jnp.dtype = jnp.float32
def setup(self):
resnets = []
for i in range(self.num_layers):
in_channels = self.in_channels if i == 0 else self.out_channels
res_block = FlaxResnetBlock2D(
in_channels=in_channels,
out_channels=self.out_channels,
dropout=self.dropout,
groups=self.resnet_groups,
dtype=self.dtype,
)
resnets.append(res_block)
self.resnets = resnets
if self.add_downsample:
self.downsamplers_0 = FlaxDownsample2D(self.out_channels, dtype=self.dtype)
def __call__(self, hidden_states, deterministic=True):
for resnet in self.resnets:
hidden_states = resnet(hidden_states, deterministic=deterministic)
if self.add_downsample:
hidden_states = self.downsamplers_0(hidden_states)
return hidden_states
class FlaxUpDecoderBlock2D(nn.Module):
r"""
Flax Resnet blocks-based Decoder block for diffusion-based VAE.
Parameters:
in_channels (:obj:`int`):
Input channels
out_channels (:obj:`int`):
Output channels
dropout (:obj:`float`, *optional*, defaults to 0.0):
Dropout rate
num_layers (:obj:`int`, *optional*, defaults to 1):
Number of Resnet layer block
resnet_groups (:obj:`int`, *optional*, defaults to `32`):
The number of groups to use for the Resnet block group norm
add_upsample (:obj:`bool`, *optional*, defaults to `True`):
Whether to add upsample layer
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
Parameters `dtype`
"""
in_channels: int
out_channels: int
dropout: float = 0.0
num_layers: int = 1
resnet_groups: int = 32
add_upsample: bool = True
dtype: jnp.dtype = jnp.float32
def setup(self):
resnets = []
for i in range(self.num_layers):
in_channels = self.in_channels if i == 0 else self.out_channels
res_block = FlaxResnetBlock2D(
in_channels=in_channels,
out_channels=self.out_channels,
dropout=self.dropout,
groups=self.resnet_groups,
dtype=self.dtype,
)
resnets.append(res_block)
self.resnets = resnets
if self.add_upsample:
self.upsamplers_0 = FlaxUpsample2D(self.out_channels, dtype=self.dtype)
def __call__(self, hidden_states, deterministic=True):
for resnet in self.resnets:
hidden_states = resnet(hidden_states, deterministic=deterministic)
if self.add_upsample:
hidden_states = self.upsamplers_0(hidden_states)
return hidden_states
class FlaxUNetMidBlock2D(nn.Module):
r"""
Flax Unet Mid-Block module.
Parameters:
in_channels (:obj:`int`):
Input channels
dropout (:obj:`float`, *optional*, defaults to 0.0):
Dropout rate
num_layers (:obj:`int`, *optional*, defaults to 1):
Number of Resnet layer block
resnet_groups (:obj:`int`, *optional*, defaults to `32`):
The number of groups to use for the Resnet and Attention block group norm
num_attention_heads (:obj:`int`, *optional*, defaults to `1`):
Number of attention heads for each attention block
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
Parameters `dtype`
"""
in_channels: int
dropout: float = 0.0
num_layers: int = 1
resnet_groups: int = 32
num_attention_heads: int = 1
dtype: jnp.dtype = jnp.float32
def setup(self):
resnet_groups = self.resnet_groups if self.resnet_groups is not None else min(self.in_channels // 4, 32)
# there is always at least one resnet
resnets = [
FlaxResnetBlock2D(
in_channels=self.in_channels,
out_channels=self.in_channels,
dropout=self.dropout,
groups=resnet_groups,
dtype=self.dtype,
)
]
attentions = []
for _ in range(self.num_layers):
attn_block = FlaxAttentionBlock(
channels=self.in_channels,
num_head_channels=self.num_attention_heads,
num_groups=resnet_groups,
dtype=self.dtype,
)
attentions.append(attn_block)
res_block = FlaxResnetBlock2D(
in_channels=self.in_channels,
out_channels=self.in_channels,
dropout=self.dropout,
groups=resnet_groups,
dtype=self.dtype,
)
resnets.append(res_block)
self.resnets = resnets
self.attentions = attentions
def __call__(self, hidden_states, deterministic=True):
hidden_states = self.resnets[0](hidden_states, deterministic=deterministic)
for attn, resnet in zip(self.attentions, self.resnets[1:]):
hidden_states = attn(hidden_states)
hidden_states = resnet(hidden_states, deterministic=deterministic)
return hidden_states
class FlaxEncoder(nn.Module):
r"""
Flax Implementation of VAE Encoder.
This model is a Flax Linen [flax.linen.Module](https://flax.readthedocs.io/en/latest/flax.linen.html#module)
subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to
general usage and behavior.
Finally, this model supports inherent JAX features such as:
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
Parameters:
in_channels (:obj:`int`, *optional*, defaults to 3):
Input channels
out_channels (:obj:`int`, *optional*, defaults to 3):
Output channels
down_block_types (:obj:`Tuple[str]`, *optional*, defaults to `(DownEncoderBlock2D)`):
DownEncoder block type
block_out_channels (:obj:`Tuple[str]`, *optional*, defaults to `(64,)`):
Tuple containing the number of output channels for each block
layers_per_block (:obj:`int`, *optional*, defaults to `2`):
Number of Resnet layer for each block
norm_num_groups (:obj:`int`, *optional*, defaults to `32`):
norm num group
act_fn (:obj:`str`, *optional*, defaults to `silu`):
Activation function
double_z (:obj:`bool`, *optional*, defaults to `False`):
Whether to double the last output channels
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
Parameters `dtype`
"""
in_channels: int = 3
out_channels: int = 3
down_block_types: Tuple[str] = ("DownEncoderBlock2D",)
block_out_channels: Tuple[int] = (64,)
layers_per_block: int = 2
norm_num_groups: int = 32
act_fn: str = "silu"
double_z: bool = False
dtype: jnp.dtype = jnp.float32
def setup(self):
block_out_channels = self.block_out_channels
# in
self.conv_in = nn.Conv(
block_out_channels[0],
kernel_size=(3, 3),
strides=(1, 1),
padding=((1, 1), (1, 1)),
dtype=self.dtype,
)
# downsampling
down_blocks = []
output_channel = block_out_channels[0]
for i, _ in enumerate(self.down_block_types):
input_channel = output_channel
output_channel = block_out_channels[i]
is_final_block = i == len(block_out_channels) - 1
down_block = FlaxDownEncoderBlock2D(
in_channels=input_channel,
out_channels=output_channel,
num_layers=self.layers_per_block,
resnet_groups=self.norm_num_groups,
add_downsample=not is_final_block,
dtype=self.dtype,
)
down_blocks.append(down_block)
self.down_blocks = down_blocks
# middle
self.mid_block = FlaxUNetMidBlock2D(
in_channels=block_out_channels[-1],
resnet_groups=self.norm_num_groups,
num_attention_heads=None,
dtype=self.dtype,
)
# end
conv_out_channels = 2 * self.out_channels if self.double_z else self.out_channels
self.conv_norm_out = nn.GroupNorm(num_groups=self.norm_num_groups, epsilon=1e-6)
self.conv_out = nn.Conv(
conv_out_channels,
kernel_size=(3, 3),
strides=(1, 1),
padding=((1, 1), (1, 1)),
dtype=self.dtype,
)
def __call__(self, sample, deterministic: bool = True):
# in
sample = self.conv_in(sample)
# downsampling
for block in self.down_blocks:
sample = block(sample, deterministic=deterministic)
# middle
sample = self.mid_block(sample, deterministic=deterministic)
# end
sample = self.conv_norm_out(sample)
sample = nn.swish(sample)
sample = self.conv_out(sample)
return sample
class FlaxDecoder(nn.Module):
r"""
Flax Implementation of VAE Decoder.
This model is a Flax Linen [flax.linen.Module](https://flax.readthedocs.io/en/latest/flax.linen.html#module)
subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to
general usage and behavior.
Finally, this model supports inherent JAX features such as:
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
Parameters:
in_channels (:obj:`int`, *optional*, defaults to 3):
Input channels
out_channels (:obj:`int`, *optional*, defaults to 3):
Output channels
up_block_types (:obj:`Tuple[str]`, *optional*, defaults to `(UpDecoderBlock2D)`):
UpDecoder block type
block_out_channels (:obj:`Tuple[str]`, *optional*, defaults to `(64,)`):
Tuple containing the number of output channels for each block
layers_per_block (:obj:`int`, *optional*, defaults to `2`):
Number of Resnet layer for each block
norm_num_groups (:obj:`int`, *optional*, defaults to `32`):
norm num group
act_fn (:obj:`str`, *optional*, defaults to `silu`):
Activation function
double_z (:obj:`bool`, *optional*, defaults to `False`):
Whether to double the last output channels
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
parameters `dtype`
"""
in_channels: int = 3
out_channels: int = 3
up_block_types: Tuple[str] = ("UpDecoderBlock2D",)
block_out_channels: int = (64,)
layers_per_block: int = 2
norm_num_groups: int = 32
act_fn: str = "silu"
dtype: jnp.dtype = jnp.float32
def setup(self):
block_out_channels = self.block_out_channels
# z to block_in
self.conv_in = nn.Conv(
block_out_channels[-1],
kernel_size=(3, 3),
strides=(1, 1),
padding=((1, 1), (1, 1)),
dtype=self.dtype,
)
# middle
self.mid_block = FlaxUNetMidBlock2D(
in_channels=block_out_channels[-1],
resnet_groups=self.norm_num_groups,
num_attention_heads=None,
dtype=self.dtype,
)
# upsampling
reversed_block_out_channels = list(reversed(block_out_channels))
output_channel = reversed_block_out_channels[0]
up_blocks = []
for i, _ in enumerate(self.up_block_types):
prev_output_channel = output_channel
output_channel = reversed_block_out_channels[i]
is_final_block = i == len(block_out_channels) - 1
up_block = FlaxUpDecoderBlock2D(
in_channels=prev_output_channel,
out_channels=output_channel,
num_layers=self.layers_per_block + 1,
resnet_groups=self.norm_num_groups,
add_upsample=not is_final_block,
dtype=self.dtype,
)
up_blocks.append(up_block)
prev_output_channel = output_channel
self.up_blocks = up_blocks
# end
self.conv_norm_out = nn.GroupNorm(num_groups=self.norm_num_groups, epsilon=1e-6)
self.conv_out = nn.Conv(
self.out_channels,
kernel_size=(3, 3),
strides=(1, 1),
padding=((1, 1), (1, 1)),
dtype=self.dtype,
)
def __call__(self, sample, deterministic: bool = True):
# z to block_in
sample = self.conv_in(sample)
# middle
sample = self.mid_block(sample, deterministic=deterministic)
# upsampling
for block in self.up_blocks:
sample = block(sample, deterministic=deterministic)
sample = self.conv_norm_out(sample)
sample = nn.swish(sample)
sample = self.conv_out(sample)
return sample
class FlaxDiagonalGaussianDistribution(object):
def __init__(self, parameters, deterministic=False):
# Last axis to account for channels-last
self.mean, self.logvar = jnp.split(parameters, 2, axis=-1)
self.logvar = jnp.clip(self.logvar, -30.0, 20.0)
self.deterministic = deterministic
self.std = jnp.exp(0.5 * self.logvar)
self.var = jnp.exp(self.logvar)
if self.deterministic:
self.var = self.std = jnp.zeros_like(self.mean)
def sample(self, key):
return self.mean + self.std * jax.random.normal(key, self.mean.shape)
def kl(self, other=None):
if self.deterministic:
return jnp.array([0.0])
if other is None:
return 0.5 * jnp.sum(self.mean**2 + self.var - 1.0 - self.logvar, axis=[1, 2, 3])
return 0.5 * jnp.sum(
jnp.square(self.mean - other.mean) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar,
axis=[1, 2, 3],
)
def nll(self, sample, axis=[1, 2, 3]):
if self.deterministic:
return jnp.array([0.0])
logtwopi = jnp.log(2.0 * jnp.pi)
return 0.5 * jnp.sum(logtwopi + self.logvar + jnp.square(sample - self.mean) / self.var, axis=axis)
def mode(self):
return self.mean
@flax_register_to_config
class FlaxAutoencoderKL(nn.Module, FlaxModelMixin, ConfigMixin):
r"""
Flax implementation of a VAE model with KL loss for decoding latent representations.
This model inherits from [`FlaxModelMixin`]. Check the superclass documentation for it's generic methods
implemented for all models (such as downloading or saving).
This model is a Flax Linen [flax.linen.Module](https://flax.readthedocs.io/en/latest/flax.linen.html#module)
subclass. Use it as a regular Flax Linen module and refer to the Flax documentation for all matter related to its
general usage and behavior.
Inherent JAX features such as the following are supported:
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
Parameters:
in_channels (`int`, *optional*, defaults to 3):
Number of channels in the input image.
out_channels (`int`, *optional*, defaults to 3):
Number of channels in the output.
down_block_types (`Tuple[str]`, *optional*, defaults to `(DownEncoderBlock2D)`):
Tuple of downsample block types.
up_block_types (`Tuple[str]`, *optional*, defaults to `(UpDecoderBlock2D)`):
Tuple of upsample block types.
block_out_channels (`Tuple[str]`, *optional*, defaults to `(64,)`):
Tuple of block output channels.
layers_per_block (`int`, *optional*, defaults to `2`):
Number of ResNet layer for each block.
act_fn (`str`, *optional*, defaults to `silu`):
The activation function to use.
latent_channels (`int`, *optional*, defaults to `4`):
Number of channels in the latent space.
norm_num_groups (`int`, *optional*, defaults to `32`):
The number of groups for normalization.
sample_size (`int`, *optional*, defaults to 32):
Sample input size.
scaling_factor (`float`, *optional*, defaults to 0.18215):
The component-wise standard deviation of the trained latent space computed using the first batch of the
training set. This is used to scale the latent space to have unit variance when training the diffusion
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
/ scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
dtype (`jnp.dtype`, *optional*, defaults to `jnp.float32`):
The `dtype` of the parameters.
"""
in_channels: int = 3
out_channels: int = 3
down_block_types: Tuple[str] = ("DownEncoderBlock2D",)
up_block_types: Tuple[str] = ("UpDecoderBlock2D",)
block_out_channels: Tuple[int] = (64,)
layers_per_block: int = 1
act_fn: str = "silu"
latent_channels: int = 4
norm_num_groups: int = 32
sample_size: int = 32
scaling_factor: float = 0.18215
dtype: jnp.dtype = jnp.float32
def setup(self):
self.encoder = FlaxEncoder(
in_channels=self.config.in_channels,
out_channels=self.config.latent_channels,
down_block_types=self.config.down_block_types,
block_out_channels=self.config.block_out_channels,
layers_per_block=self.config.layers_per_block,
act_fn=self.config.act_fn,
norm_num_groups=self.config.norm_num_groups,
double_z=True,
dtype=self.dtype,
)
self.decoder = FlaxDecoder(
in_channels=self.config.latent_channels,
out_channels=self.config.out_channels,
up_block_types=self.config.up_block_types,
block_out_channels=self.config.block_out_channels,
layers_per_block=self.config.layers_per_block,
norm_num_groups=self.config.norm_num_groups,
act_fn=self.config.act_fn,
dtype=self.dtype,
)
self.quant_conv = nn.Conv(
2 * self.config.latent_channels,
kernel_size=(1, 1),
strides=(1, 1),
padding="VALID",
dtype=self.dtype,
)
self.post_quant_conv = nn.Conv(
self.config.latent_channels,
kernel_size=(1, 1),
strides=(1, 1),
padding="VALID",
dtype=self.dtype,
)
def init_weights(self, rng: jax.Array) -> FrozenDict:
# init input tensors
sample_shape = (1, self.in_channels, self.sample_size, self.sample_size)
sample = jnp.zeros(sample_shape, dtype=jnp.float32)
params_rng, dropout_rng, gaussian_rng = jax.random.split(rng, 3)
rngs = {"params": params_rng, "dropout": dropout_rng, "gaussian": gaussian_rng}
return self.init(rngs, sample)["params"]
def encode(self, sample, deterministic: bool = True, return_dict: bool = True):
sample = jnp.transpose(sample, (0, 2, 3, 1))
hidden_states = self.encoder(sample, deterministic=deterministic)
moments = self.quant_conv(hidden_states)
posterior = FlaxDiagonalGaussianDistribution(moments)
if not return_dict:
return (posterior,)
return FlaxAutoencoderKLOutput(latent_dist=posterior)
def decode(self, latents, deterministic: bool = True, return_dict: bool = True):
if latents.shape[-1] != self.config.latent_channels:
latents = jnp.transpose(latents, (0, 2, 3, 1))
hidden_states = self.post_quant_conv(latents)
hidden_states = self.decoder(hidden_states, deterministic=deterministic)
hidden_states = jnp.transpose(hidden_states, (0, 3, 1, 2))
if not return_dict:
return (hidden_states,)
return FlaxDecoderOutput(sample=hidden_states)
def __call__(self, sample, sample_posterior=False, deterministic: bool = True, return_dict: bool = True):
posterior = self.encode(sample, deterministic=deterministic, return_dict=return_dict)
if sample_posterior:
rng = self.make_rng("gaussian")
hidden_states = posterior.latent_dist.sample(rng)
else:
hidden_states = posterior.latent_dist.mode()
sample = self.decode(hidden_states, return_dict=return_dict).sample
if not return_dict:
return (sample,)
return FlaxDecoderOutput(sample=sample)
from ..utils import deprecate
from .unets.unet_2d_condition import UNet2DConditionModel, UNet2DConditionOutput
class UNet2DConditionOutput(UNet2DConditionOutput):
deprecation_message = "Importing `UNet2DConditionOutput` from `diffusers.models.unet_2d_condition` is deprecated and this will be removed in a future version. Please use `from diffusers.models.unets.unet_2d_condition import UNet2DConditionOutput`, instead."
deprecate("UNet2DConditionOutput", "0.29", deprecation_message)
class UNet2DConditionModel(UNet2DConditionModel):
deprecation_message = "Importing `UNet2DConditionModel` from `diffusers.models.unet_2d_condition` is deprecated and this will be removed in a future version. Please use `from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel`, instead."
deprecate("UNet2DConditionModel", "0.29", deprecation_message)
# IMPORTANT: #
###################################################################
# ----------------------------------------------------------------#
# This file is deprecated and will be removed soon #
# (as soon as PEFT will become a required dependency for LoRA) #
# ----------------------------------------------------------------#
###################################################################
from typing import Optional, Tuple, Union
import torch
import torch.nn.functional as F
from torch import nn
from ..utils import deprecate, logging
from ..utils.import_utils import is_transformers_available
if is_transformers_available():
from transformers import CLIPTextModel, CLIPTextModelWithProjection
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
def text_encoder_attn_modules(text_encoder):
attn_modules = []
if isinstance(text_encoder, (CLIPTextModel, CLIPTextModelWithProjection)):
for i, layer in enumerate(text_encoder.text_model.encoder.layers):
name = f"text_model.encoder.layers.{i}.self_attn"
mod = layer.self_attn
attn_modules.append((name, mod))
else:
raise ValueError(f"do not know how to get attention modules for: {text_encoder.__class__.__name__}")
return attn_modules
def text_encoder_mlp_modules(text_encoder):
mlp_modules = []
if isinstance(text_encoder, (CLIPTextModel, CLIPTextModelWithProjection)):
for i, layer in enumerate(text_encoder.text_model.encoder.layers):
mlp_mod = layer.mlp
name = f"text_model.encoder.layers.{i}.mlp"
mlp_modules.append((name, mlp_mod))
else:
raise ValueError(f"do not know how to get mlp modules for: {text_encoder.__class__.__name__}")
return mlp_modules
def adjust_lora_scale_text_encoder(text_encoder, lora_scale: float = 1.0):
for _, attn_module in text_encoder_attn_modules(text_encoder):
if isinstance(attn_module.q_proj, PatchedLoraProjection):
attn_module.q_proj.lora_scale = lora_scale
attn_module.k_proj.lora_scale = lora_scale
attn_module.v_proj.lora_scale = lora_scale
attn_module.out_proj.lora_scale = lora_scale
for _, mlp_module in text_encoder_mlp_modules(text_encoder):
if isinstance(mlp_module.fc1, PatchedLoraProjection):
mlp_module.fc1.lora_scale = lora_scale
mlp_module.fc2.lora_scale = lora_scale
class PatchedLoraProjection(torch.nn.Module):
def __init__(self, regular_linear_layer, lora_scale=1, network_alpha=None, rank=4, dtype=None):
deprecation_message = "Use of `PatchedLoraProjection` is deprecated. Please switch to PEFT backend by installing PEFT: `pip install peft`."
deprecate("PatchedLoraProjection", "1.0.0", deprecation_message)
super().__init__()
from ..models.lora import LoRALinearLayer
self.regular_linear_layer = regular_linear_layer
device = self.regular_linear_layer.weight.device
if dtype is None:
dtype = self.regular_linear_layer.weight.dtype
self.lora_linear_layer = LoRALinearLayer(
self.regular_linear_layer.in_features,
self.regular_linear_layer.out_features,
network_alpha=network_alpha,
device=device,
dtype=dtype,
rank=rank,
)
self.lora_scale = lora_scale
# overwrite PyTorch's `state_dict` to be sure that only the 'regular_linear_layer' weights are saved
# when saving the whole text encoder model and when LoRA is unloaded or fused
def state_dict(self, *args, destination=None, prefix="", keep_vars=False):
if self.lora_linear_layer is None:
return self.regular_linear_layer.state_dict(
*args, destination=destination, prefix=prefix, keep_vars=keep_vars
)
return super().state_dict(*args, destination=destination, prefix=prefix, keep_vars=keep_vars)
def _fuse_lora(self, lora_scale=1.0, safe_fusing=False):
if self.lora_linear_layer is None:
return
dtype, device = self.regular_linear_layer.weight.data.dtype, self.regular_linear_layer.weight.data.device
w_orig = self.regular_linear_layer.weight.data.float()
w_up = self.lora_linear_layer.up.weight.data.float()
w_down = self.lora_linear_layer.down.weight.data.float()
if self.lora_linear_layer.network_alpha is not None:
w_up = w_up * self.lora_linear_layer.network_alpha / self.lora_linear_layer.rank
fused_weight = w_orig + (lora_scale * torch.bmm(w_up[None, :], w_down[None, :])[0])
if safe_fusing and torch.isnan(fused_weight).any().item():
raise ValueError(
"This LoRA weight seems to be broken. "
f"Encountered NaN values when trying to fuse LoRA weights for {self}."
"LoRA weights will not be fused."
)
self.regular_linear_layer.weight.data = fused_weight.to(device=device, dtype=dtype)
# we can drop the lora layer now
self.lora_linear_layer = None
# offload the up and down matrices to CPU to not blow the memory
self.w_up = w_up.cpu()
self.w_down = w_down.cpu()
self.lora_scale = lora_scale
def _unfuse_lora(self):
if not (getattr(self, "w_up", None) is not None and getattr(self, "w_down", None) is not None):
return
fused_weight = self.regular_linear_layer.weight.data
dtype, device = fused_weight.dtype, fused_weight.device
w_up = self.w_up.to(device=device).float()
w_down = self.w_down.to(device).float()
unfused_weight = fused_weight.float() - (self.lora_scale * torch.bmm(w_up[None, :], w_down[None, :])[0])
self.regular_linear_layer.weight.data = unfused_weight.to(device=device, dtype=dtype)
self.w_up = None
self.w_down = None
def forward(self, input):
if self.lora_scale is None:
self.lora_scale = 1.0
if self.lora_linear_layer is None:
return self.regular_linear_layer(input)
return self.regular_linear_layer(input) + (self.lora_scale * self.lora_linear_layer(input))
class LoRALinearLayer(nn.Module):
r"""
A linear layer that is used with LoRA.
Parameters:
in_features (`int`):
Number of input features.
out_features (`int`):
Number of output features.
rank (`int`, `optional`, defaults to 4):
The rank of the LoRA layer.
network_alpha (`float`, `optional`, defaults to `None`):
The value of the network alpha used for stable learning and preventing underflow. This value has the same
meaning as the `--network_alpha` option in the kohya-ss trainer script. See
https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning
device (`torch.device`, `optional`, defaults to `None`):
The device to use for the layer's weights.
dtype (`torch.dtype`, `optional`, defaults to `None`):
The dtype to use for the layer's weights.
"""
def __init__(
self,
in_features: int,
out_features: int,
rank: int = 4,
network_alpha: Optional[float] = None,
device: Optional[Union[torch.device, str]] = None,
dtype: Optional[torch.dtype] = None,
):
super().__init__()
self.down = nn.Linear(in_features, rank, bias=False, device=device, dtype=dtype)
self.up = nn.Linear(rank, out_features, bias=False, device=device, dtype=dtype)
# This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script.
# See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning
self.network_alpha = network_alpha
self.rank = rank
self.out_features = out_features
self.in_features = in_features
nn.init.normal_(self.down.weight, std=1 / rank)
nn.init.zeros_(self.up.weight)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
orig_dtype = hidden_states.dtype
dtype = self.down.weight.dtype
down_hidden_states = self.down(hidden_states.to(dtype))
up_hidden_states = self.up(down_hidden_states)
if self.network_alpha is not None:
up_hidden_states *= self.network_alpha / self.rank
return up_hidden_states.to(orig_dtype)
class LoRAConv2dLayer(nn.Module):
r"""
A convolutional layer that is used with LoRA.
Parameters:
in_features (`int`):
Number of input features.
out_features (`int`):
Number of output features.
rank (`int`, `optional`, defaults to 4):
The rank of the LoRA layer.
kernel_size (`int` or `tuple` of two `int`, `optional`, defaults to 1):
The kernel size of the convolution.
stride (`int` or `tuple` of two `int`, `optional`, defaults to 1):
The stride of the convolution.
padding (`int` or `tuple` of two `int` or `str`, `optional`, defaults to 0):
The padding of the convolution.
network_alpha (`float`, `optional`, defaults to `None`):
The value of the network alpha used for stable learning and preventing underflow. This value has the same
meaning as the `--network_alpha` option in the kohya-ss trainer script. See
https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning
"""
def __init__(
self,
in_features: int,
out_features: int,
rank: int = 4,
kernel_size: Union[int, Tuple[int, int]] = (1, 1),
stride: Union[int, Tuple[int, int]] = (1, 1),
padding: Union[int, Tuple[int, int], str] = 0,
network_alpha: Optional[float] = None,
):
super().__init__()
self.down = nn.Conv2d(in_features, rank, kernel_size=kernel_size, stride=stride, padding=padding, bias=False)
# according to the official kohya_ss trainer kernel_size are always fixed for the up layer
# # see: https://github.com/bmaltais/kohya_ss/blob/2accb1305979ba62f5077a23aabac23b4c37e935/networks/lora_diffusers.py#L129
self.up = nn.Conv2d(rank, out_features, kernel_size=(1, 1), stride=(1, 1), bias=False)
# This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script.
# See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning
self.network_alpha = network_alpha
self.rank = rank
nn.init.normal_(self.down.weight, std=1 / rank)
nn.init.zeros_(self.up.weight)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
orig_dtype = hidden_states.dtype
dtype = self.down.weight.dtype
down_hidden_states = self.down(hidden_states.to(dtype))
up_hidden_states = self.up(down_hidden_states)
if self.network_alpha is not None:
up_hidden_states *= self.network_alpha / self.rank
return up_hidden_states.to(orig_dtype)
class LoRACompatibleConv(nn.Conv2d):
"""
A convolutional layer that can be used with LoRA.
"""
def __init__(self, *args, lora_layer: Optional[LoRAConv2dLayer] = None, **kwargs):
deprecation_message = "Use of `LoRACompatibleConv` is deprecated. Please switch to PEFT backend by installing PEFT: `pip install peft`."
deprecate("LoRACompatibleConv", "1.0.0", deprecation_message)
super().__init__(*args, **kwargs)
self.lora_layer = lora_layer
def set_lora_layer(self, lora_layer: Optional[LoRAConv2dLayer]):
deprecation_message = "Use of `set_lora_layer()` is deprecated. Please switch to PEFT backend by installing PEFT: `pip install peft`."
deprecate("set_lora_layer", "1.0.0", deprecation_message)
self.lora_layer = lora_layer
def _fuse_lora(self, lora_scale: float = 1.0, safe_fusing: bool = False):
if self.lora_layer is None:
return
dtype, device = self.weight.data.dtype, self.weight.data.device
w_orig = self.weight.data.float()
w_up = self.lora_layer.up.weight.data.float()
w_down = self.lora_layer.down.weight.data.float()
if self.lora_layer.network_alpha is not None:
w_up = w_up * self.lora_layer.network_alpha / self.lora_layer.rank
fusion = torch.mm(w_up.flatten(start_dim=1), w_down.flatten(start_dim=1))
fusion = fusion.reshape((w_orig.shape))
fused_weight = w_orig + (lora_scale * fusion)
if safe_fusing and torch.isnan(fused_weight).any().item():
raise ValueError(
"This LoRA weight seems to be broken. "
f"Encountered NaN values when trying to fuse LoRA weights for {self}."
"LoRA weights will not be fused."
)
self.weight.data = fused_weight.to(device=device, dtype=dtype)
# we can drop the lora layer now
self.lora_layer = None
# offload the up and down matrices to CPU to not blow the memory
self.w_up = w_up.cpu()
self.w_down = w_down.cpu()
self._lora_scale = lora_scale
def _unfuse_lora(self):
if not (getattr(self, "w_up", None) is not None and getattr(self, "w_down", None) is not None):
return
fused_weight = self.weight.data
dtype, device = fused_weight.data.dtype, fused_weight.data.device
self.w_up = self.w_up.to(device=device).float()
self.w_down = self.w_down.to(device).float()
fusion = torch.mm(self.w_up.flatten(start_dim=1), self.w_down.flatten(start_dim=1))
fusion = fusion.reshape((fused_weight.shape))
unfused_weight = fused_weight.float() - (self._lora_scale * fusion)
self.weight.data = unfused_weight.to(device=device, dtype=dtype)
self.w_up = None
self.w_down = None
def forward(self, hidden_states: torch.Tensor, scale: float = 1.0) -> torch.Tensor:
if self.padding_mode != "zeros":
hidden_states = F.pad(hidden_states, self._reversed_padding_repeated_twice, mode=self.padding_mode)
padding = (0, 0)
else:
padding = self.padding
original_outputs = F.conv2d(
hidden_states, self.weight, self.bias, self.stride, padding, self.dilation, self.groups
)
if self.lora_layer is None:
return original_outputs
else:
return original_outputs + (scale * self.lora_layer(hidden_states))
class LoRACompatibleLinear(nn.Linear):
"""
A Linear layer that can be used with LoRA.
"""
def __init__(self, *args, lora_layer: Optional[LoRALinearLayer] = None, **kwargs):
deprecation_message = "Use of `LoRACompatibleLinear` is deprecated. Please switch to PEFT backend by installing PEFT: `pip install peft`."
deprecate("LoRACompatibleLinear", "1.0.0", deprecation_message)
super().__init__(*args, **kwargs)
self.lora_layer = lora_layer
def set_lora_layer(self, lora_layer: Optional[LoRALinearLayer]):
deprecation_message = "Use of `set_lora_layer()` is deprecated. Please switch to PEFT backend by installing PEFT: `pip install peft`."
deprecate("set_lora_layer", "1.0.0", deprecation_message)
self.lora_layer = lora_layer
def _fuse_lora(self, lora_scale: float = 1.0, safe_fusing: bool = False):
if self.lora_layer is None:
return
dtype, device = self.weight.data.dtype, self.weight.data.device
w_orig = self.weight.data.float()
w_up = self.lora_layer.up.weight.data.float()
w_down = self.lora_layer.down.weight.data.float()
if self.lora_layer.network_alpha is not None:
w_up = w_up * self.lora_layer.network_alpha / self.lora_layer.rank
fused_weight = w_orig + (lora_scale * torch.bmm(w_up[None, :], w_down[None, :])[0])
if safe_fusing and torch.isnan(fused_weight).any().item():
raise ValueError(
"This LoRA weight seems to be broken. "
f"Encountered NaN values when trying to fuse LoRA weights for {self}."
"LoRA weights will not be fused."
)
self.weight.data = fused_weight.to(device=device, dtype=dtype)
# we can drop the lora layer now
self.lora_layer = None
# offload the up and down matrices to CPU to not blow the memory
self.w_up = w_up.cpu()
self.w_down = w_down.cpu()
self._lora_scale = lora_scale
def _unfuse_lora(self):
if not (getattr(self, "w_up", None) is not None and getattr(self, "w_down", None) is not None):
return
fused_weight = self.weight.data
dtype, device = fused_weight.dtype, fused_weight.device
w_up = self.w_up.to(device=device).float()
w_down = self.w_down.to(device).float()
unfused_weight = fused_weight.float() - (self._lora_scale * torch.bmm(w_up[None, :], w_down[None, :])[0])
self.weight.data = unfused_weight.to(device=device, dtype=dtype)
self.w_up = None
self.w_down = None
def forward(self, hidden_states: torch.Tensor, scale: float = 1.0) -> torch.Tensor:
if self.lora_layer is None:
out = super().forward(hidden_states)
return out
else:
out = super().forward(hidden_states) + (scale * self.lora_layer(hidden_states))
return out
from typing import Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from ..utils import USE_PEFT_BACKEND
from .lora import LoRACompatibleConv
from .normalization import RMSNorm
class Upsample1D(nn.Module):
"""A 1D upsampling layer with an optional convolution.
Parameters:
channels (`int`):
number of channels in the inputs and outputs.
use_conv (`bool`, default `False`):
option to use a convolution.
use_conv_transpose (`bool`, default `False`):
option to use a convolution transpose.
out_channels (`int`, optional):
number of output channels. Defaults to `channels`.
name (`str`, default `conv`):
name of the upsampling 1D layer.
"""
def __init__(
self,
channels: int,
use_conv: bool = False,
use_conv_transpose: bool = False,
out_channels: Optional[int] = None,
name: str = "conv",
):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.use_conv_transpose = use_conv_transpose
self.name = name
self.conv = None
if use_conv_transpose:
self.conv = nn.ConvTranspose1d(channels, self.out_channels, 4, 2, 1)
elif use_conv:
self.conv = nn.Conv1d(self.channels, self.out_channels, 3, padding=1)
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
assert inputs.shape[1] == self.channels
if self.use_conv_transpose:
return self.conv(inputs)
outputs = F.interpolate(inputs, scale_factor=2.0, mode="nearest")
if self.use_conv:
outputs = self.conv(outputs)
return outputs
class Upsample2D(nn.Module):
"""A 2D upsampling layer with an optional convolution.
Parameters:
channels (`int`):
number of channels in the inputs and outputs.
use_conv (`bool`, default `False`):
option to use a convolution.
use_conv_transpose (`bool`, default `False`):
option to use a convolution transpose.
out_channels (`int`, optional):
number of output channels. Defaults to `channels`.
name (`str`, default `conv`):
name of the upsampling 2D layer.
"""
def __init__(
self,
channels: int,
use_conv: bool = False,
use_conv_transpose: bool = False,
out_channels: Optional[int] = None,
name: str = "conv",
kernel_size: Optional[int] = None,
padding=1,
norm_type=None,
eps=None,
elementwise_affine=None,
bias=True,
interpolate=True,
):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.use_conv_transpose = use_conv_transpose
self.name = name
self.interpolate = interpolate
conv_cls = nn.Conv2d if USE_PEFT_BACKEND else LoRACompatibleConv
if norm_type == "ln_norm":
self.norm = nn.LayerNorm(channels, eps, elementwise_affine)
elif norm_type == "rms_norm":
self.norm = RMSNorm(channels, eps, elementwise_affine)
elif norm_type is None:
self.norm = None
else:
raise ValueError(f"unknown norm_type: {norm_type}")
conv = None
if use_conv_transpose:
if kernel_size is None:
kernel_size = 4
conv = nn.ConvTranspose2d(
channels, self.out_channels, kernel_size=kernel_size, stride=2, padding=padding, bias=bias
)
elif use_conv:
if kernel_size is None:
kernel_size = 3
conv = conv_cls(self.channels, self.out_channels, kernel_size=kernel_size, padding=padding, bias=bias)
# TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed
if name == "conv":
self.conv = conv
else:
self.Conv2d_0 = conv
def forward(
self,
hidden_states: torch.FloatTensor,
output_size: Optional[int] = None,
scale: float = 1.0,
) -> torch.FloatTensor:
assert hidden_states.shape[1] == self.channels
if self.norm is not None:
hidden_states = self.norm(hidden_states.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
if self.use_conv_transpose:
return self.conv(hidden_states)
# Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16
# TODO(Suraj): Remove this cast once the issue is fixed in PyTorch
# https://github.com/pytorch/pytorch/issues/86679
dtype = hidden_states.dtype
if dtype == torch.bfloat16:
hidden_states = hidden_states.to(torch.float32)
# upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
if hidden_states.shape[0] >= 64:
hidden_states = hidden_states.contiguous()
# if `output_size` is passed we force the interpolation output
# size and do not make use of `scale_factor=2`
if self.interpolate:
if output_size is None:
hidden_states = F.interpolate(hidden_states, scale_factor=2.0, mode="nearest")
else:
hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest")
# If the input is bfloat16, we cast back to bfloat16
if dtype == torch.bfloat16:
hidden_states = hidden_states.to(dtype)
# TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed
if self.use_conv:
if self.name == "conv":
if isinstance(self.conv, LoRACompatibleConv) and not USE_PEFT_BACKEND:
hidden_states = self.conv(hidden_states, scale)
else:
hidden_states = self.conv(hidden_states)
else:
if isinstance(self.Conv2d_0, LoRACompatibleConv) and not USE_PEFT_BACKEND:
hidden_states = self.Conv2d_0(hidden_states, scale)
else:
hidden_states = self.Conv2d_0(hidden_states)
return hidden_states
class FirUpsample2D(nn.Module):
"""A 2D FIR upsampling layer with an optional convolution.
Parameters:
channels (`int`, optional):
number of channels in the inputs and outputs.
use_conv (`bool`, default `False`):
option to use a convolution.
out_channels (`int`, optional):
number of output channels. Defaults to `channels`.
fir_kernel (`tuple`, default `(1, 3, 3, 1)`):
kernel for the FIR filter.
"""
def __init__(
self,
channels: Optional[int] = None,
out_channels: Optional[int] = None,
use_conv: bool = False,
fir_kernel: Tuple[int, int, int, int] = (1, 3, 3, 1),
):
super().__init__()
out_channels = out_channels if out_channels else channels
if use_conv:
self.Conv2d_0 = nn.Conv2d(channels, out_channels, kernel_size=3, stride=1, padding=1)
self.use_conv = use_conv
self.fir_kernel = fir_kernel
self.out_channels = out_channels
def _upsample_2d(
self,
hidden_states: torch.FloatTensor,
weight: Optional[torch.FloatTensor] = None,
kernel: Optional[torch.FloatTensor] = None,
factor: int = 2,
gain: float = 1,
) -> torch.FloatTensor:
"""Fused `upsample_2d()` followed by `Conv2d()`.
Padding is performed only once at the beginning, not between the operations. The fused op is considerably more
efficient than performing the same calculation using standard TensorFlow ops. It supports gradients of
arbitrary order.
Args:
hidden_states (`torch.FloatTensor`):
Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
weight (`torch.FloatTensor`, *optional*):
Weight tensor of the shape `[filterH, filterW, inChannels, outChannels]`. Grouped convolution can be
performed by `inChannels = x.shape[0] // numGroups`.
kernel (`torch.FloatTensor`, *optional*):
FIR filter of the shape `[firH, firW]` or `[firN]` (separable). The default is `[1] * factor`, which
corresponds to nearest-neighbor upsampling.
factor (`int`, *optional*): Integer upsampling factor (default: 2).
gain (`float`, *optional*): Scaling factor for signal magnitude (default: 1.0).
Returns:
output (`torch.FloatTensor`):
Tensor of the shape `[N, C, H * factor, W * factor]` or `[N, H * factor, W * factor, C]`, and same
datatype as `hidden_states`.
"""
assert isinstance(factor, int) and factor >= 1
# Setup filter kernel.
if kernel is None:
kernel = [1] * factor
# setup kernel
kernel = torch.tensor(kernel, dtype=torch.float32)
if kernel.ndim == 1:
kernel = torch.outer(kernel, kernel)
kernel /= torch.sum(kernel)
kernel = kernel * (gain * (factor**2))
if self.use_conv:
convH = weight.shape[2]
convW = weight.shape[3]
inC = weight.shape[1]
pad_value = (kernel.shape[0] - factor) - (convW - 1)
stride = (factor, factor)
# Determine data dimensions.
output_shape = (
(hidden_states.shape[2] - 1) * factor + convH,
(hidden_states.shape[3] - 1) * factor + convW,
)
output_padding = (
output_shape[0] - (hidden_states.shape[2] - 1) * stride[0] - convH,
output_shape[1] - (hidden_states.shape[3] - 1) * stride[1] - convW,
)
assert output_padding[0] >= 0 and output_padding[1] >= 0
num_groups = hidden_states.shape[1] // inC
# Transpose weights.
weight = torch.reshape(weight, (num_groups, -1, inC, convH, convW))
weight = torch.flip(weight, dims=[3, 4]).permute(0, 2, 1, 3, 4)
weight = torch.reshape(weight, (num_groups * inC, -1, convH, convW))
inverse_conv = F.conv_transpose2d(
hidden_states,
weight,
stride=stride,
output_padding=output_padding,
padding=0,
)
output = upfirdn2d_native(
inverse_conv,
torch.tensor(kernel, device=inverse_conv.device),
pad=((pad_value + 1) // 2 + factor - 1, pad_value // 2 + 1),
)
else:
pad_value = kernel.shape[0] - factor
output = upfirdn2d_native(
hidden_states,
torch.tensor(kernel, device=hidden_states.device),
up=factor,
pad=((pad_value + 1) // 2 + factor - 1, pad_value // 2),
)
return output
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
if self.use_conv:
height = self._upsample_2d(hidden_states, self.Conv2d_0.weight, kernel=self.fir_kernel)
height = height + self.Conv2d_0.bias.reshape(1, -1, 1, 1)
else:
height = self._upsample_2d(hidden_states, kernel=self.fir_kernel, factor=2)
return height
class KUpsample2D(nn.Module):
r"""A 2D K-upsampling layer.
Parameters:
pad_mode (`str`, *optional*, default to `"reflect"`): the padding mode to use.
"""
def __init__(self, pad_mode: str = "reflect"):
super().__init__()
self.pad_mode = pad_mode
kernel_1d = torch.tensor([[1 / 8, 3 / 8, 3 / 8, 1 / 8]]) * 2
self.pad = kernel_1d.shape[1] // 2 - 1
self.register_buffer("kernel", kernel_1d.T @ kernel_1d, persistent=False)
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
inputs = F.pad(inputs, ((self.pad + 1) // 2,) * 4, self.pad_mode)
weight = inputs.new_zeros(
[
inputs.shape[1],
inputs.shape[1],
self.kernel.shape[0],
self.kernel.shape[1],
]
)
indices = torch.arange(inputs.shape[1], device=inputs.device)
kernel = self.kernel.to(weight)[None, :].expand(inputs.shape[1], -1, -1)
weight[indices, indices] = kernel
return F.conv_transpose2d(inputs, weight, stride=2, padding=self.pad * 2 + 1)
def upfirdn2d_native(
tensor: torch.Tensor,
kernel: torch.Tensor,
up: int = 1,
down: int = 1,
pad: Tuple[int, int] = (0, 0),
) -> torch.Tensor:
up_x = up_y = up
down_x = down_y = down
pad_x0 = pad_y0 = pad[0]
pad_x1 = pad_y1 = pad[1]
_, channel, in_h, in_w = tensor.shape
tensor = tensor.reshape(-1, in_h, in_w, 1)
_, in_h, in_w, minor = tensor.shape
kernel_h, kernel_w = kernel.shape
out = tensor.view(-1, in_h, 1, in_w, 1, minor)
out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
out = out.view(-1, in_h * up_y, in_w * up_x, minor)
out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)])
out = out.to(tensor.device) # Move back to mps if necessary
out = out[
:,
max(-pad_y0, 0) : out.shape[1] - max(-pad_y1, 0),
max(-pad_x0, 0) : out.shape[2] - max(-pad_x1, 0),
:,
]
out = out.permute(0, 3, 1, 2)
out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1])
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
out = F.conv2d(out, w)
out = out.reshape(
-1,
minor,
in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1,
in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1,
)
out = out.permute(0, 2, 3, 1)
out = out[:, ::down_y, ::down_x, :]
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
return out.view(-1, channel, out_h, out_w)
def upsample_2d(
hidden_states: torch.FloatTensor,
kernel: Optional[torch.FloatTensor] = None,
factor: int = 2,
gain: float = 1,
) -> torch.FloatTensor:
r"""Upsample2D a batch of 2D images with the given filter.
Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and upsamples each image with the given
filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the specified
`gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its shape is
a: multiple of the upsampling factor.
Args:
hidden_states (`torch.FloatTensor`):
Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
kernel (`torch.FloatTensor`, *optional*):
FIR filter of the shape `[firH, firW]` or `[firN]` (separable). The default is `[1] * factor`, which
corresponds to nearest-neighbor upsampling.
factor (`int`, *optional*, default to `2`):
Integer upsampling factor.
gain (`float`, *optional*, default to `1.0`):
Scaling factor for signal magnitude (default: 1.0).
Returns:
output (`torch.FloatTensor`):
Tensor of the shape `[N, C, H * factor, W * factor]`
"""
assert isinstance(factor, int) and factor >= 1
if kernel is None:
kernel = [1] * factor
kernel = torch.tensor(kernel, dtype=torch.float32)
if kernel.ndim == 1:
kernel = torch.outer(kernel, kernel)
kernel /= torch.sum(kernel)
kernel = kernel * (gain * (factor**2))
pad_value = kernel.shape[0] - factor
output = upfirdn2d_native(
hidden_states,
kernel.to(device=hidden_states.device),
up=factor,
pad=((pad_value + 1) // 2 + factor - 1, pad_value // 2),
)
return output
from ..utils import deprecate
from .transformers.prior_transformer import PriorTransformer, PriorTransformerOutput
class PriorTransformerOutput(PriorTransformerOutput):
deprecation_message = "Importing `PriorTransformerOutput` from `diffusers.models.prior_transformer` is deprecated and this will be removed in a future version. Please use `from diffusers.models.transformers.prior_transformer import PriorTransformerOutput`, instead."
deprecate("PriorTransformerOutput", "0.29", deprecation_message)
class PriorTransformer(PriorTransformer):
deprecation_message = "Importing `PriorTransformer` from `diffusers.models.prior_transformer` is deprecated and this will be removed in a future version. Please use `from diffusers.models.transformers.prior_transformer import PriorTransformer`, instead."
deprecate("PriorTransformer", "0.29", deprecation_message)
import flax.linen as nn
import jax
import jax.numpy as jnp
class FlaxUpsample2D(nn.Module):
out_channels: int
dtype: jnp.dtype = jnp.float32
def setup(self):
self.conv = nn.Conv(
self.out_channels,
kernel_size=(3, 3),
strides=(1, 1),
padding=((1, 1), (1, 1)),
dtype=self.dtype,
)
def __call__(self, hidden_states):
batch, height, width, channels = hidden_states.shape
hidden_states = jax.image.resize(
hidden_states,
shape=(batch, height * 2, width * 2, channels),
method="nearest",
)
hidden_states = self.conv(hidden_states)
return hidden_states
class FlaxDownsample2D(nn.Module):
out_channels: int
dtype: jnp.dtype = jnp.float32
def setup(self):
self.conv = nn.Conv(
self.out_channels,
kernel_size=(3, 3),
strides=(2, 2),
padding=((1, 1), (1, 1)), # padding="VALID",
dtype=self.dtype,
)
def __call__(self, hidden_states):
# pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim
# hidden_states = jnp.pad(hidden_states, pad_width=pad)
hidden_states = self.conv(hidden_states)
return hidden_states
class FlaxResnetBlock2D(nn.Module):
in_channels: int
out_channels: int = None
dropout_prob: float = 0.0
use_nin_shortcut: bool = None
dtype: jnp.dtype = jnp.float32
def setup(self):
out_channels = self.in_channels if self.out_channels is None else self.out_channels
self.norm1 = nn.GroupNorm(num_groups=32, epsilon=1e-5)
self.conv1 = nn.Conv(
out_channels,
kernel_size=(3, 3),
strides=(1, 1),
padding=((1, 1), (1, 1)),
dtype=self.dtype,
)
self.time_emb_proj = nn.Dense(out_channels, dtype=self.dtype)
self.norm2 = nn.GroupNorm(num_groups=32, epsilon=1e-5)
self.dropout = nn.Dropout(self.dropout_prob)
self.conv2 = nn.Conv(
out_channels,
kernel_size=(3, 3),
strides=(1, 1),
padding=((1, 1), (1, 1)),
dtype=self.dtype,
)
use_nin_shortcut = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut
self.conv_shortcut = None
if use_nin_shortcut:
self.conv_shortcut = nn.Conv(
out_channels,
kernel_size=(1, 1),
strides=(1, 1),
padding="VALID",
dtype=self.dtype,
)
def __call__(self, hidden_states, temb, deterministic=True):
residual = hidden_states
hidden_states = self.norm1(hidden_states)
hidden_states = nn.swish(hidden_states)
hidden_states = self.conv1(hidden_states)
temb = self.time_emb_proj(nn.swish(temb))
temb = jnp.expand_dims(jnp.expand_dims(temb, 1), 1)
hidden_states = hidden_states + temb
hidden_states = self.norm2(hidden_states)
hidden_states = nn.swish(hidden_states)
hidden_states = self.dropout(hidden_states, deterministic)
hidden_states = self.conv2(hidden_states)
if self.conv_shortcut is not None:
residual = self.conv_shortcut(residual)
return hidden_states + residual
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from typing import Callable, List, Optional, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import logging
from .modeling_utils import ModelMixin
logger = logging.get_logger(__name__)
class MultiAdapter(ModelMixin):
r"""
MultiAdapter is a wrapper model that contains multiple adapter models and merges their outputs according to
user-assigned weighting.
This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library
implements for all the model (such as downloading or saving, etc.)
Parameters:
adapters (`List[T2IAdapter]`, *optional*, defaults to None):
A list of `T2IAdapter` model instances.
"""
def __init__(self, adapters: List["T2IAdapter"]):
super(MultiAdapter, self).__init__()
self.num_adapter = len(adapters)
self.adapters = nn.ModuleList(adapters)
if len(adapters) == 0:
raise ValueError("Expecting at least one adapter")
if len(adapters) == 1:
raise ValueError("For a single adapter, please use the `T2IAdapter` class instead of `MultiAdapter`")
# The outputs from each adapter are added together with a weight.
# This means that the change in dimensions from downsampling must
# be the same for all adapters. Inductively, it also means the
# downscale_factor and total_downscale_factor must be the same for all
# adapters.
first_adapter_total_downscale_factor = adapters[0].total_downscale_factor
first_adapter_downscale_factor = adapters[0].downscale_factor
for idx in range(1, len(adapters)):
if (
adapters[idx].total_downscale_factor != first_adapter_total_downscale_factor
or adapters[idx].downscale_factor != first_adapter_downscale_factor
):
raise ValueError(
f"Expecting all adapters to have the same downscaling behavior, but got:\n"
f"adapters[0].total_downscale_factor={first_adapter_total_downscale_factor}\n"
f"adapters[0].downscale_factor={first_adapter_downscale_factor}\n"
f"adapter[`{idx}`].total_downscale_factor={adapters[idx].total_downscale_factor}\n"
f"adapter[`{idx}`].downscale_factor={adapters[idx].downscale_factor}"
)
self.total_downscale_factor = first_adapter_total_downscale_factor
self.downscale_factor = first_adapter_downscale_factor
def forward(self, xs: torch.Tensor, adapter_weights: Optional[List[float]] = None) -> List[torch.Tensor]:
r"""
Args:
xs (`torch.Tensor`):
(batch, channel, height, width) input images for multiple adapter models concated along dimension 1,
`channel` should equal to `num_adapter` * "number of channel of image".
adapter_weights (`List[float]`, *optional*, defaults to None):
List of floats representing the weight which will be multiply to each adapter's output before adding
them together.
"""
if adapter_weights is None:
adapter_weights = torch.tensor([1 / self.num_adapter] * self.num_adapter)
else:
adapter_weights = torch.tensor(adapter_weights)
accume_state = None
for x, w, adapter in zip(xs, adapter_weights, self.adapters):
features = adapter(x)
if accume_state is None:
accume_state = features
for i in range(len(accume_state)):
accume_state[i] = w * accume_state[i]
else:
for i in range(len(features)):
accume_state[i] += w * features[i]
return accume_state
def save_pretrained(
self,
save_directory: Union[str, os.PathLike],
is_main_process: bool = True,
save_function: Callable = None,
safe_serialization: bool = True,
variant: Optional[str] = None,
):
"""
Save a model and its configuration file to a directory, so that it can be re-loaded using the
`[`~models.adapter.MultiAdapter.from_pretrained`]` class method.
Arguments:
save_directory (`str` or `os.PathLike`):
Directory to which to save. Will be created if it doesn't exist.
is_main_process (`bool`, *optional*, defaults to `True`):
Whether the process calling this is the main process or not. Useful when in distributed training like
TPUs and need to call this function on all processes. In this case, set `is_main_process=True` only on
the main process to avoid race conditions.
save_function (`Callable`):
The function to use to save the state dictionary. Useful on distributed training like TPUs when one
need to replace `torch.save` by another method. Can be configured with the environment variable
`DIFFUSERS_SAVE_MODE`.
safe_serialization (`bool`, *optional*, defaults to `True`):
Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
variant (`str`, *optional*):
If specified, weights are saved in the format pytorch_model.<variant>.bin.
"""
idx = 0
model_path_to_save = save_directory
for adapter in self.adapters:
adapter.save_pretrained(
model_path_to_save,
is_main_process=is_main_process,
save_function=save_function,
safe_serialization=safe_serialization,
variant=variant,
)
idx += 1
model_path_to_save = model_path_to_save + f"_{idx}"
@classmethod
def from_pretrained(cls, pretrained_model_path: Optional[Union[str, os.PathLike]], **kwargs):
r"""
Instantiate a pretrained MultiAdapter model from multiple pre-trained adapter models.
The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train
the model, you should first set it back in training mode with `model.train()`.
The warning *Weights from XXX not initialized from pretrained model* means that the weights of XXX do not come
pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning
task.
The warning *Weights from XXX not used in YYY* means that the layer XXX is not used by YYY, therefore those
weights are discarded.
Parameters:
pretrained_model_path (`os.PathLike`):
A path to a *directory* containing model weights saved using
[`~diffusers.models.adapter.MultiAdapter.save_pretrained`], e.g., `./my_model_directory/adapter`.
torch_dtype (`str` or `torch.dtype`, *optional*):
Override the default `torch.dtype` and load the model under this dtype. If `"auto"` is passed the dtype
will be automatically derived from the model's weights.
output_loading_info(`bool`, *optional*, defaults to `False`):
Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
A map that specifies where each submodule should go. It doesn't need to be refined to each
parameter/buffer name, once a given module name is inside, every submodule of it will be sent to the
same device.
To have Accelerate compute the most optimized `device_map` automatically, set `device_map="auto"`. For
more information about each option see [designing a device
map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
max_memory (`Dict`, *optional*):
A dictionary device identifier to maximum memory. Will default to the maximum memory available for each
GPU and the available CPU RAM if unset.
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
Speed up model loading by not initializing the weights and only loading the pre-trained weights. This
also tries to not use more than 1x model size in CPU memory (including peak memory) while loading the
model. This is only supported when torch version >= 1.9.0. If you are using an older version of torch,
setting this argument to `True` will raise an error.
variant (`str`, *optional*):
If specified load weights from `variant` filename, *e.g.* pytorch_model.<variant>.bin. `variant` is
ignored when using `from_flax`.
use_safetensors (`bool`, *optional*, defaults to `None`):
If set to `None`, the `safetensors` weights will be downloaded if they're available **and** if the
`safetensors` library is installed. If set to `True`, the model will be forcibly loaded from
`safetensors` weights. If set to `False`, loading will *not* use `safetensors`.
"""
idx = 0
adapters = []
# load adapter and append to list until no adapter directory exists anymore
# first adapter has to be saved under `./mydirectory/adapter` to be compliant with `DiffusionPipeline.from_pretrained`
# second, third, ... adapters have to be saved under `./mydirectory/adapter_1`, `./mydirectory/adapter_2`, ...
model_path_to_load = pretrained_model_path
while os.path.isdir(model_path_to_load):
adapter = T2IAdapter.from_pretrained(model_path_to_load, **kwargs)
adapters.append(adapter)
idx += 1
model_path_to_load = pretrained_model_path + f"_{idx}"
logger.info(f"{len(adapters)} adapters loaded from {pretrained_model_path}.")
if len(adapters) == 0:
raise ValueError(
f"No T2IAdapters found under {os.path.dirname(pretrained_model_path)}. Expected at least {pretrained_model_path + '_0'}."
)
return cls(adapters)
class T2IAdapter(ModelMixin, ConfigMixin):
r"""
A simple ResNet-like model that accepts images containing control signals such as keyposes and depth. The model
generates multiple feature maps that are used as additional conditioning in [`UNet2DConditionModel`]. The model's
architecture follows the original implementation of
[Adapter](https://github.com/TencentARC/T2I-Adapter/blob/686de4681515662c0ac2ffa07bf5dda83af1038a/ldm/modules/encoders/adapter.py#L97)
and
[AdapterLight](https://github.com/TencentARC/T2I-Adapter/blob/686de4681515662c0ac2ffa07bf5dda83af1038a/ldm/modules/encoders/adapter.py#L235).
This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library
implements for all the model (such as downloading or saving, etc.)
Parameters:
in_channels (`int`, *optional*, defaults to 3):
Number of channels of Aapter's input(*control image*). Set this parameter to 1 if you're using gray scale
image as *control image*.
channels (`List[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
The number of channel of each downsample block's output hidden state. The `len(block_out_channels)` will
also determine the number of downsample blocks in the Adapter.
num_res_blocks (`int`, *optional*, defaults to 2):
Number of ResNet blocks in each downsample block.
downscale_factor (`int`, *optional*, defaults to 8):
A factor that determines the total downscale factor of the Adapter.
adapter_type (`str`, *optional*, defaults to `full_adapter`):
The type of Adapter to use. Choose either `full_adapter` or `full_adapter_xl` or `light_adapter`.
"""
@register_to_config
def __init__(
self,
in_channels: int = 3,
channels: List[int] = [320, 640, 1280, 1280],
num_res_blocks: int = 2,
downscale_factor: int = 8,
adapter_type: str = "full_adapter",
):
super().__init__()
if adapter_type == "full_adapter":
self.adapter = FullAdapter(in_channels, channels, num_res_blocks, downscale_factor)
elif adapter_type == "full_adapter_xl":
self.adapter = FullAdapterXL(in_channels, channels, num_res_blocks, downscale_factor)
elif adapter_type == "light_adapter":
self.adapter = LightAdapter(in_channels, channels, num_res_blocks, downscale_factor)
else:
raise ValueError(
f"Unsupported adapter_type: '{adapter_type}'. Choose either 'full_adapter' or "
"'full_adapter_xl' or 'light_adapter'."
)
def forward(self, x: torch.Tensor) -> List[torch.Tensor]:
r"""
This function processes the input tensor `x` through the adapter model and returns a list of feature tensors,
each representing information extracted at a different scale from the input. The length of the list is
determined by the number of downsample blocks in the Adapter, as specified by the `channels` and
`num_res_blocks` parameters during initialization.
"""
return self.adapter(x)
@property
def total_downscale_factor(self):
return self.adapter.total_downscale_factor
@property
def downscale_factor(self):
"""The downscale factor applied in the T2I-Adapter's initial pixel unshuffle operation. If an input image's dimensions are
not evenly divisible by the downscale_factor then an exception will be raised.
"""
return self.adapter.unshuffle.downscale_factor
# full adapter
class FullAdapter(nn.Module):
r"""
See [`T2IAdapter`] for more information.
"""
def __init__(
self,
in_channels: int = 3,
channels: List[int] = [320, 640, 1280, 1280],
num_res_blocks: int = 2,
downscale_factor: int = 8,
):
super().__init__()
in_channels = in_channels * downscale_factor**2
self.unshuffle = nn.PixelUnshuffle(downscale_factor)
self.conv_in = nn.Conv2d(in_channels, channels[0], kernel_size=3, padding=1)
self.body = nn.ModuleList(
[
AdapterBlock(channels[0], channels[0], num_res_blocks),
*[
AdapterBlock(channels[i - 1], channels[i], num_res_blocks, down=True)
for i in range(1, len(channels))
],
]
)
self.total_downscale_factor = downscale_factor * 2 ** (len(channels) - 1)
def forward(self, x: torch.Tensor) -> List[torch.Tensor]:
r"""
This method processes the input tensor `x` through the FullAdapter model and performs operations including
pixel unshuffling, convolution, and a stack of AdapterBlocks. It returns a list of feature tensors, each
capturing information at a different stage of processing within the FullAdapter model. The number of feature
tensors in the list is determined by the number of downsample blocks specified during initialization.
"""
x = self.unshuffle(x)
x = self.conv_in(x)
features = []
for block in self.body:
x = block(x)
features.append(x)
return features
class FullAdapterXL(nn.Module):
r"""
See [`T2IAdapter`] for more information.
"""
def __init__(
self,
in_channels: int = 3,
channels: List[int] = [320, 640, 1280, 1280],
num_res_blocks: int = 2,
downscale_factor: int = 16,
):
super().__init__()
in_channels = in_channels * downscale_factor**2
self.unshuffle = nn.PixelUnshuffle(downscale_factor)
self.conv_in = nn.Conv2d(in_channels, channels[0], kernel_size=3, padding=1)
self.body = []
# blocks to extract XL features with dimensions of [320, 64, 64], [640, 64, 64], [1280, 32, 32], [1280, 32, 32]
for i in range(len(channels)):
if i == 1:
self.body.append(AdapterBlock(channels[i - 1], channels[i], num_res_blocks))
elif i == 2:
self.body.append(AdapterBlock(channels[i - 1], channels[i], num_res_blocks, down=True))
else:
self.body.append(AdapterBlock(channels[i], channels[i], num_res_blocks))
self.body = nn.ModuleList(self.body)
# XL has only one downsampling AdapterBlock.
self.total_downscale_factor = downscale_factor * 2
def forward(self, x: torch.Tensor) -> List[torch.Tensor]:
r"""
This method takes the tensor x as input and processes it through FullAdapterXL model. It consists of operations
including unshuffling pixels, applying convolution layer and appending each block into list of feature tensors.
"""
x = self.unshuffle(x)
x = self.conv_in(x)
features = []
for block in self.body:
x = block(x)
features.append(x)
return features
class AdapterBlock(nn.Module):
r"""
An AdapterBlock is a helper model that contains multiple ResNet-like blocks. It is used in the `FullAdapter` and
`FullAdapterXL` models.
Parameters:
in_channels (`int`):
Number of channels of AdapterBlock's input.
out_channels (`int`):
Number of channels of AdapterBlock's output.
num_res_blocks (`int`):
Number of ResNet blocks in the AdapterBlock.
down (`bool`, *optional*, defaults to `False`):
Whether to perform downsampling on AdapterBlock's input.
"""
def __init__(self, in_channels: int, out_channels: int, num_res_blocks: int, down: bool = False):
super().__init__()
self.downsample = None
if down:
self.downsample = nn.AvgPool2d(kernel_size=2, stride=2, ceil_mode=True)
self.in_conv = None
if in_channels != out_channels:
self.in_conv = nn.Conv2d(in_channels, out_channels, kernel_size=1)
self.resnets = nn.Sequential(
*[AdapterResnetBlock(out_channels) for _ in range(num_res_blocks)],
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
r"""
This method takes tensor x as input and performs operations downsampling and convolutional layers if the
self.downsample and self.in_conv properties of AdapterBlock model are specified. Then it applies a series of
residual blocks to the input tensor.
"""
if self.downsample is not None:
x = self.downsample(x)
if self.in_conv is not None:
x = self.in_conv(x)
x = self.resnets(x)
return x
class AdapterResnetBlock(nn.Module):
r"""
An `AdapterResnetBlock` is a helper model that implements a ResNet-like block.
Parameters:
channels (`int`):
Number of channels of AdapterResnetBlock's input and output.
"""
def __init__(self, channels: int):
super().__init__()
self.block1 = nn.Conv2d(channels, channels, kernel_size=3, padding=1)
self.act = nn.ReLU()
self.block2 = nn.Conv2d(channels, channels, kernel_size=1)
def forward(self, x: torch.Tensor) -> torch.Tensor:
r"""
This method takes input tensor x and applies a convolutional layer, ReLU activation, and another convolutional
layer on the input tensor. It returns addition with the input tensor.
"""
h = self.act(self.block1(x))
h = self.block2(h)
return h + x
# light adapter
class LightAdapter(nn.Module):
r"""
See [`T2IAdapter`] for more information.
"""
def __init__(
self,
in_channels: int = 3,
channels: List[int] = [320, 640, 1280],
num_res_blocks: int = 4,
downscale_factor: int = 8,
):
super().__init__()
in_channels = in_channels * downscale_factor**2
self.unshuffle = nn.PixelUnshuffle(downscale_factor)
self.body = nn.ModuleList(
[
LightAdapterBlock(in_channels, channels[0], num_res_blocks),
*[
LightAdapterBlock(channels[i], channels[i + 1], num_res_blocks, down=True)
for i in range(len(channels) - 1)
],
LightAdapterBlock(channels[-1], channels[-1], num_res_blocks, down=True),
]
)
self.total_downscale_factor = downscale_factor * (2 ** len(channels))
def forward(self, x: torch.Tensor) -> List[torch.Tensor]:
r"""
This method takes the input tensor x and performs downscaling and appends it in list of feature tensors. Each
feature tensor corresponds to a different level of processing within the LightAdapter.
"""
x = self.unshuffle(x)
features = []
for block in self.body:
x = block(x)
features.append(x)
return features
class LightAdapterBlock(nn.Module):
r"""
A `LightAdapterBlock` is a helper model that contains multiple `LightAdapterResnetBlocks`. It is used in the
`LightAdapter` model.
Parameters:
in_channels (`int`):
Number of channels of LightAdapterBlock's input.
out_channels (`int`):
Number of channels of LightAdapterBlock's output.
num_res_blocks (`int`):
Number of LightAdapterResnetBlocks in the LightAdapterBlock.
down (`bool`, *optional*, defaults to `False`):
Whether to perform downsampling on LightAdapterBlock's input.
"""
def __init__(self, in_channels: int, out_channels: int, num_res_blocks: int, down: bool = False):
super().__init__()
mid_channels = out_channels // 4
self.downsample = None
if down:
self.downsample = nn.AvgPool2d(kernel_size=2, stride=2, ceil_mode=True)
self.in_conv = nn.Conv2d(in_channels, mid_channels, kernel_size=1)
self.resnets = nn.Sequential(*[LightAdapterResnetBlock(mid_channels) for _ in range(num_res_blocks)])
self.out_conv = nn.Conv2d(mid_channels, out_channels, kernel_size=1)
def forward(self, x: torch.Tensor) -> torch.Tensor:
r"""
This method takes tensor x as input and performs downsampling if required. Then it applies in convolution
layer, a sequence of residual blocks, and out convolutional layer.
"""
if self.downsample is not None:
x = self.downsample(x)
x = self.in_conv(x)
x = self.resnets(x)
x = self.out_conv(x)
return x
class LightAdapterResnetBlock(nn.Module):
"""
A `LightAdapterResnetBlock` is a helper model that implements a ResNet-like block with a slightly different
architecture than `AdapterResnetBlock`.
Parameters:
channels (`int`):
Number of channels of LightAdapterResnetBlock's input and output.
"""
def __init__(self, channels: int):
super().__init__()
self.block1 = nn.Conv2d(channels, channels, kernel_size=3, padding=1)
self.act = nn.ReLU()
self.block2 = nn.Conv2d(channels, channels, kernel_size=3, padding=1)
def forward(self, x: torch.Tensor) -> torch.Tensor:
r"""
This function takes input tensor x and processes it through one convolutional layer, ReLU activation, and
another convolutional layer and adds it to input tensor.
"""
h = self.act(self.block1(x))
h = self.block2(h)
return h + x
import inspect
from importlib import import_module
from typing import Callable, Optional, Union
import torch
import torch.nn.functional as F
from torch import nn
from ..image_processor import IPAdapterMaskProcessor
from ..utils import USE_PEFT_BACKEND, deprecate, logging
from ..utils.import_utils import is_xformers_available
from ..utils.torch_utils import maybe_allow_in_graph
from .lora import LoRACompatibleLinear, LoRALinearLayer
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
if is_xformers_available():
import xformers
import xformers.ops
else:
xformers = None
@maybe_allow_in_graph
class Attention(nn.Module):
r"""
A cross attention layer.
Parameters:
query_dim (`int`):
The number of channels in the query.
cross_attention_dim (`int`, *optional*):
The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`.
heads (`int`, *optional*, defaults to 8):
The number of heads to use for multi-head attention.
dim_head (`int`, *optional*, defaults to 64):
The number of channels in each head.
dropout (`float`, *optional*, defaults to 0.0):
The dropout probability to use.
bias (`bool`, *optional*, defaults to False):
Set to `True` for the query, key, and value linear layers to contain a bias parameter.
upcast_attention (`bool`, *optional*, defaults to False):
Set to `True` to upcast the attention computation to `float32`.
upcast_softmax (`bool`, *optional*, defaults to False):
Set to `True` to upcast the softmax computation to `float32`.
cross_attention_norm (`str`, *optional*, defaults to `None`):
The type of normalization to use for the cross attention. Can be `None`, `layer_norm`, or `group_norm`.
cross_attention_norm_num_groups (`int`, *optional*, defaults to 32):
The number of groups to use for the group norm in the cross attention.
added_kv_proj_dim (`int`, *optional*, defaults to `None`):
The number of channels to use for the added key and value projections. If `None`, no projection is used.
norm_num_groups (`int`, *optional*, defaults to `None`):
The number of groups to use for the group norm in the attention.
spatial_norm_dim (`int`, *optional*, defaults to `None`):
The number of channels to use for the spatial normalization.
out_bias (`bool`, *optional*, defaults to `True`):
Set to `True` to use a bias in the output linear layer.
scale_qk (`bool`, *optional*, defaults to `True`):
Set to `True` to scale the query and key by `1 / sqrt(dim_head)`.
only_cross_attention (`bool`, *optional*, defaults to `False`):
Set to `True` to only use cross attention and not added_kv_proj_dim. Can only be set to `True` if
`added_kv_proj_dim` is not `None`.
eps (`float`, *optional*, defaults to 1e-5):
An additional value added to the denominator in group normalization that is used for numerical stability.
rescale_output_factor (`float`, *optional*, defaults to 1.0):
A factor to rescale the output by dividing it with this value.
residual_connection (`bool`, *optional*, defaults to `False`):
Set to `True` to add the residual connection to the output.
_from_deprecated_attn_block (`bool`, *optional*, defaults to `False`):
Set to `True` if the attention block is loaded from a deprecated state dict.
processor (`AttnProcessor`, *optional*, defaults to `None`):
The attention processor to use. If `None`, defaults to `AttnProcessor2_0` if `torch 2.x` is used and
`AttnProcessor` otherwise.
"""
def __init__(
self,
query_dim: int,
cross_attention_dim: Optional[int] = None,
heads: int = 8,
dim_head: int = 64,
dropout: float = 0.0,
bias: bool = False,
upcast_attention: bool = False,
upcast_softmax: bool = False,
cross_attention_norm: Optional[str] = None,
cross_attention_norm_num_groups: int = 32,
added_kv_proj_dim: Optional[int] = None,
norm_num_groups: Optional[int] = None,
spatial_norm_dim: Optional[int] = None,
out_bias: bool = True,
scale_qk: bool = True,
only_cross_attention: bool = False,
eps: float = 1e-5,
rescale_output_factor: float = 1.0,
residual_connection: bool = False,
_from_deprecated_attn_block: bool = False,
processor: Optional["AttnProcessor"] = None,
out_dim: int = None,
):
super().__init__()
self.inner_dim = out_dim if out_dim is not None else dim_head * heads
self.query_dim = query_dim
self.use_bias = bias
self.is_cross_attention = cross_attention_dim is not None
self.cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim
self.upcast_attention = upcast_attention
self.upcast_softmax = upcast_softmax
self.rescale_output_factor = rescale_output_factor
self.residual_connection = residual_connection
self.dropout = dropout
self.fused_projections = False
self.out_dim = out_dim if out_dim is not None else query_dim
# we make use of this private variable to know whether this class is loaded
# with an deprecated state dict so that we can convert it on the fly
self._from_deprecated_attn_block = _from_deprecated_attn_block
self.scale_qk = scale_qk
self.scale = dim_head**-0.5 if self.scale_qk else 1.0
self.heads = out_dim // dim_head if out_dim is not None else heads
# for slice_size > 0 the attention score computation
# is split across the batch axis to save memory
# You can set slice_size with `set_attention_slice`
self.sliceable_head_dim = heads
self.added_kv_proj_dim = added_kv_proj_dim
self.only_cross_attention = only_cross_attention
if self.added_kv_proj_dim is None and self.only_cross_attention:
raise ValueError(
"`only_cross_attention` can only be set to True if `added_kv_proj_dim` is not None. Make sure to set either `only_cross_attention=False` or define `added_kv_proj_dim`."
)
if norm_num_groups is not None:
self.group_norm = nn.GroupNorm(num_channels=query_dim, num_groups=norm_num_groups, eps=eps, affine=True)
else:
self.group_norm = None
if spatial_norm_dim is not None:
self.spatial_norm = SpatialNorm(f_channels=query_dim, zq_channels=spatial_norm_dim)
else:
self.spatial_norm = None
if cross_attention_norm is None:
self.norm_cross = None
elif cross_attention_norm == "layer_norm":
self.norm_cross = nn.LayerNorm(self.cross_attention_dim)
elif cross_attention_norm == "group_norm":
if self.added_kv_proj_dim is not None:
# The given `encoder_hidden_states` are initially of shape
# (batch_size, seq_len, added_kv_proj_dim) before being projected
# to (batch_size, seq_len, cross_attention_dim). The norm is applied
# before the projection, so we need to use `added_kv_proj_dim` as
# the number of channels for the group norm.
norm_cross_num_channels = added_kv_proj_dim
else:
norm_cross_num_channels = self.cross_attention_dim
self.norm_cross = nn.GroupNorm(
num_channels=norm_cross_num_channels, num_groups=cross_attention_norm_num_groups, eps=1e-5, affine=True
)
else:
raise ValueError(
f"unknown cross_attention_norm: {cross_attention_norm}. Should be None, 'layer_norm' or 'group_norm'"
)
if USE_PEFT_BACKEND:
linear_cls = nn.Linear
else:
linear_cls = LoRACompatibleLinear
self.linear_cls = linear_cls
self.to_q = linear_cls(query_dim, self.inner_dim, bias=bias)
if not self.only_cross_attention:
# only relevant for the `AddedKVProcessor` classes
self.to_k = linear_cls(self.cross_attention_dim, self.inner_dim, bias=bias)
self.to_v = linear_cls(self.cross_attention_dim, self.inner_dim, bias=bias)
else:
self.to_k = None
self.to_v = None
if self.added_kv_proj_dim is not None:
self.add_k_proj = linear_cls(added_kv_proj_dim, self.inner_dim)
self.add_v_proj = linear_cls(added_kv_proj_dim, self.inner_dim)
self.to_out = nn.ModuleList([])
self.to_out.append(linear_cls(self.inner_dim, self.out_dim, bias=out_bias))
self.to_out.append(nn.Dropout(dropout))
# set attention processor
# We use the AttnProcessor2_0 by default when torch 2.x is used which uses
# torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention
# but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1
if processor is None:
processor = (
AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") and self.scale_qk else AttnProcessor()
)
self.set_processor(processor)
def set_use_memory_efficient_attention_xformers(
self, use_memory_efficient_attention_xformers: bool, attention_op: Optional[Callable] = None
) -> None:
r"""
Set whether to use memory efficient attention from `xformers` or not.
Args:
use_memory_efficient_attention_xformers (`bool`):
Whether to use memory efficient attention from `xformers` or not.
attention_op (`Callable`, *optional*):
The attention operation to use. Defaults to `None` which uses the default attention operation from
`xformers`.
"""
is_lora = hasattr(self, "processor") and isinstance(
self.processor,
LORA_ATTENTION_PROCESSORS,
)
is_custom_diffusion = hasattr(self, "processor") and isinstance(
self.processor,
(CustomDiffusionAttnProcessor, CustomDiffusionXFormersAttnProcessor, CustomDiffusionAttnProcessor2_0),
)
is_added_kv_processor = hasattr(self, "processor") and isinstance(
self.processor,
(
AttnAddedKVProcessor,
AttnAddedKVProcessor2_0,
SlicedAttnAddedKVProcessor,
XFormersAttnAddedKVProcessor,
LoRAAttnAddedKVProcessor,
),
)
if use_memory_efficient_attention_xformers:
if is_added_kv_processor and (is_lora or is_custom_diffusion):
raise NotImplementedError(
f"Memory efficient attention is currently not supported for LoRA or custom diffusion for attention processor type {self.processor}"
)
if not is_xformers_available():
raise ModuleNotFoundError(
(
"Refer to https://github.com/facebookresearch/xformers for more information on how to install"
" xformers"
),
name="xformers",
)
elif not torch.cuda.is_available():
raise ValueError(
"torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is"
" only available for GPU "
)
else:
try:
# Make sure we can run the memory efficient attention
_ = xformers.ops.memory_efficient_attention(
torch.randn((1, 2, 40), device="cuda"),
torch.randn((1, 2, 40), device="cuda"),
torch.randn((1, 2, 40), device="cuda"),
)
except Exception as e:
raise e
if is_lora:
# TODO (sayakpaul): should we throw a warning if someone wants to use the xformers
# variant when using PT 2.0 now that we have LoRAAttnProcessor2_0?
processor = LoRAXFormersAttnProcessor(
hidden_size=self.processor.hidden_size,
cross_attention_dim=self.processor.cross_attention_dim,
rank=self.processor.rank,
attention_op=attention_op,
)
processor.load_state_dict(self.processor.state_dict())
processor.to(self.processor.to_q_lora.up.weight.device)
elif is_custom_diffusion:
processor = CustomDiffusionXFormersAttnProcessor(
train_kv=self.processor.train_kv,
train_q_out=self.processor.train_q_out,
hidden_size=self.processor.hidden_size,
cross_attention_dim=self.processor.cross_attention_dim,
attention_op=attention_op,
)
processor.load_state_dict(self.processor.state_dict())
if hasattr(self.processor, "to_k_custom_diffusion"):
processor.to(self.processor.to_k_custom_diffusion.weight.device)
elif is_added_kv_processor:
# TODO(Patrick, Suraj, William) - currently xformers doesn't work for UnCLIP
# which uses this type of cross attention ONLY because the attention mask of format
# [0, ..., -10.000, ..., 0, ...,] is not supported
# throw warning
logger.info(
"Memory efficient attention with `xformers` might currently not work correctly if an attention mask is required for the attention operation."
)
processor = XFormersAttnAddedKVProcessor(attention_op=attention_op)
else:
processor = XFormersAttnProcessor(attention_op=attention_op)
else:
if is_lora:
attn_processor_class = (
LoRAAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else LoRAAttnProcessor
)
processor = attn_processor_class(
hidden_size=self.processor.hidden_size,
cross_attention_dim=self.processor.cross_attention_dim,
rank=self.processor.rank,
)
processor.load_state_dict(self.processor.state_dict())
processor.to(self.processor.to_q_lora.up.weight.device)
elif is_custom_diffusion:
attn_processor_class = (
CustomDiffusionAttnProcessor2_0
if hasattr(F, "scaled_dot_product_attention")
else CustomDiffusionAttnProcessor
)
processor = attn_processor_class(
train_kv=self.processor.train_kv,
train_q_out=self.processor.train_q_out,
hidden_size=self.processor.hidden_size,
cross_attention_dim=self.processor.cross_attention_dim,
)
processor.load_state_dict(self.processor.state_dict())
if hasattr(self.processor, "to_k_custom_diffusion"):
processor.to(self.processor.to_k_custom_diffusion.weight.device)
else:
# set attention processor
# We use the AttnProcessor2_0 by default when torch 2.x is used which uses
# torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention
# but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1
processor = (
AttnProcessor2_0()
if hasattr(F, "scaled_dot_product_attention") and self.scale_qk
else AttnProcessor()
)
self.set_processor(processor)
def set_attention_slice(self, slice_size: int) -> None:
r"""
Set the slice size for attention computation.
Args:
slice_size (`int`):
The slice size for attention computation.
"""
if slice_size is not None and slice_size > self.sliceable_head_dim:
raise ValueError(f"slice_size {slice_size} has to be smaller or equal to {self.sliceable_head_dim}.")
if slice_size is not None and self.added_kv_proj_dim is not None:
processor = SlicedAttnAddedKVProcessor(slice_size)
elif slice_size is not None:
processor = SlicedAttnProcessor(slice_size)
elif self.added_kv_proj_dim is not None:
processor = AttnAddedKVProcessor()
else:
# set attention processor
# We use the AttnProcessor2_0 by default when torch 2.x is used which uses
# torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention
# but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1
processor = (
AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") and self.scale_qk else AttnProcessor()
)
self.set_processor(processor)
def set_processor(self, processor: "AttnProcessor") -> None:
r"""
Set the attention processor to use.
Args:
processor (`AttnProcessor`):
The attention processor to use.
"""
# if current processor is in `self._modules` and if passed `processor` is not, we need to
# pop `processor` from `self._modules`
if (
hasattr(self, "processor")
and isinstance(self.processor, torch.nn.Module)
and not isinstance(processor, torch.nn.Module)
):
logger.info(f"You are removing possibly trained weights of {self.processor} with {processor}")
self._modules.pop("processor")
self.processor = processor
def get_processor(self, return_deprecated_lora: bool = False) -> "AttentionProcessor":
r"""
Get the attention processor in use.
Args:
return_deprecated_lora (`bool`, *optional*, defaults to `False`):
Set to `True` to return the deprecated LoRA attention processor.
Returns:
"AttentionProcessor": The attention processor in use.
"""
if not return_deprecated_lora:
return self.processor
# TODO(Sayak, Patrick). The rest of the function is needed to ensure backwards compatible
# serialization format for LoRA Attention Processors. It should be deleted once the integration
# with PEFT is completed.
is_lora_activated = {
name: module.lora_layer is not None
for name, module in self.named_modules()
if hasattr(module, "lora_layer")
}
# 1. if no layer has a LoRA activated we can return the processor as usual
if not any(is_lora_activated.values()):
return self.processor
# If doesn't apply LoRA do `add_k_proj` or `add_v_proj`
is_lora_activated.pop("add_k_proj", None)
is_lora_activated.pop("add_v_proj", None)
# 2. else it is not posssible that only some layers have LoRA activated
if not all(is_lora_activated.values()):
raise ValueError(
f"Make sure that either all layers or no layers have LoRA activated, but have {is_lora_activated}"
)
# 3. And we need to merge the current LoRA layers into the corresponding LoRA attention processor
non_lora_processor_cls_name = self.processor.__class__.__name__
lora_processor_cls = getattr(import_module(__name__), "LoRA" + non_lora_processor_cls_name)
hidden_size = self.inner_dim
# now create a LoRA attention processor from the LoRA layers
if lora_processor_cls in [LoRAAttnProcessor, LoRAAttnProcessor2_0, LoRAXFormersAttnProcessor]:
kwargs = {
"cross_attention_dim": self.cross_attention_dim,
"rank": self.to_q.lora_layer.rank,
"network_alpha": self.to_q.lora_layer.network_alpha,
"q_rank": self.to_q.lora_layer.rank,
"q_hidden_size": self.to_q.lora_layer.out_features,
"k_rank": self.to_k.lora_layer.rank,
"k_hidden_size": self.to_k.lora_layer.out_features,
"v_rank": self.to_v.lora_layer.rank,
"v_hidden_size": self.to_v.lora_layer.out_features,
"out_rank": self.to_out[0].lora_layer.rank,
"out_hidden_size": self.to_out[0].lora_layer.out_features,
}
if hasattr(self.processor, "attention_op"):
kwargs["attention_op"] = self.processor.attention_op
lora_processor = lora_processor_cls(hidden_size, **kwargs)
lora_processor.to_q_lora.load_state_dict(self.to_q.lora_layer.state_dict())
lora_processor.to_k_lora.load_state_dict(self.to_k.lora_layer.state_dict())
lora_processor.to_v_lora.load_state_dict(self.to_v.lora_layer.state_dict())
lora_processor.to_out_lora.load_state_dict(self.to_out[0].lora_layer.state_dict())
elif lora_processor_cls == LoRAAttnAddedKVProcessor:
lora_processor = lora_processor_cls(
hidden_size,
cross_attention_dim=self.add_k_proj.weight.shape[0],
rank=self.to_q.lora_layer.rank,
network_alpha=self.to_q.lora_layer.network_alpha,
)
lora_processor.to_q_lora.load_state_dict(self.to_q.lora_layer.state_dict())
lora_processor.to_k_lora.load_state_dict(self.to_k.lora_layer.state_dict())
lora_processor.to_v_lora.load_state_dict(self.to_v.lora_layer.state_dict())
lora_processor.to_out_lora.load_state_dict(self.to_out[0].lora_layer.state_dict())
# only save if used
if self.add_k_proj.lora_layer is not None:
lora_processor.add_k_proj_lora.load_state_dict(self.add_k_proj.lora_layer.state_dict())
lora_processor.add_v_proj_lora.load_state_dict(self.add_v_proj.lora_layer.state_dict())
else:
lora_processor.add_k_proj_lora = None
lora_processor.add_v_proj_lora = None
else:
raise ValueError(f"{lora_processor_cls} does not exist.")
return lora_processor
def forward(
self,
hidden_states: torch.FloatTensor,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
**cross_attention_kwargs,
) -> torch.Tensor:
r"""
The forward method of the `Attention` class.
Args:
hidden_states (`torch.Tensor`):
The hidden states of the query.
encoder_hidden_states (`torch.Tensor`, *optional*):
The hidden states of the encoder.
attention_mask (`torch.Tensor`, *optional*):
The attention mask to use. If `None`, no mask is applied.
**cross_attention_kwargs:
Additional keyword arguments to pass along to the cross attention.
Returns:
`torch.Tensor`: The output of the attention layer.
"""
# The `Attention` class can call different attention processors / attention functions
# here we simply pass along all tensors to the selected processor class
# For standard processors that are defined here, `**cross_attention_kwargs` is empty
attn_parameters = set(inspect.signature(self.processor.__call__).parameters.keys())
unused_kwargs = [k for k, _ in cross_attention_kwargs.items() if k not in attn_parameters]
if len(unused_kwargs) > 0:
logger.warning(
f"cross_attention_kwargs {unused_kwargs} are not expected by {self.processor.__class__.__name__} and will be ignored."
)
cross_attention_kwargs = {k: w for k, w in cross_attention_kwargs.items() if k in attn_parameters}
return self.processor(
self,
hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
**cross_attention_kwargs,
)
def batch_to_head_dim(self, tensor: torch.Tensor) -> torch.Tensor:
r"""
Reshape the tensor from `[batch_size, seq_len, dim]` to `[batch_size // heads, seq_len, dim * heads]`. `heads`
is the number of heads initialized while constructing the `Attention` class.
Args:
tensor (`torch.Tensor`): The tensor to reshape.
Returns:
`torch.Tensor`: The reshaped tensor.
"""
head_size = self.heads
batch_size, seq_len, dim = tensor.shape
tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
return tensor
def head_to_batch_dim(self, tensor: torch.Tensor, out_dim: int = 3) -> torch.Tensor:
r"""
Reshape the tensor from `[batch_size, seq_len, dim]` to `[batch_size, seq_len, heads, dim // heads]` `heads` is
the number of heads initialized while constructing the `Attention` class.
Args:
tensor (`torch.Tensor`): The tensor to reshape.
out_dim (`int`, *optional*, defaults to `3`): The output dimension of the tensor. If `3`, the tensor is
reshaped to `[batch_size * heads, seq_len, dim // heads]`.
Returns:
`torch.Tensor`: The reshaped tensor.
"""
head_size = self.heads
if tensor.ndim == 3:
batch_size, seq_len, dim = tensor.shape
extra_dim = 1
else:
batch_size, extra_dim, seq_len, dim = tensor.shape
tensor = tensor.reshape(batch_size, seq_len * extra_dim, head_size, dim // head_size)
tensor = tensor.permute(0, 2, 1, 3)
if out_dim == 3:
tensor = tensor.reshape(batch_size * head_size, seq_len * extra_dim, dim // head_size)
return tensor
def get_attention_scores(
self, query: torch.Tensor, key: torch.Tensor, attention_mask: torch.Tensor = None
) -> torch.Tensor:
r"""
Compute the attention scores.
Args:
query (`torch.Tensor`): The query tensor.
key (`torch.Tensor`): The key tensor.
attention_mask (`torch.Tensor`, *optional*): The attention mask to use. If `None`, no mask is applied.
Returns:
`torch.Tensor`: The attention probabilities/scores.
"""
dtype = query.dtype
if self.upcast_attention:
query = query.float()
key = key.float()
if attention_mask is None:
baddbmm_input = torch.empty(
query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device
)
beta = 0
else:
baddbmm_input = attention_mask
beta = 1
attention_scores = torch.baddbmm(
baddbmm_input,
query,
key.transpose(-1, -2),
beta=beta,
alpha=self.scale,
)
del baddbmm_input
if self.upcast_softmax:
attention_scores = attention_scores.float()
attention_probs = attention_scores.softmax(dim=-1)
del attention_scores
attention_probs = attention_probs.to(dtype)
return attention_probs
def prepare_attention_mask(
self, attention_mask: torch.Tensor, target_length: int, batch_size: int, out_dim: int = 3
) -> torch.Tensor:
r"""
Prepare the attention mask for the attention computation.
Args:
attention_mask (`torch.Tensor`):
The attention mask to prepare.
target_length (`int`):
The target length of the attention mask. This is the length of the attention mask after padding.
batch_size (`int`):
The batch size, which is used to repeat the attention mask.
out_dim (`int`, *optional*, defaults to `3`):
The output dimension of the attention mask. Can be either `3` or `4`.
Returns:
`torch.Tensor`: The prepared attention mask.
"""
head_size = self.heads
if attention_mask is None:
return attention_mask
current_length: int = attention_mask.shape[-1]
if current_length != target_length:
if attention_mask.device.type == "mps":
# HACK: MPS: Does not support padding by greater than dimension of input tensor.
# Instead, we can manually construct the padding tensor.
padding_shape = (attention_mask.shape[0], attention_mask.shape[1], target_length)
padding = torch.zeros(padding_shape, dtype=attention_mask.dtype, device=attention_mask.device)
attention_mask = torch.cat([attention_mask, padding], dim=2)
else:
# TODO: for pipelines such as stable-diffusion, padding cross-attn mask:
# we want to instead pad by (0, remaining_length), where remaining_length is:
# remaining_length: int = target_length - current_length
# TODO: re-enable tests/models/test_models_unet_2d_condition.py#test_model_xattn_padding
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)
if out_dim == 3:
if attention_mask.shape[0] < batch_size * head_size:
attention_mask = attention_mask.repeat_interleave(head_size, dim=0)
elif out_dim == 4:
attention_mask = attention_mask.unsqueeze(1)
attention_mask = attention_mask.repeat_interleave(head_size, dim=1)
return attention_mask
def norm_encoder_hidden_states(self, encoder_hidden_states: torch.Tensor) -> torch.Tensor:
r"""
Normalize the encoder hidden states. Requires `self.norm_cross` to be specified when constructing the
`Attention` class.
Args:
encoder_hidden_states (`torch.Tensor`): Hidden states of the encoder.
Returns:
`torch.Tensor`: The normalized encoder hidden states.
"""
assert self.norm_cross is not None, "self.norm_cross must be defined to call self.norm_encoder_hidden_states"
if isinstance(self.norm_cross, nn.LayerNorm):
encoder_hidden_states = self.norm_cross(encoder_hidden_states)
elif isinstance(self.norm_cross, nn.GroupNorm):
# Group norm norms along the channels dimension and expects
# input to be in the shape of (N, C, *). In this case, we want
# to norm along the hidden dimension, so we need to move
# (batch_size, sequence_length, hidden_size) ->
# (batch_size, hidden_size, sequence_length)
encoder_hidden_states = encoder_hidden_states.transpose(1, 2)
encoder_hidden_states = self.norm_cross(encoder_hidden_states)
encoder_hidden_states = encoder_hidden_states.transpose(1, 2)
else:
assert False
return encoder_hidden_states
@torch.no_grad()
def fuse_projections(self, fuse=True):
device = self.to_q.weight.data.device
dtype = self.to_q.weight.data.dtype
if not self.is_cross_attention:
# fetch weight matrices.
concatenated_weights = torch.cat([self.to_q.weight.data, self.to_k.weight.data, self.to_v.weight.data])
in_features = concatenated_weights.shape[1]
out_features = concatenated_weights.shape[0]
# create a new single projection layer and copy over the weights.
self.to_qkv = self.linear_cls(in_features, out_features, bias=self.use_bias, device=device, dtype=dtype)
self.to_qkv.weight.copy_(concatenated_weights)
if self.use_bias:
concatenated_bias = torch.cat([self.to_q.bias.data, self.to_k.bias.data, self.to_v.bias.data])
self.to_qkv.bias.copy_(concatenated_bias)
else:
concatenated_weights = torch.cat([self.to_k.weight.data, self.to_v.weight.data])
in_features = concatenated_weights.shape[1]
out_features = concatenated_weights.shape[0]
self.to_kv = self.linear_cls(in_features, out_features, bias=self.use_bias, device=device, dtype=dtype)
self.to_kv.weight.copy_(concatenated_weights)
if self.use_bias:
concatenated_bias = torch.cat([self.to_k.bias.data, self.to_v.bias.data])
self.to_kv.bias.copy_(concatenated_bias)
self.fused_projections = fuse
class AttnProcessor:
r"""
Default processor for performing attention-related computations.
"""
def __call__(
self,
attn: Attention,
hidden_states: torch.FloatTensor,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
temb: Optional[torch.FloatTensor] = None,
scale: float = 1.0,
) -> torch.Tensor:
residual = hidden_states
args = () if USE_PEFT_BACKEND else (scale,)
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states, *args)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states, *args)
value = attn.to_v(encoder_hidden_states, *args)
query = attn.head_to_batch_dim(query)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
attention_probs = attn.get_attention_scores(query, key, attention_mask)
hidden_states = torch.bmm(attention_probs, value)
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states, *args)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
class CustomDiffusionAttnProcessor(nn.Module):
r"""
Processor for implementing attention for the Custom Diffusion method.
Args:
train_kv (`bool`, defaults to `True`):
Whether to newly train the key and value matrices corresponding to the text features.
train_q_out (`bool`, defaults to `True`):
Whether to newly train query matrices corresponding to the latent image features.
hidden_size (`int`, *optional*, defaults to `None`):
The hidden size of the attention layer.
cross_attention_dim (`int`, *optional*, defaults to `None`):
The number of channels in the `encoder_hidden_states`.
out_bias (`bool`, defaults to `True`):
Whether to include the bias parameter in `train_q_out`.
dropout (`float`, *optional*, defaults to 0.0):
The dropout probability to use.
"""
def __init__(
self,
train_kv: bool = True,
train_q_out: bool = True,
hidden_size: Optional[int] = None,
cross_attention_dim: Optional[int] = None,
out_bias: bool = True,
dropout: float = 0.0,
):
super().__init__()
self.train_kv = train_kv
self.train_q_out = train_q_out
self.hidden_size = hidden_size
self.cross_attention_dim = cross_attention_dim
# `_custom_diffusion` id for easy serialization and loading.
if self.train_kv:
self.to_k_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
self.to_v_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
if self.train_q_out:
self.to_q_custom_diffusion = nn.Linear(hidden_size, hidden_size, bias=False)
self.to_out_custom_diffusion = nn.ModuleList([])
self.to_out_custom_diffusion.append(nn.Linear(hidden_size, hidden_size, bias=out_bias))
self.to_out_custom_diffusion.append(nn.Dropout(dropout))
def __call__(
self,
attn: Attention,
hidden_states: torch.FloatTensor,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
) -> torch.Tensor:
batch_size, sequence_length, _ = hidden_states.shape
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
if self.train_q_out:
query = self.to_q_custom_diffusion(hidden_states).to(attn.to_q.weight.dtype)
else:
query = attn.to_q(hidden_states.to(attn.to_q.weight.dtype))
if encoder_hidden_states is None:
crossattn = False
encoder_hidden_states = hidden_states
else:
crossattn = True
if attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
if self.train_kv:
key = self.to_k_custom_diffusion(encoder_hidden_states.to(self.to_k_custom_diffusion.weight.dtype))
value = self.to_v_custom_diffusion(encoder_hidden_states.to(self.to_v_custom_diffusion.weight.dtype))
key = key.to(attn.to_q.weight.dtype)
value = value.to(attn.to_q.weight.dtype)
else:
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
if crossattn:
detach = torch.ones_like(key)
detach[:, :1, :] = detach[:, :1, :] * 0.0
key = detach * key + (1 - detach) * key.detach()
value = detach * value + (1 - detach) * value.detach()
query = attn.head_to_batch_dim(query)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
attention_probs = attn.get_attention_scores(query, key, attention_mask)
hidden_states = torch.bmm(attention_probs, value)
hidden_states = attn.batch_to_head_dim(hidden_states)
if self.train_q_out:
# linear proj
hidden_states = self.to_out_custom_diffusion[0](hidden_states)
# dropout
hidden_states = self.to_out_custom_diffusion[1](hidden_states)
else:
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
return hidden_states
class AttnAddedKVProcessor:
r"""
Processor for performing attention-related computations with extra learnable key and value matrices for the text
encoder.
"""
def __call__(
self,
attn: Attention,
hidden_states: torch.FloatTensor,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
scale: float = 1.0,
) -> torch.Tensor:
residual = hidden_states
args = () if USE_PEFT_BACKEND else (scale,)
hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2)
batch_size, sequence_length, _ = hidden_states.shape
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states, *args)
query = attn.head_to_batch_dim(query)
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states, *args)
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states, *args)
encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj)
encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj)
if not attn.only_cross_attention:
key = attn.to_k(hidden_states, *args)
value = attn.to_v(hidden_states, *args)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
key = torch.cat([encoder_hidden_states_key_proj, key], dim=1)
value = torch.cat([encoder_hidden_states_value_proj, value], dim=1)
else:
key = encoder_hidden_states_key_proj
value = encoder_hidden_states_value_proj
attention_probs = attn.get_attention_scores(query, key, attention_mask)
hidden_states = torch.bmm(attention_probs, value)
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states, *args)
# dropout
hidden_states = attn.to_out[1](hidden_states)
hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape)
hidden_states = hidden_states + residual
return hidden_states
class AttnAddedKVProcessor2_0:
r"""
Processor for performing scaled dot-product attention (enabled by default if you're using PyTorch 2.0), with extra
learnable key and value matrices for the text encoder.
"""
def __init__(self):
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError(
"AttnAddedKVProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
)
def __call__(
self,
attn: Attention,
hidden_states: torch.FloatTensor,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
scale: float = 1.0,
) -> torch.Tensor:
residual = hidden_states
args = () if USE_PEFT_BACKEND else (scale,)
hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2)
batch_size, sequence_length, _ = hidden_states.shape
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size, out_dim=4)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states, *args)
query = attn.head_to_batch_dim(query, out_dim=4)
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj, out_dim=4)
encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj, out_dim=4)
if not attn.only_cross_attention:
key = attn.to_k(hidden_states, *args)
value = attn.to_v(hidden_states, *args)
key = attn.head_to_batch_dim(key, out_dim=4)
value = attn.head_to_batch_dim(value, out_dim=4)
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
else:
key = encoder_hidden_states_key_proj
value = encoder_hidden_states_value_proj
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, residual.shape[1])
# linear proj
hidden_states = attn.to_out[0](hidden_states, *args)
# dropout
hidden_states = attn.to_out[1](hidden_states)
hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape)
hidden_states = hidden_states + residual
return hidden_states
class XFormersAttnAddedKVProcessor:
r"""
Processor for implementing memory efficient attention using xFormers.
Args:
attention_op (`Callable`, *optional*, defaults to `None`):
The base
[operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to
use as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best
operator.
"""
def __init__(self, attention_op: Optional[Callable] = None):
self.attention_op = attention_op
def __call__(
self,
attn: Attention,
hidden_states: torch.FloatTensor,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
) -> torch.Tensor:
residual = hidden_states
hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2)
batch_size, sequence_length, _ = hidden_states.shape
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
query = attn.head_to_batch_dim(query)
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj)
encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj)
if not attn.only_cross_attention:
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
key = torch.cat([encoder_hidden_states_key_proj, key], dim=1)
value = torch.cat([encoder_hidden_states_value_proj, value], dim=1)
else:
key = encoder_hidden_states_key_proj
value = encoder_hidden_states_value_proj
hidden_states = xformers.ops.memory_efficient_attention(
query, key, value, attn_bias=attention_mask, op=self.attention_op, scale=attn.scale
)
hidden_states = hidden_states.to(query.dtype)
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape)
hidden_states = hidden_states + residual
return hidden_states
class XFormersAttnProcessor:
r"""
Processor for implementing memory efficient attention using xFormers.
Args:
attention_op (`Callable`, *optional*, defaults to `None`):
The base
[operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to
use as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best
operator.
"""
def __init__(self, attention_op: Optional[Callable] = None):
self.attention_op = attention_op
def __call__(
self,
attn: Attention,
hidden_states: torch.FloatTensor,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
temb: Optional[torch.FloatTensor] = None,
scale: float = 1.0,
) -> torch.FloatTensor:
residual = hidden_states
args = () if USE_PEFT_BACKEND else (scale,)
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, key_tokens, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
attention_mask = attn.prepare_attention_mask(attention_mask, key_tokens, batch_size)
if attention_mask is not None:
# expand our mask's singleton query_tokens dimension:
# [batch*heads, 1, key_tokens] ->
# [batch*heads, query_tokens, key_tokens]
# so that it can be added as a bias onto the attention scores that xformers computes:
# [batch*heads, query_tokens, key_tokens]
# we do this explicitly because xformers doesn't broadcast the singleton dimension for us.
_, query_tokens, _ = hidden_states.shape
attention_mask = attention_mask.expand(-1, query_tokens, -1)
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states, *args)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states, *args)
value = attn.to_v(encoder_hidden_states, *args)
query = attn.head_to_batch_dim(query).contiguous()
key = attn.head_to_batch_dim(key).contiguous()
value = attn.head_to_batch_dim(value).contiguous()
hidden_states = xformers.ops.memory_efficient_attention(
query, key, value, attn_bias=attention_mask, op=self.attention_op, scale=attn.scale
)
hidden_states = hidden_states.to(query.dtype)
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states, *args)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
class AttnProcessor2_0:
r"""
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
"""
def __init__(self):
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
def __call__(
self,
attn: Attention,
hidden_states: torch.FloatTensor,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
temb: Optional[torch.FloatTensor] = None,
scale: float = 1.0,
) -> torch.FloatTensor:
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
args = () if USE_PEFT_BACKEND else (scale,)
query = attn.to_q(hidden_states, *args)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states, *args)
value = attn.to_v(encoder_hidden_states, *args)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
# linear proj
hidden_states = attn.to_out[0](hidden_states, *args)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
class FusedAttnProcessor2_0:
r"""
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
It uses fused projection layers. For self-attention modules, all projection matrices (i.e., query,
key, value) are fused. For cross-attention modules, key and value projection matrices are fused.
<Tip warning={true}>
This API is currently 🧪 experimental in nature and can change in future.
</Tip>
"""
def __init__(self):
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError(
"FusedAttnProcessor2_0 requires at least PyTorch 2.0, to use it. Please upgrade PyTorch to > 2.0."
)
def __call__(
self,
attn: Attention,
hidden_states: torch.FloatTensor,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
temb: Optional[torch.FloatTensor] = None,
scale: float = 1.0,
) -> torch.FloatTensor:
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
args = () if USE_PEFT_BACKEND else (scale,)
if encoder_hidden_states is None:
qkv = attn.to_qkv(hidden_states, *args)
split_size = qkv.shape[-1] // 3
query, key, value = torch.split(qkv, split_size, dim=-1)
else:
if attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
query = attn.to_q(hidden_states, *args)
kv = attn.to_kv(encoder_hidden_states, *args)
split_size = kv.shape[-1] // 2
key, value = torch.split(kv, split_size, dim=-1)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
# linear proj
hidden_states = attn.to_out[0](hidden_states, *args)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
class CustomDiffusionXFormersAttnProcessor(nn.Module):
r"""
Processor for implementing memory efficient attention using xFormers for the Custom Diffusion method.
Args:
train_kv (`bool`, defaults to `True`):
Whether to newly train the key and value matrices corresponding to the text features.
train_q_out (`bool`, defaults to `True`):
Whether to newly train query matrices corresponding to the latent image features.
hidden_size (`int`, *optional*, defaults to `None`):
The hidden size of the attention layer.
cross_attention_dim (`int`, *optional*, defaults to `None`):
The number of channels in the `encoder_hidden_states`.
out_bias (`bool`, defaults to `True`):
Whether to include the bias parameter in `train_q_out`.
dropout (`float`, *optional*, defaults to 0.0):
The dropout probability to use.
attention_op (`Callable`, *optional*, defaults to `None`):
The base
[operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to use
as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best operator.
"""
def __init__(
self,
train_kv: bool = True,
train_q_out: bool = False,
hidden_size: Optional[int] = None,
cross_attention_dim: Optional[int] = None,
out_bias: bool = True,
dropout: float = 0.0,
attention_op: Optional[Callable] = None,
):
super().__init__()
self.train_kv = train_kv
self.train_q_out = train_q_out
self.hidden_size = hidden_size
self.cross_attention_dim = cross_attention_dim
self.attention_op = attention_op
# `_custom_diffusion` id for easy serialization and loading.
if self.train_kv:
self.to_k_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
self.to_v_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
if self.train_q_out:
self.to_q_custom_diffusion = nn.Linear(hidden_size, hidden_size, bias=False)
self.to_out_custom_diffusion = nn.ModuleList([])
self.to_out_custom_diffusion.append(nn.Linear(hidden_size, hidden_size, bias=out_bias))
self.to_out_custom_diffusion.append(nn.Dropout(dropout))
def __call__(
self,
attn: Attention,
hidden_states: torch.FloatTensor,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
) -> torch.FloatTensor:
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
if self.train_q_out:
query = self.to_q_custom_diffusion(hidden_states).to(attn.to_q.weight.dtype)
else:
query = attn.to_q(hidden_states.to(attn.to_q.weight.dtype))
if encoder_hidden_states is None:
crossattn = False
encoder_hidden_states = hidden_states
else:
crossattn = True
if attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
if self.train_kv:
key = self.to_k_custom_diffusion(encoder_hidden_states.to(self.to_k_custom_diffusion.weight.dtype))
value = self.to_v_custom_diffusion(encoder_hidden_states.to(self.to_v_custom_diffusion.weight.dtype))
key = key.to(attn.to_q.weight.dtype)
value = value.to(attn.to_q.weight.dtype)
else:
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
if crossattn:
detach = torch.ones_like(key)
detach[:, :1, :] = detach[:, :1, :] * 0.0
key = detach * key + (1 - detach) * key.detach()
value = detach * value + (1 - detach) * value.detach()
query = attn.head_to_batch_dim(query).contiguous()
key = attn.head_to_batch_dim(key).contiguous()
value = attn.head_to_batch_dim(value).contiguous()
hidden_states = xformers.ops.memory_efficient_attention(
query, key, value, attn_bias=attention_mask, op=self.attention_op, scale=attn.scale
)
hidden_states = hidden_states.to(query.dtype)
hidden_states = attn.batch_to_head_dim(hidden_states)
if self.train_q_out:
# linear proj
hidden_states = self.to_out_custom_diffusion[0](hidden_states)
# dropout
hidden_states = self.to_out_custom_diffusion[1](hidden_states)
else:
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
return hidden_states
class CustomDiffusionAttnProcessor2_0(nn.Module):
r"""
Processor for implementing attention for the Custom Diffusion method using PyTorch 2.0’s memory-efficient scaled
dot-product attention.
Args:
train_kv (`bool`, defaults to `True`):
Whether to newly train the key and value matrices corresponding to the text features.
train_q_out (`bool`, defaults to `True`):
Whether to newly train query matrices corresponding to the latent image features.
hidden_size (`int`, *optional*, defaults to `None`):
The hidden size of the attention layer.
cross_attention_dim (`int`, *optional*, defaults to `None`):
The number of channels in the `encoder_hidden_states`.
out_bias (`bool`, defaults to `True`):
Whether to include the bias parameter in `train_q_out`.
dropout (`float`, *optional*, defaults to 0.0):
The dropout probability to use.
"""
def __init__(
self,
train_kv: bool = True,
train_q_out: bool = True,
hidden_size: Optional[int] = None,
cross_attention_dim: Optional[int] = None,
out_bias: bool = True,
dropout: float = 0.0,
):
super().__init__()
self.train_kv = train_kv
self.train_q_out = train_q_out
self.hidden_size = hidden_size
self.cross_attention_dim = cross_attention_dim
# `_custom_diffusion` id for easy serialization and loading.
if self.train_kv:
self.to_k_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
self.to_v_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
if self.train_q_out:
self.to_q_custom_diffusion = nn.Linear(hidden_size, hidden_size, bias=False)
self.to_out_custom_diffusion = nn.ModuleList([])
self.to_out_custom_diffusion.append(nn.Linear(hidden_size, hidden_size, bias=out_bias))
self.to_out_custom_diffusion.append(nn.Dropout(dropout))
def __call__(
self,
attn: Attention,
hidden_states: torch.FloatTensor,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
) -> torch.FloatTensor:
batch_size, sequence_length, _ = hidden_states.shape
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
if self.train_q_out:
query = self.to_q_custom_diffusion(hidden_states)
else:
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
crossattn = False
encoder_hidden_states = hidden_states
else:
crossattn = True
if attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
if self.train_kv:
key = self.to_k_custom_diffusion(encoder_hidden_states.to(self.to_k_custom_diffusion.weight.dtype))
value = self.to_v_custom_diffusion(encoder_hidden_states.to(self.to_v_custom_diffusion.weight.dtype))
key = key.to(attn.to_q.weight.dtype)
value = value.to(attn.to_q.weight.dtype)
else:
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
if crossattn:
detach = torch.ones_like(key)
detach[:, :1, :] = detach[:, :1, :] * 0.0
key = detach * key + (1 - detach) * key.detach()
value = detach * value + (1 - detach) * value.detach()
inner_dim = hidden_states.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
if self.train_q_out:
# linear proj
hidden_states = self.to_out_custom_diffusion[0](hidden_states)
# dropout
hidden_states = self.to_out_custom_diffusion[1](hidden_states)
else:
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
return hidden_states
class SlicedAttnProcessor:
r"""
Processor for implementing sliced attention.
Args:
slice_size (`int`, *optional*):
The number of steps to compute attention. Uses as many slices as `attention_head_dim // slice_size`, and
`attention_head_dim` must be a multiple of the `slice_size`.
"""
def __init__(self, slice_size: int):
self.slice_size = slice_size
def __call__(
self,
attn: Attention,
hidden_states: torch.FloatTensor,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
) -> torch.FloatTensor:
residual = hidden_states
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
dim = query.shape[-1]
query = attn.head_to_batch_dim(query)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
batch_size_attention, query_tokens, _ = query.shape
hidden_states = torch.zeros(
(batch_size_attention, query_tokens, dim // attn.heads), device=query.device, dtype=query.dtype
)
for i in range(batch_size_attention // self.slice_size):
start_idx = i * self.slice_size
end_idx = (i + 1) * self.slice_size
query_slice = query[start_idx:end_idx]
key_slice = key[start_idx:end_idx]
attn_mask_slice = attention_mask[start_idx:end_idx] if attention_mask is not None else None
attn_slice = attn.get_attention_scores(query_slice, key_slice, attn_mask_slice)
attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx])
hidden_states[start_idx:end_idx] = attn_slice
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
class SlicedAttnAddedKVProcessor:
r"""
Processor for implementing sliced attention with extra learnable key and value matrices for the text encoder.
Args:
slice_size (`int`, *optional*):
The number of steps to compute attention. Uses as many slices as `attention_head_dim // slice_size`, and
`attention_head_dim` must be a multiple of the `slice_size`.
"""
def __init__(self, slice_size):
self.slice_size = slice_size
def __call__(
self,
attn: "Attention",
hidden_states: torch.FloatTensor,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
temb: Optional[torch.FloatTensor] = None,
) -> torch.FloatTensor:
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2)
batch_size, sequence_length, _ = hidden_states.shape
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
dim = query.shape[-1]
query = attn.head_to_batch_dim(query)
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj)
encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj)
if not attn.only_cross_attention:
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
key = torch.cat([encoder_hidden_states_key_proj, key], dim=1)
value = torch.cat([encoder_hidden_states_value_proj, value], dim=1)
else:
key = encoder_hidden_states_key_proj
value = encoder_hidden_states_value_proj
batch_size_attention, query_tokens, _ = query.shape
hidden_states = torch.zeros(
(batch_size_attention, query_tokens, dim // attn.heads), device=query.device, dtype=query.dtype
)
for i in range(batch_size_attention // self.slice_size):
start_idx = i * self.slice_size
end_idx = (i + 1) * self.slice_size
query_slice = query[start_idx:end_idx]
key_slice = key[start_idx:end_idx]
attn_mask_slice = attention_mask[start_idx:end_idx] if attention_mask is not None else None
attn_slice = attn.get_attention_scores(query_slice, key_slice, attn_mask_slice)
attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx])
hidden_states[start_idx:end_idx] = attn_slice
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape)
hidden_states = hidden_states + residual
return hidden_states
class SpatialNorm(nn.Module):
"""
Spatially conditioned normalization as defined in https://arxiv.org/abs/2209.09002.
Args:
f_channels (`int`):
The number of channels for input to group normalization layer, and output of the spatial norm layer.
zq_channels (`int`):
The number of channels for the quantized vector as described in the paper.
"""
def __init__(
self,
f_channels: int,
zq_channels: int,
):
super().__init__()
self.norm_layer = nn.GroupNorm(num_channels=f_channels, num_groups=32, eps=1e-6, affine=True)
self.conv_y = nn.Conv2d(zq_channels, f_channels, kernel_size=1, stride=1, padding=0)
self.conv_b = nn.Conv2d(zq_channels, f_channels, kernel_size=1, stride=1, padding=0)
def forward(self, f: torch.FloatTensor, zq: torch.FloatTensor) -> torch.FloatTensor:
f_size = f.shape[-2:]
zq = F.interpolate(zq, size=f_size, mode="nearest")
norm_f = self.norm_layer(f)
new_f = norm_f * self.conv_y(zq) + self.conv_b(zq)
return new_f
class LoRAAttnProcessor(nn.Module):
def __init__(
self,
hidden_size: int,
cross_attention_dim: Optional[int] = None,
rank: int = 4,
network_alpha: Optional[int] = None,
**kwargs,
):
deprecation_message = "Using LoRAAttnProcessor is deprecated. Please use the PEFT backend for all things LoRA. You can install PEFT by running `pip install peft`."
deprecate("LoRAAttnProcessor", "0.30.0", deprecation_message, standard_warn=False)
super().__init__()
self.hidden_size = hidden_size
self.cross_attention_dim = cross_attention_dim
self.rank = rank
q_rank = kwargs.pop("q_rank", None)
q_hidden_size = kwargs.pop("q_hidden_size", None)
q_rank = q_rank if q_rank is not None else rank
q_hidden_size = q_hidden_size if q_hidden_size is not None else hidden_size
v_rank = kwargs.pop("v_rank", None)
v_hidden_size = kwargs.pop("v_hidden_size", None)
v_rank = v_rank if v_rank is not None else rank
v_hidden_size = v_hidden_size if v_hidden_size is not None else hidden_size
out_rank = kwargs.pop("out_rank", None)
out_hidden_size = kwargs.pop("out_hidden_size", None)
out_rank = out_rank if out_rank is not None else rank
out_hidden_size = out_hidden_size if out_hidden_size is not None else hidden_size
self.to_q_lora = LoRALinearLayer(q_hidden_size, q_hidden_size, q_rank, network_alpha)
self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
self.to_v_lora = LoRALinearLayer(cross_attention_dim or v_hidden_size, v_hidden_size, v_rank, network_alpha)
self.to_out_lora = LoRALinearLayer(out_hidden_size, out_hidden_size, out_rank, network_alpha)
def __call__(self, attn: Attention, hidden_states: torch.FloatTensor, *args, **kwargs) -> torch.FloatTensor:
self_cls_name = self.__class__.__name__
deprecate(
self_cls_name,
"0.26.0",
(
f"Make sure use {self_cls_name[4:]} instead by setting"
"LoRA layers to `self.{to_q,to_k,to_v,to_out[0]}.lora_layer` respectively. This will be done automatically when using"
" `LoraLoaderMixin.load_lora_weights`"
),
)
attn.to_q.lora_layer = self.to_q_lora.to(hidden_states.device)
attn.to_k.lora_layer = self.to_k_lora.to(hidden_states.device)
attn.to_v.lora_layer = self.to_v_lora.to(hidden_states.device)
attn.to_out[0].lora_layer = self.to_out_lora.to(hidden_states.device)
attn._modules.pop("processor")
attn.processor = AttnProcessor()
return attn.processor(attn, hidden_states, *args, **kwargs)
class LoRAAttnProcessor2_0(nn.Module):
def __init__(
self,
hidden_size: int,
cross_attention_dim: Optional[int] = None,
rank: int = 4,
network_alpha: Optional[int] = None,
**kwargs,
):
deprecation_message = "Using LoRAAttnProcessor is deprecated. Please use the PEFT backend for all things LoRA. You can install PEFT by running `pip install peft`."
deprecate("LoRAAttnProcessor2_0", "0.30.0", deprecation_message, standard_warn=False)
super().__init__()
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
self.hidden_size = hidden_size
self.cross_attention_dim = cross_attention_dim
self.rank = rank
q_rank = kwargs.pop("q_rank", None)
q_hidden_size = kwargs.pop("q_hidden_size", None)
q_rank = q_rank if q_rank is not None else rank
q_hidden_size = q_hidden_size if q_hidden_size is not None else hidden_size
v_rank = kwargs.pop("v_rank", None)
v_hidden_size = kwargs.pop("v_hidden_size", None)
v_rank = v_rank if v_rank is not None else rank
v_hidden_size = v_hidden_size if v_hidden_size is not None else hidden_size
out_rank = kwargs.pop("out_rank", None)
out_hidden_size = kwargs.pop("out_hidden_size", None)
out_rank = out_rank if out_rank is not None else rank
out_hidden_size = out_hidden_size if out_hidden_size is not None else hidden_size
self.to_q_lora = LoRALinearLayer(q_hidden_size, q_hidden_size, q_rank, network_alpha)
self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
self.to_v_lora = LoRALinearLayer(cross_attention_dim or v_hidden_size, v_hidden_size, v_rank, network_alpha)
self.to_out_lora = LoRALinearLayer(out_hidden_size, out_hidden_size, out_rank, network_alpha)
def __call__(self, attn: Attention, hidden_states: torch.FloatTensor, *args, **kwargs) -> torch.FloatTensor:
self_cls_name = self.__class__.__name__
deprecate(
self_cls_name,
"0.26.0",
(
f"Make sure use {self_cls_name[4:]} instead by setting"
"LoRA layers to `self.{to_q,to_k,to_v,to_out[0]}.lora_layer` respectively. This will be done automatically when using"
" `LoraLoaderMixin.load_lora_weights`"
),
)
attn.to_q.lora_layer = self.to_q_lora.to(hidden_states.device)
attn.to_k.lora_layer = self.to_k_lora.to(hidden_states.device)
attn.to_v.lora_layer = self.to_v_lora.to(hidden_states.device)
attn.to_out[0].lora_layer = self.to_out_lora.to(hidden_states.device)
attn._modules.pop("processor")
attn.processor = AttnProcessor2_0()
return attn.processor(attn, hidden_states, *args, **kwargs)
class LoRAXFormersAttnProcessor(nn.Module):
r"""
Processor for implementing the LoRA attention mechanism with memory efficient attention using xFormers.
Args:
hidden_size (`int`, *optional*):
The hidden size of the attention layer.
cross_attention_dim (`int`, *optional*):
The number of channels in the `encoder_hidden_states`.
rank (`int`, defaults to 4):
The dimension of the LoRA update matrices.
attention_op (`Callable`, *optional*, defaults to `None`):
The base
[operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to
use as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best
operator.
network_alpha (`int`, *optional*):
Equivalent to `alpha` but it's usage is specific to Kohya (A1111) style LoRAs.
kwargs (`dict`):
Additional keyword arguments to pass to the `LoRALinearLayer` layers.
"""
def __init__(
self,
hidden_size: int,
cross_attention_dim: int,
rank: int = 4,
attention_op: Optional[Callable] = None,
network_alpha: Optional[int] = None,
**kwargs,
):
super().__init__()
self.hidden_size = hidden_size
self.cross_attention_dim = cross_attention_dim
self.rank = rank
self.attention_op = attention_op
q_rank = kwargs.pop("q_rank", None)
q_hidden_size = kwargs.pop("q_hidden_size", None)
q_rank = q_rank if q_rank is not None else rank
q_hidden_size = q_hidden_size if q_hidden_size is not None else hidden_size
v_rank = kwargs.pop("v_rank", None)
v_hidden_size = kwargs.pop("v_hidden_size", None)
v_rank = v_rank if v_rank is not None else rank
v_hidden_size = v_hidden_size if v_hidden_size is not None else hidden_size
out_rank = kwargs.pop("out_rank", None)
out_hidden_size = kwargs.pop("out_hidden_size", None)
out_rank = out_rank if out_rank is not None else rank
out_hidden_size = out_hidden_size if out_hidden_size is not None else hidden_size
self.to_q_lora = LoRALinearLayer(q_hidden_size, q_hidden_size, q_rank, network_alpha)
self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
self.to_v_lora = LoRALinearLayer(cross_attention_dim or v_hidden_size, v_hidden_size, v_rank, network_alpha)
self.to_out_lora = LoRALinearLayer(out_hidden_size, out_hidden_size, out_rank, network_alpha)
def __call__(self, attn: Attention, hidden_states: torch.FloatTensor, *args, **kwargs) -> torch.FloatTensor:
self_cls_name = self.__class__.__name__
deprecate(
self_cls_name,
"0.26.0",
(
f"Make sure use {self_cls_name[4:]} instead by setting"
"LoRA layers to `self.{to_q,to_k,to_v,add_k_proj,add_v_proj,to_out[0]}.lora_layer` respectively. This will be done automatically when using"
" `LoraLoaderMixin.load_lora_weights`"
),
)
attn.to_q.lora_layer = self.to_q_lora.to(hidden_states.device)
attn.to_k.lora_layer = self.to_k_lora.to(hidden_states.device)
attn.to_v.lora_layer = self.to_v_lora.to(hidden_states.device)
attn.to_out[0].lora_layer = self.to_out_lora.to(hidden_states.device)
attn._modules.pop("processor")
attn.processor = XFormersAttnProcessor()
return attn.processor(attn, hidden_states, *args, **kwargs)
class LoRAAttnAddedKVProcessor(nn.Module):
r"""
Processor for implementing the LoRA attention mechanism with extra learnable key and value matrices for the text
encoder.
Args:
hidden_size (`int`, *optional*):
The hidden size of the attention layer.
cross_attention_dim (`int`, *optional*, defaults to `None`):
The number of channels in the `encoder_hidden_states`.
rank (`int`, defaults to 4):
The dimension of the LoRA update matrices.
network_alpha (`int`, *optional*):
Equivalent to `alpha` but it's usage is specific to Kohya (A1111) style LoRAs.
kwargs (`dict`):
Additional keyword arguments to pass to the `LoRALinearLayer` layers.
"""
def __init__(
self,
hidden_size: int,
cross_attention_dim: Optional[int] = None,
rank: int = 4,
network_alpha: Optional[int] = None,
):
super().__init__()
self.hidden_size = hidden_size
self.cross_attention_dim = cross_attention_dim
self.rank = rank
self.to_q_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
self.add_k_proj_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
self.add_v_proj_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
self.to_k_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
self.to_v_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
self.to_out_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
def __call__(self, attn: Attention, hidden_states: torch.FloatTensor, *args, **kwargs) -> torch.FloatTensor:
self_cls_name = self.__class__.__name__
deprecate(
self_cls_name,
"0.26.0",
(
f"Make sure use {self_cls_name[4:]} instead by setting"
"LoRA layers to `self.{to_q,to_k,to_v,add_k_proj,add_v_proj,to_out[0]}.lora_layer` respectively. This will be done automatically when using"
" `LoraLoaderMixin.load_lora_weights`"
),
)
attn.to_q.lora_layer = self.to_q_lora.to(hidden_states.device)
attn.to_k.lora_layer = self.to_k_lora.to(hidden_states.device)
attn.to_v.lora_layer = self.to_v_lora.to(hidden_states.device)
attn.to_out[0].lora_layer = self.to_out_lora.to(hidden_states.device)
attn._modules.pop("processor")
attn.processor = AttnAddedKVProcessor()
return attn.processor(attn, hidden_states, *args, **kwargs)
class IPAdapterAttnProcessor(nn.Module):
r"""
Attention processor for Multiple IP-Adapater.
Args:
hidden_size (`int`):
The hidden size of the attention layer.
cross_attention_dim (`int`):
The number of channels in the `encoder_hidden_states`.
num_tokens (`int`, `Tuple[int]` or `List[int]`, defaults to `(4,)`):
The context length of the image features.
scale (`float` or List[`float`], defaults to 1.0):
the weight scale of image prompt.
"""
def __init__(self, hidden_size, cross_attention_dim=None, num_tokens=(4,), scale=1.0):
super().__init__()
self.hidden_size = hidden_size
self.cross_attention_dim = cross_attention_dim
if not isinstance(num_tokens, (tuple, list)):
num_tokens = [num_tokens]
self.num_tokens = num_tokens
if not isinstance(scale, list):
scale = [scale] * len(num_tokens)
if len(scale) != len(num_tokens):
raise ValueError("`scale` should be a list of integers with the same length as `num_tokens`.")
self.scale = scale
self.to_k_ip = nn.ModuleList(
[nn.Linear(cross_attention_dim, hidden_size, bias=False) for _ in range(len(num_tokens))]
)
self.to_v_ip = nn.ModuleList(
[nn.Linear(cross_attention_dim, hidden_size, bias=False) for _ in range(len(num_tokens))]
)
def __call__(
self,
attn: Attention,
hidden_states: torch.FloatTensor,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
temb: Optional[torch.FloatTensor] = None,
scale: float = 1.0,
ip_adapter_masks: Optional[torch.FloatTensor] = None,
):
residual = hidden_states
# separate ip_hidden_states from encoder_hidden_states
if encoder_hidden_states is not None:
if isinstance(encoder_hidden_states, tuple):
encoder_hidden_states, ip_hidden_states = encoder_hidden_states
else:
deprecation_message = (
"You have passed a tensor as `encoder_hidden_states`.This is deprecated and will be removed in a future release."
" Please make sure to update your script to pass `encoder_hidden_states` as a tuple to supress this warning."
)
deprecate("encoder_hidden_states not a tuple", "1.0.0", deprecation_message, standard_warn=False)
end_pos = encoder_hidden_states.shape[1] - self.num_tokens[0]
encoder_hidden_states, ip_hidden_states = (
encoder_hidden_states[:, :end_pos, :],
[encoder_hidden_states[:, end_pos:, :]],
)
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
query = attn.head_to_batch_dim(query)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
attention_probs = attn.get_attention_scores(query, key, attention_mask)
hidden_states = torch.bmm(attention_probs, value)
hidden_states = attn.batch_to_head_dim(hidden_states)
if ip_adapter_masks is not None:
if not isinstance(ip_adapter_masks, torch.Tensor) or ip_adapter_masks.ndim != 4:
raise ValueError(
" ip_adapter_mask should be a tensor with shape [num_ip_adapter, 1, height, width]."
" Please use `IPAdapterMaskProcessor` to preprocess your mask"
)
if len(ip_adapter_masks) != len(self.scale):
raise ValueError(
f"Number of ip_adapter_masks ({len(ip_adapter_masks)}) must match number of IP-Adapters ({len(self.scale)})"
)
else:
ip_adapter_masks = [None] * len(self.scale)
# for ip-adapter
for current_ip_hidden_states, scale, to_k_ip, to_v_ip, mask in zip(
ip_hidden_states, self.scale, self.to_k_ip, self.to_v_ip, ip_adapter_masks
):
ip_key = to_k_ip(current_ip_hidden_states)
ip_value = to_v_ip(current_ip_hidden_states)
ip_key = attn.head_to_batch_dim(ip_key)
ip_value = attn.head_to_batch_dim(ip_value)
ip_attention_probs = attn.get_attention_scores(query, ip_key, None)
current_ip_hidden_states = torch.bmm(ip_attention_probs, ip_value)
current_ip_hidden_states = attn.batch_to_head_dim(current_ip_hidden_states)
if mask is not None:
mask_downsample = IPAdapterMaskProcessor.downsample(
mask, batch_size, current_ip_hidden_states.shape[1], current_ip_hidden_states.shape[2]
)
mask_downsample = mask_downsample.to(dtype=query.dtype, device=query.device)
current_ip_hidden_states = current_ip_hidden_states * mask_downsample
hidden_states = hidden_states + scale * current_ip_hidden_states
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
class IPAdapterAttnProcessor2_0(torch.nn.Module):
r"""
Attention processor for IP-Adapater for PyTorch 2.0.
Args:
hidden_size (`int`):
The hidden size of the attention layer.
cross_attention_dim (`int`):
The number of channels in the `encoder_hidden_states`.
num_tokens (`int`, `Tuple[int]` or `List[int]`, defaults to `(4,)`):
The context length of the image features.
scale (`float` or `List[float]`, defaults to 1.0):
the weight scale of image prompt.
"""
def __init__(self, hidden_size, cross_attention_dim=None, num_tokens=(4,), scale=1.0):
super().__init__()
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError(
f"{self.__class__.__name__} requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
)
self.hidden_size = hidden_size
self.cross_attention_dim = cross_attention_dim
if not isinstance(num_tokens, (tuple, list)):
num_tokens = [num_tokens]
self.num_tokens = num_tokens
if not isinstance(scale, list):
scale = [scale] * len(num_tokens)
if len(scale) != len(num_tokens):
raise ValueError("`scale` should be a list of integers with the same length as `num_tokens`.")
self.scale = scale
self.to_k_ip = nn.ModuleList(
[nn.Linear(cross_attention_dim, hidden_size, bias=False) for _ in range(len(num_tokens))]
)
self.to_v_ip = nn.ModuleList(
[nn.Linear(cross_attention_dim, hidden_size, bias=False) for _ in range(len(num_tokens))]
)
def __call__(
self,
attn: Attention,
hidden_states: torch.FloatTensor,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
temb: Optional[torch.FloatTensor] = None,
scale: float = 1.0,
ip_adapter_masks: Optional[torch.FloatTensor] = None,
):
residual = hidden_states
# separate ip_hidden_states from encoder_hidden_states
if encoder_hidden_states is not None:
if isinstance(encoder_hidden_states, tuple):
encoder_hidden_states, ip_hidden_states = encoder_hidden_states
else:
deprecation_message = (
"You have passed a tensor as `encoder_hidden_states`.This is deprecated and will be removed in a future release."
" Please make sure to update your script to pass `encoder_hidden_states` as a tuple to supress this warning."
)
deprecate("encoder_hidden_states not a tuple", "1.0.0", deprecation_message, standard_warn=False)
end_pos = encoder_hidden_states.shape[1] - self.num_tokens[0]
encoder_hidden_states, ip_hidden_states = (
encoder_hidden_states[:, :end_pos, :],
[encoder_hidden_states[:, end_pos:, :]],
)
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
if ip_adapter_masks is not None:
if not isinstance(ip_adapter_masks, torch.Tensor) or ip_adapter_masks.ndim != 4:
raise ValueError(
" ip_adapter_mask should be a tensor with shape [num_ip_adapter, 1, height, width]."
" Please use `IPAdapterMaskProcessor` to preprocess your mask"
)
if len(ip_adapter_masks) != len(self.scale):
raise ValueError(
f"Number of ip_adapter_masks ({len(ip_adapter_masks)}) must match number of IP-Adapters ({len(self.scale)})"
)
else:
ip_adapter_masks = [None] * len(self.scale)
# for ip-adapter
for current_ip_hidden_states, scale, to_k_ip, to_v_ip, mask in zip(
ip_hidden_states, self.scale, self.to_k_ip, self.to_v_ip, ip_adapter_masks
):
ip_key = to_k_ip(current_ip_hidden_states)
ip_value = to_v_ip(current_ip_hidden_states)
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
current_ip_hidden_states = F.scaled_dot_product_attention(
query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
)
current_ip_hidden_states = current_ip_hidden_states.transpose(1, 2).reshape(
batch_size, -1, attn.heads * head_dim
)
current_ip_hidden_states = current_ip_hidden_states.to(query.dtype)
if mask is not None:
mask_downsample = IPAdapterMaskProcessor.downsample(
mask, batch_size, current_ip_hidden_states.shape[1], current_ip_hidden_states.shape[2]
)
mask_downsample = mask_downsample.to(dtype=query.dtype, device=query.device)
current_ip_hidden_states = current_ip_hidden_states * mask_downsample
hidden_states = hidden_states + scale * current_ip_hidden_states
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
LORA_ATTENTION_PROCESSORS = (
LoRAAttnProcessor,
LoRAAttnProcessor2_0,
LoRAXFormersAttnProcessor,
LoRAAttnAddedKVProcessor,
)
ADDED_KV_ATTENTION_PROCESSORS = (
AttnAddedKVProcessor,
SlicedAttnAddedKVProcessor,
AttnAddedKVProcessor2_0,
XFormersAttnAddedKVProcessor,
LoRAAttnAddedKVProcessor,
)
CROSS_ATTENTION_PROCESSORS = (
AttnProcessor,
AttnProcessor2_0,
XFormersAttnProcessor,
SlicedAttnProcessor,
LoRAAttnProcessor,
LoRAAttnProcessor2_0,
LoRAXFormersAttnProcessor,
IPAdapterAttnProcessor,
IPAdapterAttnProcessor2_0,
)
AttentionProcessor = Union[
AttnProcessor,
AttnProcessor2_0,
FusedAttnProcessor2_0,
XFormersAttnProcessor,
SlicedAttnProcessor,
AttnAddedKVProcessor,
SlicedAttnAddedKVProcessor,
AttnAddedKVProcessor2_0,
XFormersAttnAddedKVProcessor,
CustomDiffusionAttnProcessor,
CustomDiffusionXFormersAttnProcessor,
CustomDiffusionAttnProcessor2_0,
# deprecated
LoRAAttnProcessor,
LoRAAttnProcessor2_0,
LoRAXFormersAttnProcessor,
LoRAAttnAddedKVProcessor,
]
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numbers
from typing import Dict, Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from ..utils import is_torch_version
from .activations import get_activation
from .embeddings import CombinedTimestepLabelEmbeddings, PixArtAlphaCombinedTimestepSizeEmbeddings
class AdaLayerNorm(nn.Module):
r"""
Norm layer modified to incorporate timestep embeddings.
Parameters:
embedding_dim (`int`): The size of each embedding vector.
num_embeddings (`int`): The size of the embeddings dictionary.
"""
def __init__(self, embedding_dim: int, num_embeddings: int):
super().__init__()
self.emb = nn.Embedding(num_embeddings, embedding_dim)
self.silu = nn.SiLU()
self.linear = nn.Linear(embedding_dim, embedding_dim * 2)
self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False)
def forward(self, x: torch.Tensor, timestep: torch.Tensor) -> torch.Tensor:
emb = self.linear(self.silu(self.emb(timestep)))
scale, shift = torch.chunk(emb, 2)
x = self.norm(x) * (1 + scale) + shift
return x
class AdaLayerNormZero(nn.Module):
r"""
Norm layer adaptive layer norm zero (adaLN-Zero).
Parameters:
embedding_dim (`int`): The size of each embedding vector.
num_embeddings (`int`): The size of the embeddings dictionary.
"""
def __init__(self, embedding_dim: int, num_embeddings: int):
super().__init__()
self.emb = CombinedTimestepLabelEmbeddings(num_embeddings, embedding_dim)
self.silu = nn.SiLU()
self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=True)
self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)
def forward(
self,
x: torch.Tensor,
timestep: torch.Tensor,
class_labels: torch.LongTensor,
hidden_dtype: Optional[torch.dtype] = None,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
emb = self.linear(self.silu(self.emb(timestep, class_labels, hidden_dtype=hidden_dtype)))
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.chunk(6, dim=1)
x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None]
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
class AdaLayerNormSingle(nn.Module):
r"""
Norm layer adaptive layer norm single (adaLN-single).
As proposed in PixArt-Alpha (see: https://arxiv.org/abs/2310.00426; Section 2.3).
Parameters:
embedding_dim (`int`): The size of each embedding vector.
use_additional_conditions (`bool`): To use additional conditions for normalization or not.
"""
def __init__(self, embedding_dim: int, use_additional_conditions: bool = False):
super().__init__()
self.emb = PixArtAlphaCombinedTimestepSizeEmbeddings(
embedding_dim, size_emb_dim=embedding_dim // 3, use_additional_conditions=use_additional_conditions
)
self.silu = nn.SiLU()
self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=True)
def forward(
self,
timestep: torch.Tensor,
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
batch_size: Optional[int] = None,
hidden_dtype: Optional[torch.dtype] = None,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
# No modulation happening here.
embedded_timestep = self.emb(timestep, **added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_dtype)
return self.linear(self.silu(embedded_timestep)), embedded_timestep
class AdaGroupNorm(nn.Module):
r"""
GroupNorm layer modified to incorporate timestep embeddings.
Parameters:
embedding_dim (`int`): The size of each embedding vector.
num_embeddings (`int`): The size of the embeddings dictionary.
num_groups (`int`): The number of groups to separate the channels into.
act_fn (`str`, *optional*, defaults to `None`): The activation function to use.
eps (`float`, *optional*, defaults to `1e-5`): The epsilon value to use for numerical stability.
"""
def __init__(
self, embedding_dim: int, out_dim: int, num_groups: int, act_fn: Optional[str] = None, eps: float = 1e-5
):
super().__init__()
self.num_groups = num_groups
self.eps = eps
if act_fn is None:
self.act = None
else:
self.act = get_activation(act_fn)
self.linear = nn.Linear(embedding_dim, out_dim * 2)
def forward(self, x: torch.Tensor, emb: torch.Tensor) -> torch.Tensor:
if self.act:
emb = self.act(emb)
emb = self.linear(emb)
emb = emb[:, :, None, None]
scale, shift = emb.chunk(2, dim=1)
x = F.group_norm(x, self.num_groups, eps=self.eps)
x = x * (1 + scale) + shift
return x
class AdaLayerNormContinuous(nn.Module):
def __init__(
self,
embedding_dim: int,
conditioning_embedding_dim: int,
# NOTE: It is a bit weird that the norm layer can be configured to have scale and shift parameters
# because the output is immediately scaled and shifted by the projected conditioning embeddings.
# Note that AdaLayerNorm does not let the norm layer have scale and shift parameters.
# However, this is how it was implemented in the original code, and it's rather likely you should
# set `elementwise_affine` to False.
elementwise_affine=True,
eps=1e-5,
bias=True,
norm_type="layer_norm",
):
super().__init__()
self.silu = nn.SiLU()
self.linear = nn.Linear(conditioning_embedding_dim, embedding_dim * 2, bias=bias)
if norm_type == "layer_norm":
self.norm = LayerNorm(embedding_dim, eps, elementwise_affine, bias)
elif norm_type == "rms_norm":
self.norm = RMSNorm(embedding_dim, eps, elementwise_affine)
else:
raise ValueError(f"unknown norm_type {norm_type}")
def forward(self, x: torch.Tensor, conditioning_embedding: torch.Tensor) -> torch.Tensor:
emb = self.linear(self.silu(conditioning_embedding))
scale, shift = torch.chunk(emb, 2, dim=1)
x = self.norm(x) * (1 + scale)[:, None, :] + shift[:, None, :]
return x
if is_torch_version(">=", "2.1.0"):
LayerNorm = nn.LayerNorm
else:
# Has optional bias parameter compared to torch layer norm
# TODO: replace with torch layernorm once min required torch version >= 2.1
class LayerNorm(nn.Module):
def __init__(self, dim, eps: float = 1e-5, elementwise_affine: bool = True, bias: bool = True):
super().__init__()
self.eps = eps
if isinstance(dim, numbers.Integral):
dim = (dim,)
self.dim = torch.Size(dim)
if elementwise_affine:
self.weight = nn.Parameter(torch.ones(dim))
self.bias = nn.Parameter(torch.zeros(dim)) if bias else None
else:
self.weight = None
self.bias = None
def forward(self, input):
return F.layer_norm(input, self.dim, self.weight, self.bias, self.eps)
class RMSNorm(nn.Module):
def __init__(self, dim, eps: float, elementwise_affine: bool = True):
super().__init__()
self.eps = eps
if isinstance(dim, numbers.Integral):
dim = (dim,)
self.dim = torch.Size(dim)
if elementwise_affine:
self.weight = nn.Parameter(torch.ones(dim))
else:
self.weight = None
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.eps)
if self.weight is not None:
# convert into half-precision if necessary
if self.weight.dtype in [torch.float16, torch.bfloat16]:
hidden_states = hidden_states.to(self.weight.dtype)
hidden_states = hidden_states * self.weight
else:
hidden_states = hidden_states.to(input_dtype)
return hidden_states
class GlobalResponseNorm(nn.Module):
# Taken from https://github.com/facebookresearch/ConvNeXt-V2/blob/3608f67cc1dae164790c5d0aead7bf2d73d9719b/models/utils.py#L105
def __init__(self, dim):
super().__init__()
self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim))
self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim))
def forward(self, x):
gx = torch.norm(x, p=2, dim=(1, 2), keepdim=True)
nx = gx / (gx.mean(dim=-1, keepdim=True) + 1e-6)
return self.gamma * (x * nx) + self.beta + x
from typing import Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from ..utils import USE_PEFT_BACKEND
from .lora import LoRACompatibleConv
from .normalization import RMSNorm
from .upsampling import upfirdn2d_native
class Downsample1D(nn.Module):
"""A 1D downsampling layer with an optional convolution.
Parameters:
channels (`int`):
number of channels in the inputs and outputs.
use_conv (`bool`, default `False`):
option to use a convolution.
out_channels (`int`, optional):
number of output channels. Defaults to `channels`.
padding (`int`, default `1`):
padding for the convolution.
name (`str`, default `conv`):
name of the downsampling 1D layer.
"""
def __init__(
self,
channels: int,
use_conv: bool = False,
out_channels: Optional[int] = None,
padding: int = 1,
name: str = "conv",
):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.padding = padding
stride = 2
self.name = name
if use_conv:
self.conv = nn.Conv1d(self.channels, self.out_channels, 3, stride=stride, padding=padding)
else:
assert self.channels == self.out_channels
self.conv = nn.AvgPool1d(kernel_size=stride, stride=stride)
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
assert inputs.shape[1] == self.channels
return self.conv(inputs)
class Downsample2D(nn.Module):
"""A 2D downsampling layer with an optional convolution.
Parameters:
channels (`int`):
number of channels in the inputs and outputs.
use_conv (`bool`, default `False`):
option to use a convolution.
out_channels (`int`, optional):
number of output channels. Defaults to `channels`.
padding (`int`, default `1`):
padding for the convolution.
name (`str`, default `conv`):
name of the downsampling 2D layer.
"""
def __init__(
self,
channels: int,
use_conv: bool = False,
out_channels: Optional[int] = None,
padding: int = 1,
name: str = "conv",
kernel_size=3,
norm_type=None,
eps=None,
elementwise_affine=None,
bias=True,
):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.padding = padding
stride = 2
self.name = name
conv_cls = nn.Conv2d if USE_PEFT_BACKEND else LoRACompatibleConv
if norm_type == "ln_norm":
self.norm = nn.LayerNorm(channels, eps, elementwise_affine)
elif norm_type == "rms_norm":
self.norm = RMSNorm(channels, eps, elementwise_affine)
elif norm_type is None:
self.norm = None
else:
raise ValueError(f"unknown norm_type: {norm_type}")
if use_conv:
conv = conv_cls(
self.channels, self.out_channels, kernel_size=kernel_size, stride=stride, padding=padding, bias=bias
)
else:
assert self.channels == self.out_channels
conv = nn.AvgPool2d(kernel_size=stride, stride=stride)
# TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed
if name == "conv":
self.Conv2d_0 = conv
self.conv = conv
elif name == "Conv2d_0":
self.conv = conv
else:
self.conv = conv
def forward(self, hidden_states: torch.FloatTensor, scale: float = 1.0) -> torch.FloatTensor:
assert hidden_states.shape[1] == self.channels
if self.norm is not None:
hidden_states = self.norm(hidden_states.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
if self.use_conv and self.padding == 0:
pad = (0, 1, 0, 1)
hidden_states = F.pad(hidden_states, pad, mode="constant", value=0)
assert hidden_states.shape[1] == self.channels
if not USE_PEFT_BACKEND:
if isinstance(self.conv, LoRACompatibleConv):
hidden_states = self.conv(hidden_states, scale)
else:
hidden_states = self.conv(hidden_states)
else:
hidden_states = self.conv(hidden_states)
return hidden_states
class FirDownsample2D(nn.Module):
"""A 2D FIR downsampling layer with an optional convolution.
Parameters:
channels (`int`):
number of channels in the inputs and outputs.
use_conv (`bool`, default `False`):
option to use a convolution.
out_channels (`int`, optional):
number of output channels. Defaults to `channels`.
fir_kernel (`tuple`, default `(1, 3, 3, 1)`):
kernel for the FIR filter.
"""
def __init__(
self,
channels: Optional[int] = None,
out_channels: Optional[int] = None,
use_conv: bool = False,
fir_kernel: Tuple[int, int, int, int] = (1, 3, 3, 1),
):
super().__init__()
out_channels = out_channels if out_channels else channels
if use_conv:
self.Conv2d_0 = nn.Conv2d(channels, out_channels, kernel_size=3, stride=1, padding=1)
self.fir_kernel = fir_kernel
self.use_conv = use_conv
self.out_channels = out_channels
def _downsample_2d(
self,
hidden_states: torch.FloatTensor,
weight: Optional[torch.FloatTensor] = None,
kernel: Optional[torch.FloatTensor] = None,
factor: int = 2,
gain: float = 1,
) -> torch.FloatTensor:
"""Fused `Conv2d()` followed by `downsample_2d()`.
Padding is performed only once at the beginning, not between the operations. The fused op is considerably more
efficient than performing the same calculation using standard TensorFlow ops. It supports gradients of
arbitrary order.
Args:
hidden_states (`torch.FloatTensor`):
Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
weight (`torch.FloatTensor`, *optional*):
Weight tensor of the shape `[filterH, filterW, inChannels, outChannels]`. Grouped convolution can be
performed by `inChannels = x.shape[0] // numGroups`.
kernel (`torch.FloatTensor`, *optional*):
FIR filter of the shape `[firH, firW]` or `[firN]` (separable). The default is `[1] * factor`, which
corresponds to average pooling.
factor (`int`, *optional*, default to `2`):
Integer downsampling factor.
gain (`float`, *optional*, default to `1.0`):
Scaling factor for signal magnitude.
Returns:
output (`torch.FloatTensor`):
Tensor of the shape `[N, C, H // factor, W // factor]` or `[N, H // factor, W // factor, C]`, and same
datatype as `x`.
"""
assert isinstance(factor, int) and factor >= 1
if kernel is None:
kernel = [1] * factor
# setup kernel
kernel = torch.tensor(kernel, dtype=torch.float32)
if kernel.ndim == 1:
kernel = torch.outer(kernel, kernel)
kernel /= torch.sum(kernel)
kernel = kernel * gain
if self.use_conv:
_, _, convH, convW = weight.shape
pad_value = (kernel.shape[0] - factor) + (convW - 1)
stride_value = [factor, factor]
upfirdn_input = upfirdn2d_native(
hidden_states,
torch.tensor(kernel, device=hidden_states.device),
pad=((pad_value + 1) // 2, pad_value // 2),
)
output = F.conv2d(upfirdn_input, weight, stride=stride_value, padding=0)
else:
pad_value = kernel.shape[0] - factor
output = upfirdn2d_native(
hidden_states,
torch.tensor(kernel, device=hidden_states.device),
down=factor,
pad=((pad_value + 1) // 2, pad_value // 2),
)
return output
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
if self.use_conv:
downsample_input = self._downsample_2d(hidden_states, weight=self.Conv2d_0.weight, kernel=self.fir_kernel)
hidden_states = downsample_input + self.Conv2d_0.bias.reshape(1, -1, 1, 1)
else:
hidden_states = self._downsample_2d(hidden_states, kernel=self.fir_kernel, factor=2)
return hidden_states
# downsample/upsample layer used in k-upscaler, might be able to use FirDownsample2D/DirUpsample2D instead
class KDownsample2D(nn.Module):
r"""A 2D K-downsampling layer.
Parameters:
pad_mode (`str`, *optional*, default to `"reflect"`): the padding mode to use.
"""
def __init__(self, pad_mode: str = "reflect"):
super().__init__()
self.pad_mode = pad_mode
kernel_1d = torch.tensor([[1 / 8, 3 / 8, 3 / 8, 1 / 8]])
self.pad = kernel_1d.shape[1] // 2 - 1
self.register_buffer("kernel", kernel_1d.T @ kernel_1d, persistent=False)
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
inputs = F.pad(inputs, (self.pad,) * 4, self.pad_mode)
weight = inputs.new_zeros(
[
inputs.shape[1],
inputs.shape[1],
self.kernel.shape[0],
self.kernel.shape[1],
]
)
indices = torch.arange(inputs.shape[1], device=inputs.device)
kernel = self.kernel.to(weight)[None, :].expand(inputs.shape[1], -1, -1)
weight[indices, indices] = kernel
return F.conv2d(inputs, weight, stride=2)
def downsample_2d(
hidden_states: torch.FloatTensor,
kernel: Optional[torch.FloatTensor] = None,
factor: int = 2,
gain: float = 1,
) -> torch.FloatTensor:
r"""Downsample2D a batch of 2D images with the given filter.
Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and downsamples each image with the
given filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the
specified `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its
shape is a multiple of the downsampling factor.
Args:
hidden_states (`torch.FloatTensor`)
Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
kernel (`torch.FloatTensor`, *optional*):
FIR filter of the shape `[firH, firW]` or `[firN]` (separable). The default is `[1] * factor`, which
corresponds to average pooling.
factor (`int`, *optional*, default to `2`):
Integer downsampling factor.
gain (`float`, *optional*, default to `1.0`):
Scaling factor for signal magnitude.
Returns:
output (`torch.FloatTensor`):
Tensor of the shape `[N, C, H // factor, W // factor]`
"""
assert isinstance(factor, int) and factor >= 1
if kernel is None:
kernel = [1] * factor
kernel = torch.tensor(kernel, dtype=torch.float32)
if kernel.ndim == 1:
kernel = torch.outer(kernel, kernel)
kernel /= torch.sum(kernel)
kernel = kernel * gain
pad_value = kernel.shape[0] - factor
output = upfirdn2d_native(
hidden_states,
kernel.to(device=hidden_states.device),
down=factor,
pad=((pad_value + 1) // 2, pad_value // 2),
)
return output
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import itertools
import os
import re
from collections import OrderedDict
from functools import partial
from typing import Any, Callable, List, Optional, Tuple, Union
import safetensors
import torch
from huggingface_hub import create_repo
from huggingface_hub.utils import validate_hf_hub_args
from torch import Tensor, nn
from .. import __version__
from ..utils import (
CONFIG_NAME,
FLAX_WEIGHTS_NAME,
SAFETENSORS_FILE_EXTENSION,
SAFETENSORS_WEIGHTS_NAME,
WEIGHTS_NAME,
_add_variant,
_get_model_file,
deprecate,
is_accelerate_available,
is_torch_version,
logging,
)
from ..utils.hub_utils import PushToHubMixin, load_or_create_model_card, populate_model_card
logger = logging.get_logger(__name__)
if is_torch_version(">=", "1.9.0"):
_LOW_CPU_MEM_USAGE_DEFAULT = True
else:
_LOW_CPU_MEM_USAGE_DEFAULT = False
if is_accelerate_available():
import accelerate
from accelerate.utils import set_module_tensor_to_device
from accelerate.utils.versions import is_torch_version
def get_parameter_device(parameter: torch.nn.Module) -> torch.device:
try:
parameters_and_buffers = itertools.chain(parameter.parameters(), parameter.buffers())
return next(parameters_and_buffers).device
except StopIteration:
# For torch.nn.DataParallel compatibility in PyTorch 1.5
def find_tensor_attributes(module: torch.nn.Module) -> List[Tuple[str, Tensor]]:
tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
return tuples
gen = parameter._named_members(get_members_fn=find_tensor_attributes)
first_tuple = next(gen)
return first_tuple[1].device
def get_parameter_dtype(parameter: torch.nn.Module) -> torch.dtype:
try:
params = tuple(parameter.parameters())
if len(params) > 0:
return params[0].dtype
buffers = tuple(parameter.buffers())
if len(buffers) > 0:
return buffers[0].dtype
except StopIteration:
# For torch.nn.DataParallel compatibility in PyTorch 1.5
def find_tensor_attributes(module: torch.nn.Module) -> List[Tuple[str, Tensor]]:
tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
return tuples
gen = parameter._named_members(get_members_fn=find_tensor_attributes)
first_tuple = next(gen)
return first_tuple[1].dtype
def load_state_dict(checkpoint_file: Union[str, os.PathLike], variant: Optional[str] = None):
"""
Reads a checkpoint file, returning properly formatted errors if they arise.
"""
try:
file_extension = os.path.basename(checkpoint_file).split(".")[-1]
if file_extension == SAFETENSORS_FILE_EXTENSION:
return safetensors.torch.load_file(checkpoint_file, device="cpu")
else:
return torch.load(checkpoint_file, map_location="cpu")
except Exception as e:
try:
with open(checkpoint_file) as f:
if f.read().startswith("version"):
raise OSError(
"You seem to have cloned a repository without having git-lfs installed. Please install "
"git-lfs and run `git lfs install` followed by `git lfs pull` in the folder "
"you cloned."
)
else:
raise ValueError(
f"Unable to locate the file {checkpoint_file} which is necessary to load this pretrained "
"model. Make sure you have saved the model properly."
) from e
except (UnicodeDecodeError, ValueError):
raise OSError(
f"Unable to load weights from checkpoint file for '{checkpoint_file}' " f"at '{checkpoint_file}'. "
)
def load_model_dict_into_meta(
model,
state_dict: OrderedDict,
device: Optional[Union[str, torch.device]] = None,
dtype: Optional[Union[str, torch.dtype]] = None,
model_name_or_path: Optional[str] = None,
) -> List[str]:
device = device or torch.device("cpu")
dtype = dtype or torch.float32
accepts_dtype = "dtype" in set(inspect.signature(set_module_tensor_to_device).parameters.keys())
unexpected_keys = []
empty_state_dict = model.state_dict()
for param_name, param in state_dict.items():
if param_name not in empty_state_dict:
unexpected_keys.append(param_name)
continue
if empty_state_dict[param_name].shape != param.shape:
model_name_or_path_str = f"{model_name_or_path} " if model_name_or_path is not None else ""
raise ValueError(
f"Cannot load {model_name_or_path_str}because {param_name} expected shape {empty_state_dict[param_name]}, but got {param.shape}. If you want to instead overwrite randomly initialized weights, please make sure to pass both `low_cpu_mem_usage=False` and `ignore_mismatched_sizes=True`. For more information, see also: https://github.com/huggingface/diffusers/issues/1619#issuecomment-1345604389 as an example."
)
if accepts_dtype:
set_module_tensor_to_device(model, param_name, device, value=param, dtype=dtype)
else:
set_module_tensor_to_device(model, param_name, device, value=param)
return unexpected_keys
def _load_state_dict_into_model(model_to_load, state_dict: OrderedDict) -> List[str]:
# Convert old format to new format if needed from a PyTorch state_dict
# copy state_dict so _load_from_state_dict can modify it
state_dict = state_dict.copy()
error_msgs = []
# PyTorch's `_load_from_state_dict` does not copy parameters in a module's descendants
# so we need to apply the function recursively.
def load(module: torch.nn.Module, prefix: str = ""):
args = (state_dict, prefix, {}, True, [], [], error_msgs)
module._load_from_state_dict(*args)
for name, child in module._modules.items():
if child is not None:
load(child, prefix + name + ".")
load(model_to_load)
return error_msgs
class ModelMixin(torch.nn.Module, PushToHubMixin):
r"""
Base class for all models.
[`ModelMixin`] takes care of storing the model configuration and provides methods for loading, downloading and
saving models.
- **config_name** ([`str`]) -- Filename to save a model to when calling [`~models.ModelMixin.save_pretrained`].
"""
config_name = CONFIG_NAME
_automatically_saved_args = ["_diffusers_version", "_class_name", "_name_or_path"]
_supports_gradient_checkpointing = False
_keys_to_ignore_on_load_unexpected = None
def __init__(self):
super().__init__()
def __getattr__(self, name: str) -> Any:
"""The only reason we overwrite `getattr` here is to gracefully deprecate accessing
config attributes directly. See https://github.com/huggingface/diffusers/pull/3129 We need to overwrite
__getattr__ here in addition so that we don't trigger `torch.nn.Module`'s __getattr__':
https://pytorch.org/docs/stable/_modules/torch/nn/modules/module.html#Module
"""
is_in_config = "_internal_dict" in self.__dict__ and hasattr(self.__dict__["_internal_dict"], name)
is_attribute = name in self.__dict__
if is_in_config and not is_attribute:
deprecation_message = f"Accessing config attribute `{name}` directly via '{type(self).__name__}' object attribute is deprecated. Please access '{name}' over '{type(self).__name__}'s config object instead, e.g. 'unet.config.{name}'."
deprecate("direct config name access", "1.0.0", deprecation_message, standard_warn=False, stacklevel=3)
return self._internal_dict[name]
# call PyTorch's https://pytorch.org/docs/stable/_modules/torch/nn/modules/module.html#Module
return super().__getattr__(name)
@property
def is_gradient_checkpointing(self) -> bool:
"""
Whether gradient checkpointing is activated for this model or not.
"""
return any(hasattr(m, "gradient_checkpointing") and m.gradient_checkpointing for m in self.modules())
def enable_gradient_checkpointing(self) -> None:
"""
Activates gradient checkpointing for the current model (may be referred to as *activation checkpointing* or
*checkpoint activations* in other frameworks).
"""
if not self._supports_gradient_checkpointing:
raise ValueError(f"{self.__class__.__name__} does not support gradient checkpointing.")
self.apply(partial(self._set_gradient_checkpointing, value=True))
def disable_gradient_checkpointing(self) -> None:
"""
Deactivates gradient checkpointing for the current model (may be referred to as *activation checkpointing* or
*checkpoint activations* in other frameworks).
"""
if self._supports_gradient_checkpointing:
self.apply(partial(self._set_gradient_checkpointing, value=False))
def set_use_memory_efficient_attention_xformers(
self, valid: bool, attention_op: Optional[Callable] = None
) -> None:
# Recursively walk through all the children.
# Any children which exposes the set_use_memory_efficient_attention_xformers method
# gets the message
def fn_recursive_set_mem_eff(module: torch.nn.Module):
if hasattr(module, "set_use_memory_efficient_attention_xformers"):
module.set_use_memory_efficient_attention_xformers(valid, attention_op)
for child in module.children():
fn_recursive_set_mem_eff(child)
for module in self.children():
if isinstance(module, torch.nn.Module):
fn_recursive_set_mem_eff(module)
def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable] = None) -> None:
r"""
Enable memory efficient attention from [xFormers](https://facebookresearch.github.io/xformers/).
When this option is enabled, you should observe lower GPU memory usage and a potential speed up during
inference. Speed up during training is not guaranteed.
<Tip warning={true}>
⚠️ When memory efficient attention and sliced attention are both enabled, memory efficient attention takes
precedent.
</Tip>
Parameters:
attention_op (`Callable`, *optional*):
Override the default `None` operator for use as `op` argument to the
[`memory_efficient_attention()`](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.memory_efficient_attention)
function of xFormers.
Examples:
```py
>>> import torch
>>> from diffusers import UNet2DConditionModel
>>> from xformers.ops import MemoryEfficientAttentionFlashAttentionOp
>>> model = UNet2DConditionModel.from_pretrained(
... "stabilityai/stable-diffusion-2-1", subfolder="unet", torch_dtype=torch.float16
... )
>>> model = model.to("cuda")
>>> model.enable_xformers_memory_efficient_attention(attention_op=MemoryEfficientAttentionFlashAttentionOp)
```
"""
self.set_use_memory_efficient_attention_xformers(True, attention_op)
def disable_xformers_memory_efficient_attention(self) -> None:
r"""
Disable memory efficient attention from [xFormers](https://facebookresearch.github.io/xformers/).
"""
self.set_use_memory_efficient_attention_xformers(False)
def save_pretrained(
self,
save_directory: Union[str, os.PathLike],
is_main_process: bool = True,
save_function: Optional[Callable] = None,
safe_serialization: bool = True,
variant: Optional[str] = None,
push_to_hub: bool = False,
**kwargs,
):
"""
Save a model and its configuration file to a directory so that it can be reloaded using the
[`~models.ModelMixin.from_pretrained`] class method.
Arguments:
save_directory (`str` or `os.PathLike`):
Directory to save a model and its configuration file to. Will be created if it doesn't exist.
is_main_process (`bool`, *optional*, defaults to `True`):
Whether the process calling this is the main process or not. Useful during distributed training and you
need to call this function on all processes. In this case, set `is_main_process=True` only on the main
process to avoid race conditions.
save_function (`Callable`):
The function to use to save the state dictionary. Useful during distributed training when you need to
replace `torch.save` with another method. Can be configured with the environment variable
`DIFFUSERS_SAVE_MODE`.
safe_serialization (`bool`, *optional*, defaults to `True`):
Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
variant (`str`, *optional*):
If specified, weights are saved in the format `pytorch_model.<variant>.bin`.
push_to_hub (`bool`, *optional*, defaults to `False`):
Whether or not to push your model to the Hugging Face Hub after saving it. You can specify the
repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
namespace).
kwargs (`Dict[str, Any]`, *optional*):
Additional keyword arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
"""
if os.path.isfile(save_directory):
logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
return
os.makedirs(save_directory, exist_ok=True)
if push_to_hub:
commit_message = kwargs.pop("commit_message", None)
private = kwargs.pop("private", False)
create_pr = kwargs.pop("create_pr", False)
token = kwargs.pop("token", None)
repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
repo_id = create_repo(repo_id, exist_ok=True, private=private, token=token).repo_id
# Only save the model itself if we are using distributed training
model_to_save = self
# Attach architecture to the config
# Save the config
if is_main_process:
model_to_save.save_config(save_directory)
# Save the model
state_dict = model_to_save.state_dict()
weights_name = SAFETENSORS_WEIGHTS_NAME if safe_serialization else WEIGHTS_NAME
weights_name = _add_variant(weights_name, variant)
# Save the model
if safe_serialization:
safetensors.torch.save_file(
state_dict, os.path.join(save_directory, weights_name), metadata={"format": "pt"}
)
else:
torch.save(state_dict, os.path.join(save_directory, weights_name))
logger.info(f"Model weights saved in {os.path.join(save_directory, weights_name)}")
if push_to_hub:
# Create a new empty model card and eventually tag it
model_card = load_or_create_model_card(repo_id, token=token)
model_card = populate_model_card(model_card)
model_card.save(os.path.join(save_directory, "README.md"))
self._upload_folder(
save_directory,
repo_id,
token=token,
commit_message=commit_message,
create_pr=create_pr,
)
@classmethod
@validate_hf_hub_args
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
r"""
Instantiate a pretrained PyTorch model from a pretrained model configuration.
The model is set in evaluation mode - `model.eval()` - by default, and dropout modules are deactivated. To
train the model, set it back in training mode with `model.train()`.
Parameters:
pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
Can be either:
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
the Hub.
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
with [`~ModelMixin.save_pretrained`].
cache_dir (`Union[str, os.PathLike]`, *optional*):
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
is not used.
torch_dtype (`str` or `torch.dtype`, *optional*):
Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
dtype is automatically derived from the model's weights.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
resume_download (`bool`, *optional*, defaults to `False`):
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
incompletely downloaded files are deleted.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
output_loading_info (`bool`, *optional*, defaults to `False`):
Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
local_files_only(`bool`, *optional*, defaults to `False`):
Whether to only load local model weights and configuration files or not. If set to `True`, the model
won't be downloaded from the Hub.
token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
`diffusers-cli login` (stored in `~/.huggingface`) is used.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
allowed by Git.
from_flax (`bool`, *optional*, defaults to `False`):
Load the model weights from a Flax checkpoint save file.
subfolder (`str`, *optional*, defaults to `""`):
The subfolder location of a model file within a larger model repository on the Hub or locally.
mirror (`str`, *optional*):
Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
information.
device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
A map that specifies where each submodule should go. It doesn't need to be defined for each
parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the
same device.
Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For
more information about each option see [designing a device
map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
max_memory (`Dict`, *optional*):
A dictionary device identifier for the maximum memory. Will default to the maximum memory available for
each GPU and the available CPU RAM if unset.
offload_folder (`str` or `os.PathLike`, *optional*):
The path to offload weights if `device_map` contains the value `"disk"`.
offload_state_dict (`bool`, *optional*):
If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if
the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True`
when there is some disk offload.
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
Speed up model loading only loading the pretrained weights and not initializing the weights. This also
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
argument to `True` will raise an error.
variant (`str`, *optional*):
Load weights from a specified `variant` filename such as `"fp16"` or `"ema"`. This is ignored when
loading `from_flax`.
use_safetensors (`bool`, *optional*, defaults to `None`):
If set to `None`, the `safetensors` weights are downloaded if they're available **and** if the
`safetensors` library is installed. If set to `True`, the model is forcibly loaded from `safetensors`
weights. If set to `False`, `safetensors` weights are not loaded.
<Tip>
To use private or [gated models](https://huggingface.co/docs/hub/models-gated#gated-models), log-in with
`huggingface-cli login`. You can also activate the special
["offline-mode"](https://huggingface.co/diffusers/installation.html#offline-mode) to use this method in a
firewalled environment.
</Tip>
Example:
```py
from diffusers import UNet2DConditionModel
unet = UNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="unet")
```
If you get the error message below, you need to finetune the weights for your downstream task:
```bash
Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
- conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
```
"""
cache_dir = kwargs.pop("cache_dir", None)
ignore_mismatched_sizes = kwargs.pop("ignore_mismatched_sizes", False)
force_download = kwargs.pop("force_download", False)
from_flax = kwargs.pop("from_flax", False)
resume_download = kwargs.pop("resume_download", False)
proxies = kwargs.pop("proxies", None)
output_loading_info = kwargs.pop("output_loading_info", False)
local_files_only = kwargs.pop("local_files_only", None)
token = kwargs.pop("token", None)
revision = kwargs.pop("revision", None)
torch_dtype = kwargs.pop("torch_dtype", None)
subfolder = kwargs.pop("subfolder", None)
device_map = kwargs.pop("device_map", None)
max_memory = kwargs.pop("max_memory", None)
offload_folder = kwargs.pop("offload_folder", None)
offload_state_dict = kwargs.pop("offload_state_dict", False)
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
variant = kwargs.pop("variant", None)
use_safetensors = kwargs.pop("use_safetensors", None)
allow_pickle = False
if use_safetensors is None:
use_safetensors = True
allow_pickle = True
if low_cpu_mem_usage and not is_accelerate_available():
low_cpu_mem_usage = False
logger.warning(
"Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
" environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
" `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
" install accelerate\n```\n."
)
if device_map is not None and not is_accelerate_available():
raise NotImplementedError(
"Loading and dispatching requires `accelerate`. Please make sure to install accelerate or set"
" `device_map=None`. You can install accelerate with `pip install accelerate`."
)
# Check if we can handle device_map and dispatching the weights
if device_map is not None and not is_torch_version(">=", "1.9.0"):
raise NotImplementedError(
"Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set"
" `device_map=None`."
)
if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
raise NotImplementedError(
"Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
" `low_cpu_mem_usage=False`."
)
if low_cpu_mem_usage is False and device_map is not None:
raise ValueError(
f"You cannot set `low_cpu_mem_usage` to `False` while using device_map={device_map} for loading and"
" dispatching. Please make sure to set `low_cpu_mem_usage=True`."
)
# Load config if we don't provide a configuration
config_path = pretrained_model_name_or_path
user_agent = {
"diffusers": __version__,
"file_type": "model",
"framework": "pytorch",
}
# load config
config, unused_kwargs, commit_hash = cls.load_config(
config_path,
cache_dir=cache_dir,
return_unused_kwargs=True,
return_commit_hash=True,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
token=token,
revision=revision,
subfolder=subfolder,
device_map=device_map,
max_memory=max_memory,
offload_folder=offload_folder,
offload_state_dict=offload_state_dict,
user_agent=user_agent,
**kwargs,
)
# load model
model_file = None
if from_flax:
model_file = _get_model_file(
pretrained_model_name_or_path,
weights_name=FLAX_WEIGHTS_NAME,
cache_dir=cache_dir,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
token=token,
revision=revision,
subfolder=subfolder,
user_agent=user_agent,
commit_hash=commit_hash,
)
model = cls.from_config(config, **unused_kwargs)
# Convert the weights
from .modeling_pytorch_flax_utils import load_flax_checkpoint_in_pytorch_model
model = load_flax_checkpoint_in_pytorch_model(model, model_file)
else:
if use_safetensors:
try:
model_file = _get_model_file(
pretrained_model_name_or_path,
weights_name=_add_variant(SAFETENSORS_WEIGHTS_NAME, variant),
cache_dir=cache_dir,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
token=token,
revision=revision,
subfolder=subfolder,
user_agent=user_agent,
commit_hash=commit_hash,
)
except IOError as e:
if not allow_pickle:
raise e
pass
if model_file is None:
model_file = _get_model_file(
pretrained_model_name_or_path,
weights_name=_add_variant(WEIGHTS_NAME, variant),
cache_dir=cache_dir,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
token=token,
revision=revision,
subfolder=subfolder,
user_agent=user_agent,
commit_hash=commit_hash,
)
if low_cpu_mem_usage:
# Instantiate model with empty weights
with accelerate.init_empty_weights():
model = cls.from_config(config, **unused_kwargs)
# if device_map is None, load the state dict and move the params from meta device to the cpu
if device_map is None:
param_device = "cpu"
state_dict = load_state_dict(model_file, variant=variant)
model._convert_deprecated_attention_blocks(state_dict)
# move the params from meta device to cpu
missing_keys = set(model.state_dict().keys()) - set(state_dict.keys())
if len(missing_keys) > 0:
raise ValueError(
f"Cannot load {cls} from {pretrained_model_name_or_path} because the following keys are"
f" missing: \n {', '.join(missing_keys)}. \n Please make sure to pass"
" `low_cpu_mem_usage=False` and `device_map=None` if you want to randomly initialize"
" those weights or else make sure your checkpoint file is correct."
)
unexpected_keys = load_model_dict_into_meta(
model,
state_dict,
device=param_device,
dtype=torch_dtype,
model_name_or_path=pretrained_model_name_or_path,
)
if cls._keys_to_ignore_on_load_unexpected is not None:
for pat in cls._keys_to_ignore_on_load_unexpected:
unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]
if len(unexpected_keys) > 0:
logger.warn(
f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}"
)
else: # else let accelerate handle loading and dispatching.
# Load weights and dispatch according to the device_map
# by default the device_map is None and the weights are loaded on the CPU
try:
accelerate.load_checkpoint_and_dispatch(
model,
model_file,
device_map,
max_memory=max_memory,
offload_folder=offload_folder,
offload_state_dict=offload_state_dict,
dtype=torch_dtype,
)
except AttributeError as e:
# When using accelerate loading, we do not have the ability to load the state
# dict and rename the weight names manually. Additionally, accelerate skips
# torch loading conventions and directly writes into `module.{_buffers, _parameters}`
# (which look like they should be private variables?), so we can't use the standard hooks
# to rename parameters on load. We need to mimic the original weight names so the correct
# attributes are available. After we have loaded the weights, we convert the deprecated
# names to the new non-deprecated names. Then we _greatly encourage_ the user to convert
# the weights so we don't have to do this again.
if "'Attention' object has no attribute" in str(e):
logger.warn(
f"Taking `{str(e)}` while using `accelerate.load_checkpoint_and_dispatch` to mean {pretrained_model_name_or_path}"
" was saved with deprecated attention block weight names. We will load it with the deprecated attention block"
" names and convert them on the fly to the new attention block format. Please re-save the model after this conversion,"
" so we don't have to do the on the fly renaming in the future. If the model is from a hub checkpoint,"
" please also re-upload it or open a PR on the original repository."
)
model._temp_convert_self_to_deprecated_attention_blocks()
accelerate.load_checkpoint_and_dispatch(
model,
model_file,
device_map,
max_memory=max_memory,
offload_folder=offload_folder,
offload_state_dict=offload_state_dict,
dtype=torch_dtype,
)
model._undo_temp_convert_self_to_deprecated_attention_blocks()
else:
raise e
loading_info = {
"missing_keys": [],
"unexpected_keys": [],
"mismatched_keys": [],
"error_msgs": [],
}
else:
model = cls.from_config(config, **unused_kwargs)
state_dict = load_state_dict(model_file, variant=variant)
model._convert_deprecated_attention_blocks(state_dict)
model, missing_keys, unexpected_keys, mismatched_keys, error_msgs = cls._load_pretrained_model(
model,
state_dict,
model_file,
pretrained_model_name_or_path,
ignore_mismatched_sizes=ignore_mismatched_sizes,
)
loading_info = {
"missing_keys": missing_keys,
"unexpected_keys": unexpected_keys,
"mismatched_keys": mismatched_keys,
"error_msgs": error_msgs,
}
if torch_dtype is not None and not isinstance(torch_dtype, torch.dtype):
raise ValueError(
f"{torch_dtype} needs to be of type `torch.dtype`, e.g. `torch.float16`, but is {type(torch_dtype)}."
)
elif torch_dtype is not None:
model = model.to(torch_dtype)
model.register_to_config(_name_or_path=pretrained_model_name_or_path)
# Set model in evaluation mode to deactivate DropOut modules by default
model.eval()
if output_loading_info:
return model, loading_info
return model
@classmethod
def _load_pretrained_model(
cls,
model,
state_dict: OrderedDict,
resolved_archive_file,
pretrained_model_name_or_path: Union[str, os.PathLike],
ignore_mismatched_sizes: bool = False,
):
# Retrieve missing & unexpected_keys
model_state_dict = model.state_dict()
loaded_keys = list(state_dict.keys())
expected_keys = list(model_state_dict.keys())
original_loaded_keys = loaded_keys
missing_keys = list(set(expected_keys) - set(loaded_keys))
unexpected_keys = list(set(loaded_keys) - set(expected_keys))
# Make sure we are able to load base models as well as derived models (with heads)
model_to_load = model
def _find_mismatched_keys(
state_dict,
model_state_dict,
loaded_keys,
ignore_mismatched_sizes,
):
mismatched_keys = []
if ignore_mismatched_sizes:
for checkpoint_key in loaded_keys:
model_key = checkpoint_key
if (
model_key in model_state_dict
and state_dict[checkpoint_key].shape != model_state_dict[model_key].shape
):
mismatched_keys.append(
(checkpoint_key, state_dict[checkpoint_key].shape, model_state_dict[model_key].shape)
)
del state_dict[checkpoint_key]
return mismatched_keys
if state_dict is not None:
# Whole checkpoint
mismatched_keys = _find_mismatched_keys(
state_dict,
model_state_dict,
original_loaded_keys,
ignore_mismatched_sizes,
)
error_msgs = _load_state_dict_into_model(model_to_load, state_dict)
if len(error_msgs) > 0:
error_msg = "\n\t".join(error_msgs)
if "size mismatch" in error_msg:
error_msg += (
"\n\tYou may consider adding `ignore_mismatched_sizes=True` in the model `from_pretrained` method."
)
raise RuntimeError(f"Error(s) in loading state_dict for {model.__class__.__name__}:\n\t{error_msg}")
if len(unexpected_keys) > 0:
logger.warning(
f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when"
f" initializing {model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are"
f" initializing {model.__class__.__name__} from the checkpoint of a model trained on another task"
" or with another architecture (e.g. initializing a BertForSequenceClassification model from a"
" BertForPreTraining model).\n- This IS NOT expected if you are initializing"
f" {model.__class__.__name__} from the checkpoint of a model that you expect to be exactly"
" identical (initializing a BertForSequenceClassification model from a"
" BertForSequenceClassification model)."
)
else:
logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n")
if len(missing_keys) > 0:
logger.warning(
f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
f" {pretrained_model_name_or_path} and are newly initialized: {missing_keys}\nYou should probably"
" TRAIN this model on a down-stream task to be able to use it for predictions and inference."
)
elif len(mismatched_keys) == 0:
logger.info(
f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at"
f" {pretrained_model_name_or_path}.\nIf your task is similar to the task the model of the"
f" checkpoint was trained on, you can already use {model.__class__.__name__} for predictions"
" without further training."
)
if len(mismatched_keys) > 0:
mismatched_warning = "\n".join(
[
f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated"
for key, shape1, shape2 in mismatched_keys
]
)
logger.warning(
f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
f" {pretrained_model_name_or_path} and are newly initialized because the shapes did not"
f" match:\n{mismatched_warning}\nYou should probably TRAIN this model on a down-stream task to be"
" able to use it for predictions and inference."
)
return model, missing_keys, unexpected_keys, mismatched_keys, error_msgs
@property
def device(self) -> torch.device:
"""
`torch.device`: The device on which the module is (assuming that all the module parameters are on the same
device).
"""
return get_parameter_device(self)
@property
def dtype(self) -> torch.dtype:
"""
`torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype).
"""
return get_parameter_dtype(self)
def num_parameters(self, only_trainable: bool = False, exclude_embeddings: bool = False) -> int:
"""
Get number of (trainable or non-embedding) parameters in the module.
Args:
only_trainable (`bool`, *optional*, defaults to `False`):
Whether or not to return only the number of trainable parameters.
exclude_embeddings (`bool`, *optional*, defaults to `False`):
Whether or not to return only the number of non-embedding parameters.
Returns:
`int`: The number of parameters.
Example:
```py
from diffusers import UNet2DConditionModel
model_id = "runwayml/stable-diffusion-v1-5"
unet = UNet2DConditionModel.from_pretrained(model_id, subfolder="unet")
unet.num_parameters(only_trainable=True)
859520964
```
"""
if exclude_embeddings:
embedding_param_names = [
f"{name}.weight"
for name, module_type in self.named_modules()
if isinstance(module_type, torch.nn.Embedding)
]
non_embedding_parameters = [
parameter for name, parameter in self.named_parameters() if name not in embedding_param_names
]
return sum(p.numel() for p in non_embedding_parameters if p.requires_grad or not only_trainable)
else:
return sum(p.numel() for p in self.parameters() if p.requires_grad or not only_trainable)
def _convert_deprecated_attention_blocks(self, state_dict: OrderedDict) -> None:
deprecated_attention_block_paths = []
def recursive_find_attn_block(name, module):
if hasattr(module, "_from_deprecated_attn_block") and module._from_deprecated_attn_block:
deprecated_attention_block_paths.append(name)
for sub_name, sub_module in module.named_children():
sub_name = sub_name if name == "" else f"{name}.{sub_name}"
recursive_find_attn_block(sub_name, sub_module)
recursive_find_attn_block("", self)
# NOTE: we have to check if the deprecated parameters are in the state dict
# because it is possible we are loading from a state dict that was already
# converted
for path in deprecated_attention_block_paths:
# group_norm path stays the same
# query -> to_q
if f"{path}.query.weight" in state_dict:
state_dict[f"{path}.to_q.weight"] = state_dict.pop(f"{path}.query.weight")
if f"{path}.query.bias" in state_dict:
state_dict[f"{path}.to_q.bias"] = state_dict.pop(f"{path}.query.bias")
# key -> to_k
if f"{path}.key.weight" in state_dict:
state_dict[f"{path}.to_k.weight"] = state_dict.pop(f"{path}.key.weight")
if f"{path}.key.bias" in state_dict:
state_dict[f"{path}.to_k.bias"] = state_dict.pop(f"{path}.key.bias")
# value -> to_v
if f"{path}.value.weight" in state_dict:
state_dict[f"{path}.to_v.weight"] = state_dict.pop(f"{path}.value.weight")
if f"{path}.value.bias" in state_dict:
state_dict[f"{path}.to_v.bias"] = state_dict.pop(f"{path}.value.bias")
# proj_attn -> to_out.0
if f"{path}.proj_attn.weight" in state_dict:
state_dict[f"{path}.to_out.0.weight"] = state_dict.pop(f"{path}.proj_attn.weight")
if f"{path}.proj_attn.bias" in state_dict:
state_dict[f"{path}.to_out.0.bias"] = state_dict.pop(f"{path}.proj_attn.bias")
def _temp_convert_self_to_deprecated_attention_blocks(self) -> None:
deprecated_attention_block_modules = []
def recursive_find_attn_block(module):
if hasattr(module, "_from_deprecated_attn_block") and module._from_deprecated_attn_block:
deprecated_attention_block_modules.append(module)
for sub_module in module.children():
recursive_find_attn_block(sub_module)
recursive_find_attn_block(self)
for module in deprecated_attention_block_modules:
module.query = module.to_q
module.key = module.to_k
module.value = module.to_v
module.proj_attn = module.to_out[0]
# We don't _have_ to delete the old attributes, but it's helpful to ensure
# that _all_ the weights are loaded into the new attributes and we're not
# making an incorrect assumption that this model should be converted when
# it really shouldn't be.
del module.to_q
del module.to_k
del module.to_v
del module.to_out
def _undo_temp_convert_self_to_deprecated_attention_blocks(self) -> None:
deprecated_attention_block_modules = []
def recursive_find_attn_block(module) -> None:
if hasattr(module, "_from_deprecated_attn_block") and module._from_deprecated_attn_block:
deprecated_attention_block_modules.append(module)
for sub_module in module.children():
recursive_find_attn_block(sub_module)
recursive_find_attn_block(self)
for module in deprecated_attention_block_modules:
module.to_q = module.query
module.to_k = module.key
module.to_v = module.value
module.to_out = nn.ModuleList([module.proj_attn, nn.Dropout(module.dropout)])
del module.query
del module.key
del module.value
del module.proj_attn
from typing import Any, Dict, Optional
import torch
import torch.nn.functional as F
from torch import nn
from ..utils import USE_PEFT_BACKEND
from ..utils.torch_utils import maybe_allow_in_graph
from .activations import GEGLU, GELU, ApproximateGELU
from .attention_processor import Attention
from .embeddings import SinusoidalPositionalEmbedding
from .lora import LoRACompatibleLinear
from .normalization import AdaLayerNorm, AdaLayerNormContinuous, AdaLayerNormZero, RMSNorm
def _chunked_feed_forward(
ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int, lora_scale: Optional[float] = None
):
# "feed_forward_chunk_size" can be used to save memory
if hidden_states.shape[chunk_dim] % chunk_size != 0:
raise ValueError(
f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
)
num_chunks = hidden_states.shape[chunk_dim] // chunk_size
if lora_scale is None:
ff_output = torch.cat(
[ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)],
dim=chunk_dim,
)
else:
# TOOD(Patrick): LoRA scale can be removed once PEFT refactor is complete
ff_output = torch.cat(
[ff(hid_slice, scale=lora_scale) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)],
dim=chunk_dim,
)
return ff_output
@maybe_allow_in_graph
class GatedSelfAttentionDense(nn.Module):
r"""
A gated self-attention dense layer that combines visual features and object features.
Parameters:
query_dim (`int`): The number of channels in the query.
context_dim (`int`): The number of channels in the context.
n_heads (`int`): The number of heads to use for attention.
d_head (`int`): The number of channels in each head.
"""
def __init__(self, query_dim: int, context_dim: int, n_heads: int, d_head: int):
super().__init__()
# we need a linear projection since we need cat visual feature and obj feature
self.linear = nn.Linear(context_dim, query_dim)
self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head)
self.ff = FeedForward(query_dim, activation_fn="geglu")
self.norm1 = nn.LayerNorm(query_dim)
self.norm2 = nn.LayerNorm(query_dim)
self.register_parameter("alpha_attn", nn.Parameter(torch.tensor(0.0)))
self.register_parameter("alpha_dense", nn.Parameter(torch.tensor(0.0)))
self.enabled = True
def forward(self, x: torch.Tensor, objs: torch.Tensor) -> torch.Tensor:
if not self.enabled:
return x
n_visual = x.shape[1]
objs = self.linear(objs)
x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :]
x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x))
return x
@maybe_allow_in_graph
class BasicTransformerBlock(nn.Module):
r"""
A basic Transformer block.
Parameters:
dim (`int`): The number of channels in the input and output.
num_attention_heads (`int`): The number of heads to use for multi-head attention.
attention_head_dim (`int`): The number of channels in each head.
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
num_embeds_ada_norm (:
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
attention_bias (:
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
only_cross_attention (`bool`, *optional*):
Whether to use only cross-attention layers. In this case two cross attention layers are used.
double_self_attention (`bool`, *optional*):
Whether to use two self-attention layers. In this case no cross attention layers are used.
upcast_attention (`bool`, *optional*):
Whether to upcast the attention computation to float32. This is useful for mixed precision training.
norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
Whether to use learnable elementwise affine parameters for normalization.
norm_type (`str`, *optional*, defaults to `"layer_norm"`):
The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.
final_dropout (`bool` *optional*, defaults to False):
Whether to apply a final dropout after the last feed-forward layer.
attention_type (`str`, *optional*, defaults to `"default"`):
The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`.
positional_embeddings (`str`, *optional*, defaults to `None`):
The type of positional embeddings to apply to.
num_positional_embeddings (`int`, *optional*, defaults to `None`):
The maximum number of positional embeddings to apply.
"""
def __init__(
self,
dim: int,
num_attention_heads: int,
attention_head_dim: int,
dropout=0.0,
cross_attention_dim: Optional[int] = None,
activation_fn: str = "geglu",
num_embeds_ada_norm: Optional[int] = None,
attention_bias: bool = False,
only_cross_attention: bool = False,
double_self_attention: bool = False,
upcast_attention: bool = False,
norm_elementwise_affine: bool = True,
norm_type: str = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single', 'ada_norm_continuous', 'layer_norm_i2vgen'
norm_eps: float = 1e-5,
final_dropout: bool = False,
attention_type: str = "default",
positional_embeddings: Optional[str] = None,
num_positional_embeddings: Optional[int] = None,
ada_norm_continous_conditioning_embedding_dim: Optional[int] = None,
ada_norm_bias: Optional[int] = None,
ff_inner_dim: Optional[int] = None,
ff_bias: bool = True,
attention_out_bias: bool = True,
):
super().__init__()
self.only_cross_attention = only_cross_attention
# We keep these boolean flags for backward-compatibility.
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
self.use_ada_layer_norm_single = norm_type == "ada_norm_single"
self.use_layer_norm = norm_type == "layer_norm"
self.use_ada_layer_norm_continuous = norm_type == "ada_norm_continuous"
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
raise ValueError(
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
)
self.norm_type = norm_type
self.num_embeds_ada_norm = num_embeds_ada_norm
if positional_embeddings and (num_positional_embeddings is None):
raise ValueError(
"If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined."
)
if positional_embeddings == "sinusoidal":
self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings)
else:
self.pos_embed = None
# Define 3 blocks. Each block has its own normalization layer.
# 1. Self-Attn
if norm_type == "ada_norm":
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
elif norm_type == "ada_norm_zero":
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
elif norm_type == "ada_norm_continuous":
self.norm1 = AdaLayerNormContinuous(
dim,
ada_norm_continous_conditioning_embedding_dim,
norm_elementwise_affine,
norm_eps,
ada_norm_bias,
"rms_norm",
)
else:
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
self.attn1 = Attention(
query_dim=dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
upcast_attention=upcast_attention,
out_bias=attention_out_bias,
)
# 2. Cross-Attn
if cross_attention_dim is not None or double_self_attention:
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
# the second cross attention block.
if norm_type == "ada_norm":
self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm)
elif norm_type == "ada_norm_continuous":
self.norm2 = AdaLayerNormContinuous(
dim,
ada_norm_continous_conditioning_embedding_dim,
norm_elementwise_affine,
norm_eps,
ada_norm_bias,
"rms_norm",
)
else:
self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
self.attn2 = Attention(
query_dim=dim,
cross_attention_dim=cross_attention_dim if not double_self_attention else None,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
upcast_attention=upcast_attention,
out_bias=attention_out_bias,
) # is self-attn if encoder_hidden_states is none
else:
self.norm2 = None
self.attn2 = None
# 3. Feed-forward
if norm_type == "ada_norm_continuous":
self.norm3 = AdaLayerNormContinuous(
dim,
ada_norm_continous_conditioning_embedding_dim,
norm_elementwise_affine,
norm_eps,
ada_norm_bias,
"layer_norm",
)
elif norm_type in ["ada_norm_zero", "ada_norm", "layer_norm", "ada_norm_continuous"]:
self.norm3 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
elif norm_type == "layer_norm_i2vgen":
self.norm3 = None
self.ff = FeedForward(
dim,
dropout=dropout,
activation_fn=activation_fn,
final_dropout=final_dropout,
inner_dim=ff_inner_dim,
bias=ff_bias,
)
# 4. Fuser
if attention_type == "gated" or attention_type == "gated-text-image":
self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim)
# 5. Scale-shift for PixArt-Alpha.
if norm_type == "ada_norm_single":
self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5)
# let chunk size default to None
self._chunk_size = None
self._chunk_dim = 0
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
# Sets chunk feed-forward
self._chunk_size = chunk_size
self._chunk_dim = dim
def forward(
self,
hidden_states: torch.FloatTensor,
attention_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
timestep: Optional[torch.LongTensor] = None,
cross_attention_kwargs: Dict[str, Any] = None,
class_labels: Optional[torch.LongTensor] = None,
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
) -> torch.FloatTensor:
# Notice that normalization is always applied before the real computation in the following blocks.
# 0. Self-Attention
batch_size = hidden_states.shape[0]
if self.norm_type == "ada_norm":
norm_hidden_states = self.norm1(hidden_states, timestep)
elif self.norm_type == "ada_norm_zero":
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
)
elif self.norm_type in ["layer_norm", "layer_norm_i2vgen"]:
norm_hidden_states = self.norm1(hidden_states)
elif self.norm_type == "ada_norm_continuous":
norm_hidden_states = self.norm1(hidden_states, added_cond_kwargs["pooled_text_emb"])
elif self.norm_type == "ada_norm_single":
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
).chunk(6, dim=1)
norm_hidden_states = self.norm1(hidden_states)
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
norm_hidden_states = norm_hidden_states.squeeze(1)
else:
raise ValueError("Incorrect norm used")
if self.pos_embed is not None:
norm_hidden_states = self.pos_embed(norm_hidden_states)
# 1. Retrieve lora scale.
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
# 2. Prepare GLIGEN inputs
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
gligen_kwargs = cross_attention_kwargs.pop("gligen", None)
attn_output = self.attn1(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
attention_mask=attention_mask,
**cross_attention_kwargs,
)
if self.norm_type == "ada_norm_zero":
attn_output = gate_msa.unsqueeze(1) * attn_output
elif self.norm_type == "ada_norm_single":
attn_output = gate_msa * attn_output
hidden_states = attn_output + hidden_states
if hidden_states.ndim == 4:
hidden_states = hidden_states.squeeze(1)
# 2.5 GLIGEN Control
if gligen_kwargs is not None:
hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])
# 3. Cross-Attention
if self.attn2 is not None:
if self.norm_type == "ada_norm":
norm_hidden_states = self.norm2(hidden_states, timestep)
elif self.norm_type in ["ada_norm_zero", "layer_norm", "layer_norm_i2vgen"]:
norm_hidden_states = self.norm2(hidden_states)
elif self.norm_type == "ada_norm_single":
# For PixArt norm2 isn't applied here:
# https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
norm_hidden_states = hidden_states
elif self.norm_type == "ada_norm_continuous":
norm_hidden_states = self.norm2(hidden_states, added_cond_kwargs["pooled_text_emb"])
else:
raise ValueError("Incorrect norm")
if self.pos_embed is not None and self.norm_type != "ada_norm_single":
norm_hidden_states = self.pos_embed(norm_hidden_states)
attn_output = self.attn2(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
**cross_attention_kwargs,
)
hidden_states = attn_output + hidden_states
# 4. Feed-forward
# i2vgen doesn't have this norm 🤷‍♂️
if self.norm_type == "ada_norm_continuous":
norm_hidden_states = self.norm3(hidden_states, added_cond_kwargs["pooled_text_emb"])
elif not self.norm_type == "ada_norm_single":
norm_hidden_states = self.norm3(hidden_states)
if self.norm_type == "ada_norm_zero":
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
if self.norm_type == "ada_norm_single":
norm_hidden_states = self.norm2(hidden_states)
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
if self._chunk_size is not None:
# "feed_forward_chunk_size" can be used to save memory
ff_output = _chunked_feed_forward(
self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size, lora_scale=lora_scale
)
else:
ff_output = self.ff(norm_hidden_states, scale=lora_scale)
if self.norm_type == "ada_norm_zero":
ff_output = gate_mlp.unsqueeze(1) * ff_output
elif self.norm_type == "ada_norm_single":
ff_output = gate_mlp * ff_output
hidden_states = ff_output + hidden_states
if hidden_states.ndim == 4:
hidden_states = hidden_states.squeeze(1)
return hidden_states
@maybe_allow_in_graph
class TemporalBasicTransformerBlock(nn.Module):
r"""
A basic Transformer block for video like data.
Parameters:
dim (`int`): The number of channels in the input and output.
time_mix_inner_dim (`int`): The number of channels for temporal attention.
num_attention_heads (`int`): The number of heads to use for multi-head attention.
attention_head_dim (`int`): The number of channels in each head.
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
"""
def __init__(
self,
dim: int,
time_mix_inner_dim: int,
num_attention_heads: int,
attention_head_dim: int,
cross_attention_dim: Optional[int] = None,
):
super().__init__()
self.is_res = dim == time_mix_inner_dim
self.norm_in = nn.LayerNorm(dim)
# Define 3 blocks. Each block has its own normalization layer.
# 1. Self-Attn
self.ff_in = FeedForward(
dim,
dim_out=time_mix_inner_dim,
activation_fn="geglu",
)
self.norm1 = nn.LayerNorm(time_mix_inner_dim)
self.attn1 = Attention(
query_dim=time_mix_inner_dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
cross_attention_dim=None,
)
# 2. Cross-Attn
if cross_attention_dim is not None:
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
# the second cross attention block.
self.norm2 = nn.LayerNorm(time_mix_inner_dim)
self.attn2 = Attention(
query_dim=time_mix_inner_dim,
cross_attention_dim=cross_attention_dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
) # is self-attn if encoder_hidden_states is none
else:
self.norm2 = None
self.attn2 = None
# 3. Feed-forward
self.norm3 = nn.LayerNorm(time_mix_inner_dim)
self.ff = FeedForward(time_mix_inner_dim, activation_fn="geglu")
# let chunk size default to None
self._chunk_size = None
self._chunk_dim = None
def set_chunk_feed_forward(self, chunk_size: Optional[int], **kwargs):
# Sets chunk feed-forward
self._chunk_size = chunk_size
# chunk dim should be hardcoded to 1 to have better speed vs. memory trade-off
self._chunk_dim = 1
def forward(
self,
hidden_states: torch.FloatTensor,
num_frames: int,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
) -> torch.FloatTensor:
# Notice that normalization is always applied before the real computation in the following blocks.
# 0. Self-Attention
batch_size = hidden_states.shape[0]
batch_frames, seq_length, channels = hidden_states.shape
batch_size = batch_frames // num_frames
hidden_states = hidden_states[None, :].reshape(batch_size, num_frames, seq_length, channels)
hidden_states = hidden_states.permute(0, 2, 1, 3)
hidden_states = hidden_states.reshape(batch_size * seq_length, num_frames, channels)
residual = hidden_states
hidden_states = self.norm_in(hidden_states)
if self._chunk_size is not None:
hidden_states = _chunked_feed_forward(self.ff_in, hidden_states, self._chunk_dim, self._chunk_size)
else:
hidden_states = self.ff_in(hidden_states)
if self.is_res:
hidden_states = hidden_states + residual
norm_hidden_states = self.norm1(hidden_states)
attn_output = self.attn1(norm_hidden_states, encoder_hidden_states=None)
hidden_states = attn_output + hidden_states
# 3. Cross-Attention
if self.attn2 is not None:
norm_hidden_states = self.norm2(hidden_states)
attn_output = self.attn2(norm_hidden_states, encoder_hidden_states=encoder_hidden_states)
hidden_states = attn_output + hidden_states
# 4. Feed-forward
norm_hidden_states = self.norm3(hidden_states)
if self._chunk_size is not None:
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
else:
ff_output = self.ff(norm_hidden_states)
if self.is_res:
hidden_states = ff_output + hidden_states
else:
hidden_states = ff_output
hidden_states = hidden_states[None, :].reshape(batch_size, seq_length, num_frames, channels)
hidden_states = hidden_states.permute(0, 2, 1, 3)
hidden_states = hidden_states.reshape(batch_size * num_frames, seq_length, channels)
return hidden_states
class SkipFFTransformerBlock(nn.Module):
def __init__(
self,
dim: int,
num_attention_heads: int,
attention_head_dim: int,
kv_input_dim: int,
kv_input_dim_proj_use_bias: bool,
dropout=0.0,
cross_attention_dim: Optional[int] = None,
attention_bias: bool = False,
attention_out_bias: bool = True,
):
super().__init__()
if kv_input_dim != dim:
self.kv_mapper = nn.Linear(kv_input_dim, dim, kv_input_dim_proj_use_bias)
else:
self.kv_mapper = None
self.norm1 = RMSNorm(dim, 1e-06)
self.attn1 = Attention(
query_dim=dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
cross_attention_dim=cross_attention_dim,
out_bias=attention_out_bias,
)
self.norm2 = RMSNorm(dim, 1e-06)
self.attn2 = Attention(
query_dim=dim,
cross_attention_dim=cross_attention_dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
out_bias=attention_out_bias,
)
def forward(self, hidden_states, encoder_hidden_states, cross_attention_kwargs):
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
if self.kv_mapper is not None:
encoder_hidden_states = self.kv_mapper(F.silu(encoder_hidden_states))
norm_hidden_states = self.norm1(hidden_states)
attn_output = self.attn1(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states,
**cross_attention_kwargs,
)
hidden_states = attn_output + hidden_states
norm_hidden_states = self.norm2(hidden_states)
attn_output = self.attn2(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states,
**cross_attention_kwargs,
)
hidden_states = attn_output + hidden_states
return hidden_states
class FeedForward(nn.Module):
r"""
A feed-forward layer.
Parameters:
dim (`int`): The number of channels in the input.
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
"""
def __init__(
self,
dim: int,
dim_out: Optional[int] = None,
mult: int = 4,
dropout: float = 0.0,
activation_fn: str = "geglu",
final_dropout: bool = False,
inner_dim=None,
bias: bool = True,
):
super().__init__()
if inner_dim is None:
inner_dim = int(dim * mult)
dim_out = dim_out if dim_out is not None else dim
linear_cls = LoRACompatibleLinear if not USE_PEFT_BACKEND else nn.Linear
if activation_fn == "gelu":
act_fn = GELU(dim, inner_dim, bias=bias)
if activation_fn == "gelu-approximate":
act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias)
elif activation_fn == "geglu":
act_fn = GEGLU(dim, inner_dim, bias=bias)
elif activation_fn == "geglu-approximate":
act_fn = ApproximateGELU(dim, inner_dim, bias=bias)
self.net = nn.ModuleList([])
# project in
self.net.append(act_fn)
# project dropout
self.net.append(nn.Dropout(dropout))
# project out
self.net.append(linear_cls(inner_dim, dim_out, bias=bias))
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
if final_dropout:
self.net.append(nn.Dropout(dropout))
def forward(self, hidden_states: torch.Tensor, scale: float = 1.0) -> torch.Tensor:
compatible_cls = (GEGLU,) if USE_PEFT_BACKEND else (GEGLU, LoRACompatibleLinear)
for module in self.net:
if isinstance(module, compatible_cls):
hidden_states = module(hidden_states, scale)
else:
hidden_states = module(hidden_states)
return hidden_states
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from ..utils.accelerate_utils import apply_forward_hook
from .autoencoders.vae import Decoder, DecoderOutput, Encoder, VectorQuantizer
from .modeling_utils import ModelMixin
@dataclass
class VQEncoderOutput(BaseOutput):
"""
Output of VQModel encoding method.
Args:
latents (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
The encoded output sample from the last layer of the model.
"""
latents: torch.FloatTensor
class VQModel(ModelMixin, ConfigMixin):
r"""
A VQ-VAE model for decoding latent representations.
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
for all models (such as downloading or saving).
Parameters:
in_channels (int, *optional*, defaults to 3): Number of channels in the input image.
out_channels (int, *optional*, defaults to 3): Number of channels in the output.
down_block_types (`Tuple[str]`, *optional*, defaults to `("DownEncoderBlock2D",)`):
Tuple of downsample block types.
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
Tuple of upsample block types.
block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`):
Tuple of block output channels.
layers_per_block (`int`, *optional*, defaults to `1`): Number of layers per block.
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
latent_channels (`int`, *optional*, defaults to `3`): Number of channels in the latent space.
sample_size (`int`, *optional*, defaults to `32`): Sample input size.
num_vq_embeddings (`int`, *optional*, defaults to `256`): Number of codebook vectors in the VQ-VAE.
norm_num_groups (`int`, *optional*, defaults to `32`): Number of groups for normalization layers.
vq_embed_dim (`int`, *optional*): Hidden dim of codebook vectors in the VQ-VAE.
scaling_factor (`float`, *optional*, defaults to `0.18215`):
The component-wise standard deviation of the trained latent space computed using the first batch of the
training set. This is used to scale the latent space to have unit variance when training the diffusion
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
/ scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
norm_type (`str`, *optional*, defaults to `"group"`):
Type of normalization layer to use. Can be one of `"group"` or `"spatial"`.
"""
@register_to_config
def __init__(
self,
in_channels: int = 3,
out_channels: int = 3,
down_block_types: Tuple[str, ...] = ("DownEncoderBlock2D",),
up_block_types: Tuple[str, ...] = ("UpDecoderBlock2D",),
block_out_channels: Tuple[int, ...] = (64,),
layers_per_block: int = 1,
act_fn: str = "silu",
latent_channels: int = 3,
sample_size: int = 32,
num_vq_embeddings: int = 256,
norm_num_groups: int = 32,
vq_embed_dim: Optional[int] = None,
scaling_factor: float = 0.18215,
norm_type: str = "group", # group, spatial
mid_block_add_attention=True,
lookup_from_codebook=False,
force_upcast=False,
):
super().__init__()
# pass init params to Encoder
self.encoder = Encoder(
in_channels=in_channels,
out_channels=latent_channels,
down_block_types=down_block_types,
block_out_channels=block_out_channels,
layers_per_block=layers_per_block,
act_fn=act_fn,
norm_num_groups=norm_num_groups,
double_z=False,
mid_block_add_attention=mid_block_add_attention,
)
vq_embed_dim = vq_embed_dim if vq_embed_dim is not None else latent_channels
self.quant_conv = nn.Conv2d(latent_channels, vq_embed_dim, 1)
self.quantize = VectorQuantizer(num_vq_embeddings, vq_embed_dim, beta=0.25, remap=None, sane_index_shape=False)
self.post_quant_conv = nn.Conv2d(vq_embed_dim, latent_channels, 1)
# pass init params to Decoder
self.decoder = Decoder(
in_channels=latent_channels,
out_channels=out_channels,
up_block_types=up_block_types,
block_out_channels=block_out_channels,
layers_per_block=layers_per_block,
act_fn=act_fn,
norm_num_groups=norm_num_groups,
norm_type=norm_type,
mid_block_add_attention=mid_block_add_attention,
)
@apply_forward_hook
def encode(self, x: torch.FloatTensor, return_dict: bool = True) -> VQEncoderOutput:
h = self.encoder(x)
h = self.quant_conv(h)
if not return_dict:
return (h,)
return VQEncoderOutput(latents=h)
@apply_forward_hook
def decode(
self, h: torch.FloatTensor, force_not_quantize: bool = False, return_dict: bool = True, shape=None
) -> Union[DecoderOutput, torch.FloatTensor]:
# also go through quantization layer
if not force_not_quantize:
quant, _, _ = self.quantize(h)
elif self.config.lookup_from_codebook:
quant = self.quantize.get_codebook_entry(h, shape)
else:
quant = h
quant2 = self.post_quant_conv(quant)
dec = self.decoder(quant2, quant if self.config.norm_type == "spatial" else None)
if not return_dict:
return (dec,)
return DecoderOutput(sample=dec)
def forward(
self, sample: torch.FloatTensor, return_dict: bool = True
) -> Union[DecoderOutput, Tuple[torch.FloatTensor, ...]]:
r"""
The [`VQModel`] forward method.
Args:
sample (`torch.FloatTensor`): Input sample.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`models.vq_model.VQEncoderOutput`] instead of a plain tuple.
Returns:
[`~models.vq_model.VQEncoderOutput`] or `tuple`:
If return_dict is True, a [`~models.vq_model.VQEncoderOutput`] is returned, otherwise a plain `tuple`
is returned.
"""
h = self.encode(sample).latents
dec = self.decode(h).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=dec)
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch - Flax general utilities."""
from pickle import UnpicklingError
import jax
import jax.numpy as jnp
import numpy as np
from flax.serialization import from_bytes
from flax.traverse_util import flatten_dict
from ..utils import logging
logger = logging.get_logger(__name__)
#####################
# Flax => PyTorch #
#####################
# from https://github.com/huggingface/transformers/blob/main/src/transformers/modeling_flax_pytorch_utils.py#L224-L352
def load_flax_checkpoint_in_pytorch_model(pt_model, model_file):
try:
with open(model_file, "rb") as flax_state_f:
flax_state = from_bytes(None, flax_state_f.read())
except UnpicklingError as e:
try:
with open(model_file) as f:
if f.read().startswith("version"):
raise OSError(
"You seem to have cloned a repository without having git-lfs installed. Please"
" install git-lfs and run `git lfs install` followed by `git lfs pull` in the"
" folder you cloned."
)
else:
raise ValueError from e
except (UnicodeDecodeError, ValueError):
raise EnvironmentError(f"Unable to convert {model_file} to Flax deserializable object. ")
return load_flax_weights_in_pytorch_model(pt_model, flax_state)
def load_flax_weights_in_pytorch_model(pt_model, flax_state):
"""Load flax checkpoints in a PyTorch model"""
try:
import torch # noqa: F401
except ImportError:
logger.error(
"Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see"
" https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation"
" instructions."
)
raise
# check if we have bf16 weights
is_type_bf16 = flatten_dict(jax.tree_util.tree_map(lambda x: x.dtype == jnp.bfloat16, flax_state)).values()
if any(is_type_bf16):
# convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16
# and bf16 is not fully supported in PT yet.
logger.warning(
"Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` "
"before loading those in PyTorch model."
)
flax_state = jax.tree_util.tree_map(
lambda params: params.astype(np.float32) if params.dtype == jnp.bfloat16 else params, flax_state
)
pt_model.base_model_prefix = ""
flax_state_dict = flatten_dict(flax_state, sep=".")
pt_model_dict = pt_model.state_dict()
# keep track of unexpected & missing keys
unexpected_keys = []
missing_keys = set(pt_model_dict.keys())
for flax_key_tuple, flax_tensor in flax_state_dict.items():
flax_key_tuple_array = flax_key_tuple.split(".")
if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4:
flax_key_tuple_array = flax_key_tuple_array[:-1] + ["weight"]
flax_tensor = jnp.transpose(flax_tensor, (3, 2, 0, 1))
elif flax_key_tuple_array[-1] == "kernel":
flax_key_tuple_array = flax_key_tuple_array[:-1] + ["weight"]
flax_tensor = flax_tensor.T
elif flax_key_tuple_array[-1] == "scale":
flax_key_tuple_array = flax_key_tuple_array[:-1] + ["weight"]
if "time_embedding" not in flax_key_tuple_array:
for i, flax_key_tuple_string in enumerate(flax_key_tuple_array):
flax_key_tuple_array[i] = (
flax_key_tuple_string.replace("_0", ".0")
.replace("_1", ".1")
.replace("_2", ".2")
.replace("_3", ".3")
.replace("_4", ".4")
.replace("_5", ".5")
.replace("_6", ".6")
.replace("_7", ".7")
.replace("_8", ".8")
.replace("_9", ".9")
)
flax_key = ".".join(flax_key_tuple_array)
if flax_key in pt_model_dict:
if flax_tensor.shape != pt_model_dict[flax_key].shape:
raise ValueError(
f"Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected "
f"to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}."
)
else:
# add weight to pytorch dict
flax_tensor = np.asarray(flax_tensor) if not isinstance(flax_tensor, np.ndarray) else flax_tensor
pt_model_dict[flax_key] = torch.from_numpy(flax_tensor)
# remove from missing keys
missing_keys.remove(flax_key)
else:
# weight is not expected by PyTorch model
unexpected_keys.append(flax_key)
pt_model.load_state_dict(pt_model_dict)
# re-transform missing_keys to list
missing_keys = list(missing_keys)
if len(unexpected_keys) > 0:
logger.warning(
"Some weights of the Flax model were not used when initializing the PyTorch model"
f" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing"
f" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture"
" (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This"
f" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect"
" to be exactly identical (e.g. initializing a BertForSequenceClassification model from a"
" FlaxBertForSequenceClassification model)."
)
if len(missing_keys) > 0:
logger.warning(
f"Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly"
f" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to"
" use it for predictions and inference."
)
return pt_model
import functools
import math
import flax.linen as nn
import jax
import jax.numpy as jnp
def _query_chunk_attention(query, key, value, precision, key_chunk_size: int = 4096):
"""Multi-head dot product attention with a limited number of queries."""
num_kv, num_heads, k_features = key.shape[-3:]
v_features = value.shape[-1]
key_chunk_size = min(key_chunk_size, num_kv)
query = query / jnp.sqrt(k_features)
@functools.partial(jax.checkpoint, prevent_cse=False)
def summarize_chunk(query, key, value):
attn_weights = jnp.einsum("...qhd,...khd->...qhk", query, key, precision=precision)
max_score = jnp.max(attn_weights, axis=-1, keepdims=True)
max_score = jax.lax.stop_gradient(max_score)
exp_weights = jnp.exp(attn_weights - max_score)
exp_values = jnp.einsum("...vhf,...qhv->...qhf", value, exp_weights, precision=precision)
max_score = jnp.einsum("...qhk->...qh", max_score)
return (exp_values, exp_weights.sum(axis=-1), max_score)
def chunk_scanner(chunk_idx):
# julienne key array
key_chunk = jax.lax.dynamic_slice(
operand=key,
start_indices=[0] * (key.ndim - 3) + [chunk_idx, 0, 0], # [...,k,h,d]
slice_sizes=list(key.shape[:-3]) + [key_chunk_size, num_heads, k_features], # [...,k,h,d]
)
# julienne value array
value_chunk = jax.lax.dynamic_slice(
operand=value,
start_indices=[0] * (value.ndim - 3) + [chunk_idx, 0, 0], # [...,v,h,d]
slice_sizes=list(value.shape[:-3]) + [key_chunk_size, num_heads, v_features], # [...,v,h,d]
)
return summarize_chunk(query, key_chunk, value_chunk)
chunk_values, chunk_weights, chunk_max = jax.lax.map(f=chunk_scanner, xs=jnp.arange(0, num_kv, key_chunk_size))
global_max = jnp.max(chunk_max, axis=0, keepdims=True)
max_diffs = jnp.exp(chunk_max - global_max)
chunk_values *= jnp.expand_dims(max_diffs, axis=-1)
chunk_weights *= max_diffs
all_values = chunk_values.sum(axis=0)
all_weights = jnp.expand_dims(chunk_weights, -1).sum(axis=0)
return all_values / all_weights
def jax_memory_efficient_attention(
query, key, value, precision=jax.lax.Precision.HIGHEST, query_chunk_size: int = 1024, key_chunk_size: int = 4096
):
r"""
Flax Memory-efficient multi-head dot product attention. https://arxiv.org/abs/2112.05682v2
https://github.com/AminRezaei0x443/memory-efficient-attention
Args:
query (`jnp.ndarray`): (batch..., query_length, head, query_key_depth_per_head)
key (`jnp.ndarray`): (batch..., key_value_length, head, query_key_depth_per_head)
value (`jnp.ndarray`): (batch..., key_value_length, head, value_depth_per_head)
precision (`jax.lax.Precision`, *optional*, defaults to `jax.lax.Precision.HIGHEST`):
numerical precision for computation
query_chunk_size (`int`, *optional*, defaults to 1024):
chunk size to divide query array value must divide query_length equally without remainder
key_chunk_size (`int`, *optional*, defaults to 4096):
chunk size to divide key and value array value must divide key_value_length equally without remainder
Returns:
(`jnp.ndarray`) with shape of (batch..., query_length, head, value_depth_per_head)
"""
num_q, num_heads, q_features = query.shape[-3:]
def chunk_scanner(chunk_idx, _):
# julienne query array
query_chunk = jax.lax.dynamic_slice(
operand=query,
start_indices=([0] * (query.ndim - 3)) + [chunk_idx, 0, 0], # [...,q,h,d]
slice_sizes=list(query.shape[:-3]) + [min(query_chunk_size, num_q), num_heads, q_features], # [...,q,h,d]
)
return (
chunk_idx + query_chunk_size, # unused ignore it
_query_chunk_attention(
query=query_chunk, key=key, value=value, precision=precision, key_chunk_size=key_chunk_size
),
)
_, res = jax.lax.scan(
f=chunk_scanner,
init=0,
xs=None,
length=math.ceil(num_q / query_chunk_size), # start counter # stop counter
)
return jnp.concatenate(res, axis=-3) # fuse the chunked result back
class FlaxAttention(nn.Module):
r"""
A Flax multi-head attention module as described in: https://arxiv.org/abs/1706.03762
Parameters:
query_dim (:obj:`int`):
Input hidden states dimension
heads (:obj:`int`, *optional*, defaults to 8):
Number of heads
dim_head (:obj:`int`, *optional*, defaults to 64):
Hidden states dimension inside each head
dropout (:obj:`float`, *optional*, defaults to 0.0):
Dropout rate
use_memory_efficient_attention (`bool`, *optional*, defaults to `False`):
enable memory efficient attention https://arxiv.org/abs/2112.05682
split_head_dim (`bool`, *optional*, defaults to `False`):
Whether to split the head dimension into a new axis for the self-attention computation. In most cases,
enabling this flag should speed up the computation for Stable Diffusion 2.x and Stable Diffusion XL.
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
Parameters `dtype`
"""
query_dim: int
heads: int = 8
dim_head: int = 64
dropout: float = 0.0
use_memory_efficient_attention: bool = False
split_head_dim: bool = False
dtype: jnp.dtype = jnp.float32
def setup(self):
inner_dim = self.dim_head * self.heads
self.scale = self.dim_head**-0.5
# Weights were exported with old names {to_q, to_k, to_v, to_out}
self.query = nn.Dense(inner_dim, use_bias=False, dtype=self.dtype, name="to_q")
self.key = nn.Dense(inner_dim, use_bias=False, dtype=self.dtype, name="to_k")
self.value = nn.Dense(inner_dim, use_bias=False, dtype=self.dtype, name="to_v")
self.proj_attn = nn.Dense(self.query_dim, dtype=self.dtype, name="to_out_0")
self.dropout_layer = nn.Dropout(rate=self.dropout)
def reshape_heads_to_batch_dim(self, tensor):
batch_size, seq_len, dim = tensor.shape
head_size = self.heads
tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
tensor = jnp.transpose(tensor, (0, 2, 1, 3))
tensor = tensor.reshape(batch_size * head_size, seq_len, dim // head_size)
return tensor
def reshape_batch_dim_to_heads(self, tensor):
batch_size, seq_len, dim = tensor.shape
head_size = self.heads
tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
tensor = jnp.transpose(tensor, (0, 2, 1, 3))
tensor = tensor.reshape(batch_size // head_size, seq_len, dim * head_size)
return tensor
def __call__(self, hidden_states, context=None, deterministic=True):
context = hidden_states if context is None else context
query_proj = self.query(hidden_states)
key_proj = self.key(context)
value_proj = self.value(context)
if self.split_head_dim:
b = hidden_states.shape[0]
query_states = jnp.reshape(query_proj, (b, -1, self.heads, self.dim_head))
key_states = jnp.reshape(key_proj, (b, -1, self.heads, self.dim_head))
value_states = jnp.reshape(value_proj, (b, -1, self.heads, self.dim_head))
else:
query_states = self.reshape_heads_to_batch_dim(query_proj)
key_states = self.reshape_heads_to_batch_dim(key_proj)
value_states = self.reshape_heads_to_batch_dim(value_proj)
if self.use_memory_efficient_attention:
query_states = query_states.transpose(1, 0, 2)
key_states = key_states.transpose(1, 0, 2)
value_states = value_states.transpose(1, 0, 2)
# this if statement create a chunk size for each layer of the unet
# the chunk size is equal to the query_length dimension of the deepest layer of the unet
flatten_latent_dim = query_states.shape[-3]
if flatten_latent_dim % 64 == 0:
query_chunk_size = int(flatten_latent_dim / 64)
elif flatten_latent_dim % 16 == 0:
query_chunk_size = int(flatten_latent_dim / 16)
elif flatten_latent_dim % 4 == 0:
query_chunk_size = int(flatten_latent_dim / 4)
else:
query_chunk_size = int(flatten_latent_dim)
hidden_states = jax_memory_efficient_attention(
query_states, key_states, value_states, query_chunk_size=query_chunk_size, key_chunk_size=4096 * 4
)
hidden_states = hidden_states.transpose(1, 0, 2)
else:
# compute attentions
if self.split_head_dim:
attention_scores = jnp.einsum("b t n h, b f n h -> b n f t", key_states, query_states)
else:
attention_scores = jnp.einsum("b i d, b j d->b i j", query_states, key_states)
attention_scores = attention_scores * self.scale
attention_probs = nn.softmax(attention_scores, axis=-1 if self.split_head_dim else 2)
# attend to values
if self.split_head_dim:
hidden_states = jnp.einsum("b n f t, b t n h -> b f n h", attention_probs, value_states)
b = hidden_states.shape[0]
hidden_states = jnp.reshape(hidden_states, (b, -1, self.heads * self.dim_head))
else:
hidden_states = jnp.einsum("b i j, b j d -> b i d", attention_probs, value_states)
hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
hidden_states = self.proj_attn(hidden_states)
return self.dropout_layer(hidden_states, deterministic=deterministic)
class FlaxBasicTransformerBlock(nn.Module):
r"""
A Flax transformer block layer with `GLU` (Gated Linear Unit) activation function as described in:
https://arxiv.org/abs/1706.03762
Parameters:
dim (:obj:`int`):
Inner hidden states dimension
n_heads (:obj:`int`):
Number of heads
d_head (:obj:`int`):
Hidden states dimension inside each head
dropout (:obj:`float`, *optional*, defaults to 0.0):
Dropout rate
only_cross_attention (`bool`, defaults to `False`):
Whether to only apply cross attention.
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
Parameters `dtype`
use_memory_efficient_attention (`bool`, *optional*, defaults to `False`):
enable memory efficient attention https://arxiv.org/abs/2112.05682
split_head_dim (`bool`, *optional*, defaults to `False`):
Whether to split the head dimension into a new axis for the self-attention computation. In most cases,
enabling this flag should speed up the computation for Stable Diffusion 2.x and Stable Diffusion XL.
"""
dim: int
n_heads: int
d_head: int
dropout: float = 0.0
only_cross_attention: bool = False
dtype: jnp.dtype = jnp.float32
use_memory_efficient_attention: bool = False
split_head_dim: bool = False
def setup(self):
# self attention (or cross_attention if only_cross_attention is True)
self.attn1 = FlaxAttention(
self.dim,
self.n_heads,
self.d_head,
self.dropout,
self.use_memory_efficient_attention,
self.split_head_dim,
dtype=self.dtype,
)
# cross attention
self.attn2 = FlaxAttention(
self.dim,
self.n_heads,
self.d_head,
self.dropout,
self.use_memory_efficient_attention,
self.split_head_dim,
dtype=self.dtype,
)
self.ff = FlaxFeedForward(dim=self.dim, dropout=self.dropout, dtype=self.dtype)
self.norm1 = nn.LayerNorm(epsilon=1e-5, dtype=self.dtype)
self.norm2 = nn.LayerNorm(epsilon=1e-5, dtype=self.dtype)
self.norm3 = nn.LayerNorm(epsilon=1e-5, dtype=self.dtype)
self.dropout_layer = nn.Dropout(rate=self.dropout)
def __call__(self, hidden_states, context, deterministic=True):
# self attention
residual = hidden_states
if self.only_cross_attention:
hidden_states = self.attn1(self.norm1(hidden_states), context, deterministic=deterministic)
else:
hidden_states = self.attn1(self.norm1(hidden_states), deterministic=deterministic)
hidden_states = hidden_states + residual
# cross attention
residual = hidden_states
hidden_states = self.attn2(self.norm2(hidden_states), context, deterministic=deterministic)
hidden_states = hidden_states + residual
# feed forward
residual = hidden_states
hidden_states = self.ff(self.norm3(hidden_states), deterministic=deterministic)
hidden_states = hidden_states + residual
return self.dropout_layer(hidden_states, deterministic=deterministic)
class FlaxTransformer2DModel(nn.Module):
r"""
A Spatial Transformer layer with Gated Linear Unit (GLU) activation function as described in:
https://arxiv.org/pdf/1506.02025.pdf
Parameters:
in_channels (:obj:`int`):
Input number of channels
n_heads (:obj:`int`):
Number of heads
d_head (:obj:`int`):
Hidden states dimension inside each head
depth (:obj:`int`, *optional*, defaults to 1):
Number of transformers block
dropout (:obj:`float`, *optional*, defaults to 0.0):
Dropout rate
use_linear_projection (`bool`, defaults to `False`): tbd
only_cross_attention (`bool`, defaults to `False`): tbd
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
Parameters `dtype`
use_memory_efficient_attention (`bool`, *optional*, defaults to `False`):
enable memory efficient attention https://arxiv.org/abs/2112.05682
split_head_dim (`bool`, *optional*, defaults to `False`):
Whether to split the head dimension into a new axis for the self-attention computation. In most cases,
enabling this flag should speed up the computation for Stable Diffusion 2.x and Stable Diffusion XL.
"""
in_channels: int
n_heads: int
d_head: int
depth: int = 1
dropout: float = 0.0
use_linear_projection: bool = False
only_cross_attention: bool = False
dtype: jnp.dtype = jnp.float32
use_memory_efficient_attention: bool = False
split_head_dim: bool = False
def setup(self):
self.norm = nn.GroupNorm(num_groups=32, epsilon=1e-5)
inner_dim = self.n_heads * self.d_head
if self.use_linear_projection:
self.proj_in = nn.Dense(inner_dim, dtype=self.dtype)
else:
self.proj_in = nn.Conv(
inner_dim,
kernel_size=(1, 1),
strides=(1, 1),
padding="VALID",
dtype=self.dtype,
)
self.transformer_blocks = [
FlaxBasicTransformerBlock(
inner_dim,
self.n_heads,
self.d_head,
dropout=self.dropout,
only_cross_attention=self.only_cross_attention,
dtype=self.dtype,
use_memory_efficient_attention=self.use_memory_efficient_attention,
split_head_dim=self.split_head_dim,
)
for _ in range(self.depth)
]
if self.use_linear_projection:
self.proj_out = nn.Dense(inner_dim, dtype=self.dtype)
else:
self.proj_out = nn.Conv(
inner_dim,
kernel_size=(1, 1),
strides=(1, 1),
padding="VALID",
dtype=self.dtype,
)
self.dropout_layer = nn.Dropout(rate=self.dropout)
def __call__(self, hidden_states, context, deterministic=True):
batch, height, width, channels = hidden_states.shape
residual = hidden_states
hidden_states = self.norm(hidden_states)
if self.use_linear_projection:
hidden_states = hidden_states.reshape(batch, height * width, channels)
hidden_states = self.proj_in(hidden_states)
else:
hidden_states = self.proj_in(hidden_states)
hidden_states = hidden_states.reshape(batch, height * width, channels)
for transformer_block in self.transformer_blocks:
hidden_states = transformer_block(hidden_states, context, deterministic=deterministic)
if self.use_linear_projection:
hidden_states = self.proj_out(hidden_states)
hidden_states = hidden_states.reshape(batch, height, width, channels)
else:
hidden_states = hidden_states.reshape(batch, height, width, channels)
hidden_states = self.proj_out(hidden_states)
hidden_states = hidden_states + residual
return self.dropout_layer(hidden_states, deterministic=deterministic)
class FlaxFeedForward(nn.Module):
r"""
Flax module that encapsulates two Linear layers separated by a non-linearity. It is the counterpart of PyTorch's
[`FeedForward`] class, with the following simplifications:
- The activation function is currently hardcoded to a gated linear unit from:
https://arxiv.org/abs/2002.05202
- `dim_out` is equal to `dim`.
- The number of hidden dimensions is hardcoded to `dim * 4` in [`FlaxGELU`].
Parameters:
dim (:obj:`int`):
Inner hidden states dimension
dropout (:obj:`float`, *optional*, defaults to 0.0):
Dropout rate
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
Parameters `dtype`
"""
dim: int
dropout: float = 0.0
dtype: jnp.dtype = jnp.float32
def setup(self):
# The second linear layer needs to be called
# net_2 for now to match the index of the Sequential layer
self.net_0 = FlaxGEGLU(self.dim, self.dropout, self.dtype)
self.net_2 = nn.Dense(self.dim, dtype=self.dtype)
def __call__(self, hidden_states, deterministic=True):
hidden_states = self.net_0(hidden_states, deterministic=deterministic)
hidden_states = self.net_2(hidden_states)
return hidden_states
class FlaxGEGLU(nn.Module):
r"""
Flax implementation of a Linear layer followed by the variant of the gated linear unit activation function from
https://arxiv.org/abs/2002.05202.
Parameters:
dim (:obj:`int`):
Input hidden states dimension
dropout (:obj:`float`, *optional*, defaults to 0.0):
Dropout rate
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
Parameters `dtype`
"""
dim: int
dropout: float = 0.0
dtype: jnp.dtype = jnp.float32
def setup(self):
inner_dim = self.dim * 4
self.proj = nn.Dense(inner_dim * 2, dtype=self.dtype)
self.dropout_layer = nn.Dropout(rate=self.dropout)
def __call__(self, hidden_states, deterministic=True):
hidden_states = self.proj(hidden_states)
hidden_linear, hidden_gelu = jnp.split(hidden_states, 2, axis=2)
return self.dropout_layer(hidden_linear * nn.gelu(hidden_gelu), deterministic=deterministic)
from ..utils import deprecate
from .unets.unet_2d import UNet2DModel, UNet2DOutput
class UNet2DOutput(UNet2DOutput):
deprecation_message = "Importing `UNet2DOutput` from `diffusers.models.unet_2d` is deprecated and this will be removed in a future version. Please use `from diffusers.models.unets.unet_2d import UNet2DOutput`, instead."
deprecate("UNet2DOutput", "0.29", deprecation_message)
class UNet2DModel(UNet2DModel):
deprecation_message = "Importing `UNet2DModel` from `diffusers.models.unet_2d` is deprecated and this will be removed in a future version. Please use `from diffusers.models.unets.unet_2d import UNet2DModel`, instead."
deprecate("UNet2DModel", "0.29", deprecation_message)
# Copyright 2024 The HuggingFace Team. All rights reserved.
# `TemporalConvLayer` Copyright 2024 Alibaba DAMO-VILAB, The ModelScope Team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from ..utils import USE_PEFT_BACKEND
from .activations import get_activation
from .attention_processor import SpatialNorm
from .downsampling import ( # noqa
Downsample1D,
Downsample2D,
FirDownsample2D,
KDownsample2D,
downsample_2d,
)
from .lora import LoRACompatibleConv, LoRACompatibleLinear
from .normalization import AdaGroupNorm
from .upsampling import ( # noqa
FirUpsample2D,
KUpsample2D,
Upsample1D,
Upsample2D,
upfirdn2d_native,
upsample_2d,
)
class ResnetBlockCondNorm2D(nn.Module):
r"""
A Resnet block that use normalization layer that incorporate conditioning information.
Parameters:
in_channels (`int`): The number of channels in the input.
out_channels (`int`, *optional*, default to be `None`):
The number of output channels for the first conv2d layer. If None, same as `in_channels`.
dropout (`float`, *optional*, defaults to `0.0`): The dropout probability to use.
temb_channels (`int`, *optional*, default to `512`): the number of channels in timestep embedding.
groups (`int`, *optional*, default to `32`): The number of groups to use for the first normalization layer.
groups_out (`int`, *optional*, default to None):
The number of groups to use for the second normalization layer. if set to None, same as `groups`.
eps (`float`, *optional*, defaults to `1e-6`): The epsilon to use for the normalization.
non_linearity (`str`, *optional*, default to `"swish"`): the activation function to use.
time_embedding_norm (`str`, *optional*, default to `"ada_group"` ):
The normalization layer for time embedding `temb`. Currently only support "ada_group" or "spatial".
kernel (`torch.FloatTensor`, optional, default to None): FIR filter, see
[`~models.resnet.FirUpsample2D`] and [`~models.resnet.FirDownsample2D`].
output_scale_factor (`float`, *optional*, default to be `1.0`): the scale factor to use for the output.
use_in_shortcut (`bool`, *optional*, default to `True`):
If `True`, add a 1x1 nn.conv2d layer for skip-connection.
up (`bool`, *optional*, default to `False`): If `True`, add an upsample layer.
down (`bool`, *optional*, default to `False`): If `True`, add a downsample layer.
conv_shortcut_bias (`bool`, *optional*, default to `True`): If `True`, adds a learnable bias to the
`conv_shortcut` output.
conv_2d_out_channels (`int`, *optional*, default to `None`): the number of channels in the output.
If None, same as `out_channels`.
"""
def __init__(
self,
*,
in_channels: int,
out_channels: Optional[int] = None,
conv_shortcut: bool = False,
dropout: float = 0.0,
temb_channels: int = 512,
groups: int = 32,
groups_out: Optional[int] = None,
eps: float = 1e-6,
non_linearity: str = "swish",
time_embedding_norm: str = "ada_group", # ada_group, spatial
output_scale_factor: float = 1.0,
use_in_shortcut: Optional[bool] = None,
up: bool = False,
down: bool = False,
conv_shortcut_bias: bool = True,
conv_2d_out_channels: Optional[int] = None,
):
super().__init__()
self.in_channels = in_channels
out_channels = in_channels if out_channels is None else out_channels
self.out_channels = out_channels
self.use_conv_shortcut = conv_shortcut
self.up = up
self.down = down
self.output_scale_factor = output_scale_factor
self.time_embedding_norm = time_embedding_norm
conv_cls = nn.Conv2d if USE_PEFT_BACKEND else LoRACompatibleConv
if groups_out is None:
groups_out = groups
if self.time_embedding_norm == "ada_group": # ada_group
self.norm1 = AdaGroupNorm(temb_channels, in_channels, groups, eps=eps)
elif self.time_embedding_norm == "spatial":
self.norm1 = SpatialNorm(in_channels, temb_channels)
else:
raise ValueError(f" unsupported time_embedding_norm: {self.time_embedding_norm}")
self.conv1 = conv_cls(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
if self.time_embedding_norm == "ada_group": # ada_group
self.norm2 = AdaGroupNorm(temb_channels, out_channels, groups_out, eps=eps)
elif self.time_embedding_norm == "spatial": # spatial
self.norm2 = SpatialNorm(out_channels, temb_channels)
else:
raise ValueError(f" unsupported time_embedding_norm: {self.time_embedding_norm}")
self.dropout = torch.nn.Dropout(dropout)
conv_2d_out_channels = conv_2d_out_channels or out_channels
self.conv2 = conv_cls(out_channels, conv_2d_out_channels, kernel_size=3, stride=1, padding=1)
self.nonlinearity = get_activation(non_linearity)
self.upsample = self.downsample = None
if self.up:
self.upsample = Upsample2D(in_channels, use_conv=False)
elif self.down:
self.downsample = Downsample2D(in_channels, use_conv=False, padding=1, name="op")
self.use_in_shortcut = self.in_channels != conv_2d_out_channels if use_in_shortcut is None else use_in_shortcut
self.conv_shortcut = None
if self.use_in_shortcut:
self.conv_shortcut = conv_cls(
in_channels,
conv_2d_out_channels,
kernel_size=1,
stride=1,
padding=0,
bias=conv_shortcut_bias,
)
def forward(
self,
input_tensor: torch.FloatTensor,
temb: torch.FloatTensor,
scale: float = 1.0,
) -> torch.FloatTensor:
hidden_states = input_tensor
hidden_states = self.norm1(hidden_states, temb)
hidden_states = self.nonlinearity(hidden_states)
if self.upsample is not None:
# upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
if hidden_states.shape[0] >= 64:
input_tensor = input_tensor.contiguous()
hidden_states = hidden_states.contiguous()
input_tensor = self.upsample(input_tensor, scale=scale)
hidden_states = self.upsample(hidden_states, scale=scale)
elif self.downsample is not None:
input_tensor = self.downsample(input_tensor, scale=scale)
hidden_states = self.downsample(hidden_states, scale=scale)
hidden_states = self.conv1(hidden_states, scale) if not USE_PEFT_BACKEND else self.conv1(hidden_states)
hidden_states = self.norm2(hidden_states, temb)
hidden_states = self.nonlinearity(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.conv2(hidden_states, scale) if not USE_PEFT_BACKEND else self.conv2(hidden_states)
if self.conv_shortcut is not None:
input_tensor = (
self.conv_shortcut(input_tensor, scale) if not USE_PEFT_BACKEND else self.conv_shortcut(input_tensor)
)
output_tensor = (input_tensor + hidden_states) / self.output_scale_factor
return output_tensor
class ResnetBlock2D(nn.Module):
r"""
A Resnet block.
Parameters:
in_channels (`int`): The number of channels in the input.
out_channels (`int`, *optional*, default to be `None`):
The number of output channels for the first conv2d layer. If None, same as `in_channels`.
dropout (`float`, *optional*, defaults to `0.0`): The dropout probability to use.
temb_channels (`int`, *optional*, default to `512`): the number of channels in timestep embedding.
groups (`int`, *optional*, default to `32`): The number of groups to use for the first normalization layer.
groups_out (`int`, *optional*, default to None):
The number of groups to use for the second normalization layer. if set to None, same as `groups`.
eps (`float`, *optional*, defaults to `1e-6`): The epsilon to use for the normalization.
non_linearity (`str`, *optional*, default to `"swish"`): the activation function to use.
time_embedding_norm (`str`, *optional*, default to `"default"` ): Time scale shift config.
By default, apply timestep embedding conditioning with a simple shift mechanism. Choose "scale_shift"
for a stronger conditioning with scale and shift.
kernel (`torch.FloatTensor`, optional, default to None): FIR filter, see
[`~models.resnet.FirUpsample2D`] and [`~models.resnet.FirDownsample2D`].
output_scale_factor (`float`, *optional*, default to be `1.0`): the scale factor to use for the output.
use_in_shortcut (`bool`, *optional*, default to `True`):
If `True`, add a 1x1 nn.conv2d layer for skip-connection.
up (`bool`, *optional*, default to `False`): If `True`, add an upsample layer.
down (`bool`, *optional*, default to `False`): If `True`, add a downsample layer.
conv_shortcut_bias (`bool`, *optional*, default to `True`): If `True`, adds a learnable bias to the
`conv_shortcut` output.
conv_2d_out_channels (`int`, *optional*, default to `None`): the number of channels in the output.
If None, same as `out_channels`.
"""
def __init__(
self,
*,
in_channels: int,
out_channels: Optional[int] = None,
conv_shortcut: bool = False,
dropout: float = 0.0,
temb_channels: int = 512,
groups: int = 32,
groups_out: Optional[int] = None,
pre_norm: bool = True,
eps: float = 1e-6,
non_linearity: str = "swish",
skip_time_act: bool = False,
time_embedding_norm: str = "default", # default, scale_shift,
kernel: Optional[torch.FloatTensor] = None,
output_scale_factor: float = 1.0,
use_in_shortcut: Optional[bool] = None,
up: bool = False,
down: bool = False,
conv_shortcut_bias: bool = True,
conv_2d_out_channels: Optional[int] = None,
):
super().__init__()
if time_embedding_norm == "ada_group":
raise ValueError(
"This class cannot be used with `time_embedding_norm==ada_group`, please use `ResnetBlockCondNorm2D` instead",
)
if time_embedding_norm == "spatial":
raise ValueError(
"This class cannot be used with `time_embedding_norm==spatial`, please use `ResnetBlockCondNorm2D` instead",
)
self.pre_norm = True
self.in_channels = in_channels
out_channels = in_channels if out_channels is None else out_channels
self.out_channels = out_channels
self.use_conv_shortcut = conv_shortcut
self.up = up
self.down = down
self.output_scale_factor = output_scale_factor
self.time_embedding_norm = time_embedding_norm
self.skip_time_act = skip_time_act
linear_cls = nn.Linear if USE_PEFT_BACKEND else LoRACompatibleLinear
conv_cls = nn.Conv2d if USE_PEFT_BACKEND else LoRACompatibleConv
if groups_out is None:
groups_out = groups
self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
self.conv1 = conv_cls(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
if temb_channels is not None:
if self.time_embedding_norm == "default":
self.time_emb_proj = linear_cls(temb_channels, out_channels)
elif self.time_embedding_norm == "scale_shift":
self.time_emb_proj = linear_cls(temb_channels, 2 * out_channels)
else:
raise ValueError(f"unknown time_embedding_norm : {self.time_embedding_norm} ")
else:
self.time_emb_proj = None
self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True)
self.dropout = torch.nn.Dropout(dropout)
conv_2d_out_channels = conv_2d_out_channels or out_channels
self.conv2 = conv_cls(out_channels, conv_2d_out_channels, kernel_size=3, stride=1, padding=1)
self.nonlinearity = get_activation(non_linearity)
self.upsample = self.downsample = None
if self.up:
if kernel == "fir":
fir_kernel = (1, 3, 3, 1)
self.upsample = lambda x: upsample_2d(x, kernel=fir_kernel)
elif kernel == "sde_vp":
self.upsample = partial(F.interpolate, scale_factor=2.0, mode="nearest")
else:
self.upsample = Upsample2D(in_channels, use_conv=False)
elif self.down:
if kernel == "fir":
fir_kernel = (1, 3, 3, 1)
self.downsample = lambda x: downsample_2d(x, kernel=fir_kernel)
elif kernel == "sde_vp":
self.downsample = partial(F.avg_pool2d, kernel_size=2, stride=2)
else:
self.downsample = Downsample2D(in_channels, use_conv=False, padding=1, name="op")
self.use_in_shortcut = self.in_channels != conv_2d_out_channels if use_in_shortcut is None else use_in_shortcut
self.conv_shortcut = None
if self.use_in_shortcut:
self.conv_shortcut = conv_cls(
in_channels,
conv_2d_out_channels,
kernel_size=1,
stride=1,
padding=0,
bias=conv_shortcut_bias,
)
def forward(
self,
input_tensor: torch.FloatTensor,
temb: torch.FloatTensor,
scale: float = 1.0,
) -> torch.FloatTensor:
hidden_states = input_tensor
hidden_states = self.norm1(hidden_states)
hidden_states = self.nonlinearity(hidden_states)
if self.upsample is not None:
# upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
if hidden_states.shape[0] >= 64:
input_tensor = input_tensor.contiguous()
hidden_states = hidden_states.contiguous()
input_tensor = (
self.upsample(input_tensor, scale=scale)
if isinstance(self.upsample, Upsample2D)
else self.upsample(input_tensor)
)
hidden_states = (
self.upsample(hidden_states, scale=scale)
if isinstance(self.upsample, Upsample2D)
else self.upsample(hidden_states)
)
elif self.downsample is not None:
input_tensor = (
self.downsample(input_tensor, scale=scale)
if isinstance(self.downsample, Downsample2D)
else self.downsample(input_tensor)
)
hidden_states = (
self.downsample(hidden_states, scale=scale)
if isinstance(self.downsample, Downsample2D)
else self.downsample(hidden_states)
)
hidden_states = self.conv1(hidden_states, scale) if not USE_PEFT_BACKEND else self.conv1(hidden_states)
if self.time_emb_proj is not None:
if not self.skip_time_act:
temb = self.nonlinearity(temb)
temb = (
self.time_emb_proj(temb, scale)[:, :, None, None]
if not USE_PEFT_BACKEND
else self.time_emb_proj(temb)[:, :, None, None]
)
if self.time_embedding_norm == "default":
if temb is not None:
hidden_states = hidden_states + temb
hidden_states = self.norm2(hidden_states)
elif self.time_embedding_norm == "scale_shift":
if temb is None:
raise ValueError(
f" `temb` should not be None when `time_embedding_norm` is {self.time_embedding_norm}"
)
time_scale, time_shift = torch.chunk(temb, 2, dim=1)
hidden_states = self.norm2(hidden_states)
hidden_states = hidden_states * (1 + time_scale) + time_shift
else:
hidden_states = self.norm2(hidden_states)
hidden_states = self.nonlinearity(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.conv2(hidden_states, scale) if not USE_PEFT_BACKEND else self.conv2(hidden_states)
if self.conv_shortcut is not None:
input_tensor = (
self.conv_shortcut(input_tensor, scale) if not USE_PEFT_BACKEND else self.conv_shortcut(input_tensor)
)
output_tensor = (input_tensor + hidden_states) / self.output_scale_factor
return output_tensor
# unet_rl.py
def rearrange_dims(tensor: torch.Tensor) -> torch.Tensor:
if len(tensor.shape) == 2:
return tensor[:, :, None]
if len(tensor.shape) == 3:
return tensor[:, :, None, :]
elif len(tensor.shape) == 4:
return tensor[:, :, 0, :]
else:
raise ValueError(f"`len(tensor)`: {len(tensor)} has to be 2, 3 or 4.")
class Conv1dBlock(nn.Module):
"""
Conv1d --> GroupNorm --> Mish
Parameters:
inp_channels (`int`): Number of input channels.
out_channels (`int`): Number of output channels.
kernel_size (`int` or `tuple`): Size of the convolving kernel.
n_groups (`int`, default `8`): Number of groups to separate the channels into.
activation (`str`, defaults to `mish`): Name of the activation function.
"""
def __init__(
self,
inp_channels: int,
out_channels: int,
kernel_size: Union[int, Tuple[int, int]],
n_groups: int = 8,
activation: str = "mish",
):
super().__init__()
self.conv1d = nn.Conv1d(inp_channels, out_channels, kernel_size, padding=kernel_size // 2)
self.group_norm = nn.GroupNorm(n_groups, out_channels)
self.mish = get_activation(activation)
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
intermediate_repr = self.conv1d(inputs)
intermediate_repr = rearrange_dims(intermediate_repr)
intermediate_repr = self.group_norm(intermediate_repr)
intermediate_repr = rearrange_dims(intermediate_repr)
output = self.mish(intermediate_repr)
return output
# unet_rl.py
class ResidualTemporalBlock1D(nn.Module):
"""
Residual 1D block with temporal convolutions.
Parameters:
inp_channels (`int`): Number of input channels.
out_channels (`int`): Number of output channels.
embed_dim (`int`): Embedding dimension.
kernel_size (`int` or `tuple`): Size of the convolving kernel.
activation (`str`, defaults `mish`): It is possible to choose the right activation function.
"""
def __init__(
self,
inp_channels: int,
out_channels: int,
embed_dim: int,
kernel_size: Union[int, Tuple[int, int]] = 5,
activation: str = "mish",
):
super().__init__()
self.conv_in = Conv1dBlock(inp_channels, out_channels, kernel_size)
self.conv_out = Conv1dBlock(out_channels, out_channels, kernel_size)
self.time_emb_act = get_activation(activation)
self.time_emb = nn.Linear(embed_dim, out_channels)
self.residual_conv = (
nn.Conv1d(inp_channels, out_channels, 1) if inp_channels != out_channels else nn.Identity()
)
def forward(self, inputs: torch.Tensor, t: torch.Tensor) -> torch.Tensor:
"""
Args:
inputs : [ batch_size x inp_channels x horizon ]
t : [ batch_size x embed_dim ]
returns:
out : [ batch_size x out_channels x horizon ]
"""
t = self.time_emb_act(t)
t = self.time_emb(t)
out = self.conv_in(inputs) + rearrange_dims(t)
out = self.conv_out(out)
return out + self.residual_conv(inputs)
class TemporalConvLayer(nn.Module):
"""
Temporal convolutional layer that can be used for video (sequence of images) input Code mostly copied from:
https://github.com/modelscope/modelscope/blob/1509fdb973e5871f37148a4b5e5964cafd43e64d/modelscope/models/multi_modal/video_synthesis/unet_sd.py#L1016
Parameters:
in_dim (`int`): Number of input channels.
out_dim (`int`): Number of output channels.
dropout (`float`, *optional*, defaults to `0.0`): The dropout probability to use.
"""
def __init__(
self,
in_dim: int,
out_dim: Optional[int] = None,
dropout: float = 0.0,
norm_num_groups: int = 32,
):
super().__init__()
out_dim = out_dim or in_dim
self.in_dim = in_dim
self.out_dim = out_dim
# conv layers
self.conv1 = nn.Sequential(
nn.GroupNorm(norm_num_groups, in_dim),
nn.SiLU(),
nn.Conv3d(in_dim, out_dim, (3, 1, 1), padding=(1, 0, 0)),
)
self.conv2 = nn.Sequential(
nn.GroupNorm(norm_num_groups, out_dim),
nn.SiLU(),
nn.Dropout(dropout),
nn.Conv3d(out_dim, in_dim, (3, 1, 1), padding=(1, 0, 0)),
)
self.conv3 = nn.Sequential(
nn.GroupNorm(norm_num_groups, out_dim),
nn.SiLU(),
nn.Dropout(dropout),
nn.Conv3d(out_dim, in_dim, (3, 1, 1), padding=(1, 0, 0)),
)
self.conv4 = nn.Sequential(
nn.GroupNorm(norm_num_groups, out_dim),
nn.SiLU(),
nn.Dropout(dropout),
nn.Conv3d(out_dim, in_dim, (3, 1, 1), padding=(1, 0, 0)),
)
# zero out the last layer params,so the conv block is identity
nn.init.zeros_(self.conv4[-1].weight)
nn.init.zeros_(self.conv4[-1].bias)
def forward(self, hidden_states: torch.Tensor, num_frames: int = 1) -> torch.Tensor:
hidden_states = (
hidden_states[None, :].reshape((-1, num_frames) + hidden_states.shape[1:]).permute(0, 2, 1, 3, 4)
)
identity = hidden_states
hidden_states = self.conv1(hidden_states)
hidden_states = self.conv2(hidden_states)
hidden_states = self.conv3(hidden_states)
hidden_states = self.conv4(hidden_states)
hidden_states = identity + hidden_states
hidden_states = hidden_states.permute(0, 2, 1, 3, 4).reshape(
(hidden_states.shape[0] * hidden_states.shape[2], -1) + hidden_states.shape[3:]
)
return hidden_states
class TemporalResnetBlock(nn.Module):
r"""
A Resnet block.
Parameters:
in_channels (`int`): The number of channels in the input.
out_channels (`int`, *optional*, default to be `None`):
The number of output channels for the first conv2d layer. If None, same as `in_channels`.
temb_channels (`int`, *optional*, default to `512`): the number of channels in timestep embedding.
eps (`float`, *optional*, defaults to `1e-6`): The epsilon to use for the normalization.
"""
def __init__(
self,
in_channels: int,
out_channels: Optional[int] = None,
temb_channels: int = 512,
eps: float = 1e-6,
):
super().__init__()
self.in_channels = in_channels
out_channels = in_channels if out_channels is None else out_channels
self.out_channels = out_channels
kernel_size = (3, 1, 1)
padding = [k // 2 for k in kernel_size]
self.norm1 = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=eps, affine=True)
self.conv1 = nn.Conv3d(
in_channels,
out_channels,
kernel_size=kernel_size,
stride=1,
padding=padding,
)
if temb_channels is not None:
self.time_emb_proj = nn.Linear(temb_channels, out_channels)
else:
self.time_emb_proj = None
self.norm2 = torch.nn.GroupNorm(num_groups=32, num_channels=out_channels, eps=eps, affine=True)
self.dropout = torch.nn.Dropout(0.0)
self.conv2 = nn.Conv3d(
out_channels,
out_channels,
kernel_size=kernel_size,
stride=1,
padding=padding,
)
self.nonlinearity = get_activation("silu")
self.use_in_shortcut = self.in_channels != out_channels
self.conv_shortcut = None
if self.use_in_shortcut:
self.conv_shortcut = nn.Conv3d(
in_channels,
out_channels,
kernel_size=1,
stride=1,
padding=0,
)
def forward(self, input_tensor: torch.FloatTensor, temb: torch.FloatTensor) -> torch.FloatTensor:
hidden_states = input_tensor
hidden_states = self.norm1(hidden_states)
hidden_states = self.nonlinearity(hidden_states)
hidden_states = self.conv1(hidden_states)
if self.time_emb_proj is not None:
temb = self.nonlinearity(temb)
temb = self.time_emb_proj(temb)[:, :, :, None, None]
temb = temb.permute(0, 2, 1, 3, 4)
hidden_states = hidden_states + temb
hidden_states = self.norm2(hidden_states)
hidden_states = self.nonlinearity(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.conv2(hidden_states)
if self.conv_shortcut is not None:
input_tensor = self.conv_shortcut(input_tensor)
output_tensor = input_tensor + hidden_states
return output_tensor
# VideoResBlock
class SpatioTemporalResBlock(nn.Module):
r"""
A SpatioTemporal Resnet block.
Parameters:
in_channels (`int`): The number of channels in the input.
out_channels (`int`, *optional*, default to be `None`):
The number of output channels for the first conv2d layer. If None, same as `in_channels`.
temb_channels (`int`, *optional*, default to `512`): the number of channels in timestep embedding.
eps (`float`, *optional*, defaults to `1e-6`): The epsilon to use for the spatial resenet.
temporal_eps (`float`, *optional*, defaults to `eps`): The epsilon to use for the temporal resnet.
merge_factor (`float`, *optional*, defaults to `0.5`): The merge factor to use for the temporal mixing.
merge_strategy (`str`, *optional*, defaults to `learned_with_images`):
The merge strategy to use for the temporal mixing.
switch_spatial_to_temporal_mix (`bool`, *optional*, defaults to `False`):
If `True`, switch the spatial and temporal mixing.
"""
def __init__(
self,
in_channels: int,
out_channels: Optional[int] = None,
temb_channels: int = 512,
eps: float = 1e-6,
temporal_eps: Optional[float] = None,
merge_factor: float = 0.5,
merge_strategy="learned_with_images",
switch_spatial_to_temporal_mix: bool = False,
):
super().__init__()
self.spatial_res_block = ResnetBlock2D(
in_channels=in_channels,
out_channels=out_channels,
temb_channels=temb_channels,
eps=eps,
)
self.temporal_res_block = TemporalResnetBlock(
in_channels=out_channels if out_channels is not None else in_channels,
out_channels=out_channels if out_channels is not None else in_channels,
temb_channels=temb_channels,
eps=temporal_eps if temporal_eps is not None else eps,
)
self.time_mixer = AlphaBlender(
alpha=merge_factor,
merge_strategy=merge_strategy,
switch_spatial_to_temporal_mix=switch_spatial_to_temporal_mix,
)
def forward(
self,
hidden_states: torch.FloatTensor,
temb: Optional[torch.FloatTensor] = None,
image_only_indicator: Optional[torch.Tensor] = None,
):
num_frames = image_only_indicator.shape[-1]
hidden_states = self.spatial_res_block(hidden_states, temb)
batch_frames, channels, height, width = hidden_states.shape
batch_size = batch_frames // num_frames
hidden_states_mix = (
hidden_states[None, :].reshape(batch_size, num_frames, channels, height, width).permute(0, 2, 1, 3, 4)
)
hidden_states = (
hidden_states[None, :].reshape(batch_size, num_frames, channels, height, width).permute(0, 2, 1, 3, 4)
)
if temb is not None:
temb = temb.reshape(batch_size, num_frames, -1)
hidden_states = self.temporal_res_block(hidden_states, temb)
hidden_states = self.time_mixer(
x_spatial=hidden_states_mix,
x_temporal=hidden_states,
image_only_indicator=image_only_indicator,
)
hidden_states = hidden_states.permute(0, 2, 1, 3, 4).reshape(batch_frames, channels, height, width)
return hidden_states
class AlphaBlender(nn.Module):
r"""
A module to blend spatial and temporal features.
Parameters:
alpha (`float`): The initial value of the blending factor.
merge_strategy (`str`, *optional*, defaults to `learned_with_images`):
The merge strategy to use for the temporal mixing.
switch_spatial_to_temporal_mix (`bool`, *optional*, defaults to `False`):
If `True`, switch the spatial and temporal mixing.
"""
strategies = ["learned", "fixed", "learned_with_images"]
def __init__(
self,
alpha: float,
merge_strategy: str = "learned_with_images",
switch_spatial_to_temporal_mix: bool = False,
):
super().__init__()
self.merge_strategy = merge_strategy
self.switch_spatial_to_temporal_mix = switch_spatial_to_temporal_mix # For TemporalVAE
if merge_strategy not in self.strategies:
raise ValueError(f"merge_strategy needs to be in {self.strategies}")
if self.merge_strategy == "fixed":
self.register_buffer("mix_factor", torch.Tensor([alpha]))
elif self.merge_strategy == "learned" or self.merge_strategy == "learned_with_images":
self.register_parameter("mix_factor", torch.nn.Parameter(torch.Tensor([alpha])))
else:
raise ValueError(f"Unknown merge strategy {self.merge_strategy}")
def get_alpha(self, image_only_indicator: torch.Tensor, ndims: int) -> torch.Tensor:
if self.merge_strategy == "fixed":
alpha = self.mix_factor
elif self.merge_strategy == "learned":
alpha = torch.sigmoid(self.mix_factor)
elif self.merge_strategy == "learned_with_images":
if image_only_indicator is None:
raise ValueError("Please provide image_only_indicator to use learned_with_images merge strategy")
alpha = torch.where(
image_only_indicator.bool(),
torch.ones(1, 1, device=image_only_indicator.device),
torch.sigmoid(self.mix_factor)[..., None],
)
# (batch, channel, frames, height, width)
if ndims == 5:
alpha = alpha[:, None, :, None, None]
# (batch*frames, height*width, channels)
elif ndims == 3:
alpha = alpha.reshape(-1)[:, None, None]
else:
raise ValueError(f"Unexpected ndims {ndims}. Dimensions should be 3 or 5")
else:
raise NotImplementedError
return alpha
def forward(
self,
x_spatial: torch.Tensor,
x_temporal: torch.Tensor,
image_only_indicator: Optional[torch.Tensor] = None,
) -> torch.Tensor:
alpha = self.get_alpha(image_only_indicator, x_spatial.ndim)
alpha = alpha.to(x_spatial.dtype)
if self.switch_spatial_to_temporal_mix:
alpha = 1.0 - alpha
x = alpha * x_spatial + (1.0 - alpha) * x_temporal
return x
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from pickle import UnpicklingError
from typing import Any, Dict, Union
import jax
import jax.numpy as jnp
import msgpack.exceptions
from flax.core.frozen_dict import FrozenDict, unfreeze
from flax.serialization import from_bytes, to_bytes
from flax.traverse_util import flatten_dict, unflatten_dict
from huggingface_hub import create_repo, hf_hub_download
from huggingface_hub.utils import (
EntryNotFoundError,
RepositoryNotFoundError,
RevisionNotFoundError,
validate_hf_hub_args,
)
from requests import HTTPError
from .. import __version__, is_torch_available
from ..utils import (
CONFIG_NAME,
FLAX_WEIGHTS_NAME,
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
WEIGHTS_NAME,
PushToHubMixin,
logging,
)
from .modeling_flax_pytorch_utils import convert_pytorch_state_dict_to_flax
logger = logging.get_logger(__name__)
class FlaxModelMixin(PushToHubMixin):
r"""
Base class for all Flax models.
[`FlaxModelMixin`] takes care of storing the model configuration and provides methods for loading, downloading and
saving models.
- **config_name** ([`str`]) -- Filename to save a model to when calling [`~FlaxModelMixin.save_pretrained`].
"""
config_name = CONFIG_NAME
_automatically_saved_args = ["_diffusers_version", "_class_name", "_name_or_path"]
_flax_internal_args = ["name", "parent", "dtype"]
@classmethod
def _from_config(cls, config, **kwargs):
"""
All context managers that the model should be initialized under go here.
"""
return cls(config, **kwargs)
def _cast_floating_to(self, params: Union[Dict, FrozenDict], dtype: jnp.dtype, mask: Any = None) -> Any:
"""
Helper method to cast floating-point values of given parameter `PyTree` to given `dtype`.
"""
# taken from https://github.com/deepmind/jmp/blob/3a8318abc3292be38582794dbf7b094e6583b192/jmp/_src/policy.py#L27
def conditional_cast(param):
if isinstance(param, jnp.ndarray) and jnp.issubdtype(param.dtype, jnp.floating):
param = param.astype(dtype)
return param
if mask is None:
return jax.tree_map(conditional_cast, params)
flat_params = flatten_dict(params)
flat_mask, _ = jax.tree_flatten(mask)
for masked, key in zip(flat_mask, flat_params.keys()):
if masked:
param = flat_params[key]
flat_params[key] = conditional_cast(param)
return unflatten_dict(flat_params)
def to_bf16(self, params: Union[Dict, FrozenDict], mask: Any = None):
r"""
Cast the floating-point `params` to `jax.numpy.bfloat16`. This returns a new `params` tree and does not cast
the `params` in place.
This method can be used on a TPU to explicitly convert the model parameters to bfloat16 precision to do full
half-precision training or to save weights in bfloat16 for inference in order to save memory and improve speed.
Arguments:
params (`Union[Dict, FrozenDict]`):
A `PyTree` of model parameters.
mask (`Union[Dict, FrozenDict]`):
A `PyTree` with same structure as the `params` tree. The leaves should be booleans. It should be `True`
for params you want to cast, and `False` for those you want to skip.
Examples:
```python
>>> from diffusers import FlaxUNet2DConditionModel
>>> # load model
>>> model, params = FlaxUNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5")
>>> # By default, the model parameters will be in fp32 precision, to cast these to bfloat16 precision
>>> params = model.to_bf16(params)
>>> # If you don't want to cast certain parameters (for example layer norm bias and scale)
>>> # then pass the mask as follows
>>> from flax import traverse_util
>>> model, params = FlaxUNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5")
>>> flat_params = traverse_util.flatten_dict(params)
>>> mask = {
... path: (path[-2] != ("LayerNorm", "bias") and path[-2:] != ("LayerNorm", "scale"))
... for path in flat_params
... }
>>> mask = traverse_util.unflatten_dict(mask)
>>> params = model.to_bf16(params, mask)
```"""
return self._cast_floating_to(params, jnp.bfloat16, mask)
def to_fp32(self, params: Union[Dict, FrozenDict], mask: Any = None):
r"""
Cast the floating-point `params` to `jax.numpy.float32`. This method can be used to explicitly convert the
model parameters to fp32 precision. This returns a new `params` tree and does not cast the `params` in place.
Arguments:
params (`Union[Dict, FrozenDict]`):
A `PyTree` of model parameters.
mask (`Union[Dict, FrozenDict]`):
A `PyTree` with same structure as the `params` tree. The leaves should be booleans. It should be `True`
for params you want to cast, and `False` for those you want to skip.
Examples:
```python
>>> from diffusers import FlaxUNet2DConditionModel
>>> # Download model and configuration from huggingface.co
>>> model, params = FlaxUNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5")
>>> # By default, the model params will be in fp32, to illustrate the use of this method,
>>> # we'll first cast to fp16 and back to fp32
>>> params = model.to_f16(params)
>>> # now cast back to fp32
>>> params = model.to_fp32(params)
```"""
return self._cast_floating_to(params, jnp.float32, mask)
def to_fp16(self, params: Union[Dict, FrozenDict], mask: Any = None):
r"""
Cast the floating-point `params` to `jax.numpy.float16`. This returns a new `params` tree and does not cast the
`params` in place.
This method can be used on a GPU to explicitly convert the model parameters to float16 precision to do full
half-precision training or to save weights in float16 for inference in order to save memory and improve speed.
Arguments:
params (`Union[Dict, FrozenDict]`):
A `PyTree` of model parameters.
mask (`Union[Dict, FrozenDict]`):
A `PyTree` with same structure as the `params` tree. The leaves should be booleans. It should be `True`
for params you want to cast, and `False` for those you want to skip.
Examples:
```python
>>> from diffusers import FlaxUNet2DConditionModel
>>> # load model
>>> model, params = FlaxUNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5")
>>> # By default, the model params will be in fp32, to cast these to float16
>>> params = model.to_fp16(params)
>>> # If you want don't want to cast certain parameters (for example layer norm bias and scale)
>>> # then pass the mask as follows
>>> from flax import traverse_util
>>> model, params = FlaxUNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5")
>>> flat_params = traverse_util.flatten_dict(params)
>>> mask = {
... path: (path[-2] != ("LayerNorm", "bias") and path[-2:] != ("LayerNorm", "scale"))
... for path in flat_params
... }
>>> mask = traverse_util.unflatten_dict(mask)
>>> params = model.to_fp16(params, mask)
```"""
return self._cast_floating_to(params, jnp.float16, mask)
def init_weights(self, rng: jax.Array) -> Dict:
raise NotImplementedError(f"init_weights method has to be implemented for {self}")
@classmethod
@validate_hf_hub_args
def from_pretrained(
cls,
pretrained_model_name_or_path: Union[str, os.PathLike],
dtype: jnp.dtype = jnp.float32,
*model_args,
**kwargs,
):
r"""
Instantiate a pretrained Flax model from a pretrained model configuration.
Parameters:
pretrained_model_name_or_path (`str` or `os.PathLike`):
Can be either:
- A string, the *model id* (for example `runwayml/stable-diffusion-v1-5`) of a pretrained model
hosted on the Hub.
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
using [`~FlaxModelMixin.save_pretrained`].
dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
`jax.numpy.bfloat16` (on TPUs).
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
specified, all the computation will be performed with the given `dtype`.
<Tip>
This only specifies the dtype of the *computation* and does not influence the dtype of model
parameters.
If you wish to change the dtype of the model parameters, see [`~FlaxModelMixin.to_fp16`] and
[`~FlaxModelMixin.to_bf16`].
</Tip>
model_args (sequence of positional arguments, *optional*):
All remaining positional arguments are passed to the underlying model's `__init__` method.
cache_dir (`Union[str, os.PathLike]`, *optional*):
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
is not used.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
resume_download (`bool`, *optional*, defaults to `False`):
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
incompletely downloaded files are deleted.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
local_files_only(`bool`, *optional*, defaults to `False`):
Whether to only load local model weights and configuration files or not. If set to `True`, the model
won't be downloaded from the Hub.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
allowed by Git.
from_pt (`bool`, *optional*, defaults to `False`):
Load the model weights from a PyTorch checkpoint save file.
kwargs (remaining dictionary of keyword arguments, *optional*):
Can be used to update the configuration object (after it is loaded) and initiate the model (for
example, `output_attentions=True`). Behaves differently depending on whether a `config` is provided or
automatically loaded:
- If a configuration is provided with `config`, `kwargs` are directly passed to the underlying
model's `__init__` method (we assume all relevant updates to the configuration have already been
done).
- If a configuration is not provided, `kwargs` are first passed to the configuration class
initialization function [`~ConfigMixin.from_config`]. Each key of the `kwargs` that corresponds
to a configuration attribute is used to override said attribute with the supplied `kwargs` value.
Remaining keys that do not correspond to any configuration attribute are passed to the underlying
model's `__init__` function.
Examples:
```python
>>> from diffusers import FlaxUNet2DConditionModel
>>> # Download model and configuration from huggingface.co and cache.
>>> model, params = FlaxUNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5")
>>> # Model was saved using *save_pretrained('./test/saved_model/')* (for example purposes, not runnable).
>>> model, params = FlaxUNet2DConditionModel.from_pretrained("./test/saved_model/")
```
If you get the error message below, you need to finetune the weights for your downstream task:
```bash
Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
- conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
```
"""
config = kwargs.pop("config", None)
cache_dir = kwargs.pop("cache_dir", None)
force_download = kwargs.pop("force_download", False)
from_pt = kwargs.pop("from_pt", False)
resume_download = kwargs.pop("resume_download", False)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", False)
token = kwargs.pop("token", None)
revision = kwargs.pop("revision", None)
subfolder = kwargs.pop("subfolder", None)
user_agent = {
"diffusers": __version__,
"file_type": "model",
"framework": "flax",
}
# Load config if we don't provide one
if config is None:
config, unused_kwargs = cls.load_config(
pretrained_model_name_or_path,
cache_dir=cache_dir,
return_unused_kwargs=True,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
token=token,
revision=revision,
subfolder=subfolder,
**kwargs,
)
model, model_kwargs = cls.from_config(config, dtype=dtype, return_unused_kwargs=True, **unused_kwargs)
# Load model
pretrained_path_with_subfolder = (
pretrained_model_name_or_path
if subfolder is None
else os.path.join(pretrained_model_name_or_path, subfolder)
)
if os.path.isdir(pretrained_path_with_subfolder):
if from_pt:
if not os.path.isfile(os.path.join(pretrained_path_with_subfolder, WEIGHTS_NAME)):
raise EnvironmentError(
f"Error no file named {WEIGHTS_NAME} found in directory {pretrained_path_with_subfolder} "
)
model_file = os.path.join(pretrained_path_with_subfolder, WEIGHTS_NAME)
elif os.path.isfile(os.path.join(pretrained_path_with_subfolder, FLAX_WEIGHTS_NAME)):
# Load from a Flax checkpoint
model_file = os.path.join(pretrained_path_with_subfolder, FLAX_WEIGHTS_NAME)
# Check if pytorch weights exist instead
elif os.path.isfile(os.path.join(pretrained_path_with_subfolder, WEIGHTS_NAME)):
raise EnvironmentError(
f"{WEIGHTS_NAME} file found in directory {pretrained_path_with_subfolder}. Please load the model"
" using `from_pt=True`."
)
else:
raise EnvironmentError(
f"Error no file named {FLAX_WEIGHTS_NAME} or {WEIGHTS_NAME} found in directory "
f"{pretrained_path_with_subfolder}."
)
else:
try:
model_file = hf_hub_download(
pretrained_model_name_or_path,
filename=FLAX_WEIGHTS_NAME if not from_pt else WEIGHTS_NAME,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
local_files_only=local_files_only,
token=token,
user_agent=user_agent,
subfolder=subfolder,
revision=revision,
)
except RepositoryNotFoundError:
raise EnvironmentError(
f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier "
"listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a "
"token having permission to this repo with `token` or log in with `huggingface-cli "
"login`."
)
except RevisionNotFoundError:
raise EnvironmentError(
f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for "
"this model name. Check the model page at "
f"'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions."
)
except EntryNotFoundError:
raise EnvironmentError(
f"{pretrained_model_name_or_path} does not appear to have a file named {FLAX_WEIGHTS_NAME}."
)
except HTTPError as err:
raise EnvironmentError(
f"There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n"
f"{err}"
)
except ValueError:
raise EnvironmentError(
f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it"
f" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a"
f" directory containing a file named {FLAX_WEIGHTS_NAME} or {WEIGHTS_NAME}.\nCheckout your"
" internet connection or see how to run the library in offline mode at"
" 'https://huggingface.co/docs/transformers/installation#offline-mode'."
)
except EnvironmentError:
raise EnvironmentError(
f"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from "
"'https://huggingface.co/models', make sure you don't have a local directory with the same name. "
f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory "
f"containing a file named {FLAX_WEIGHTS_NAME} or {WEIGHTS_NAME}."
)
if from_pt:
if is_torch_available():
from .modeling_utils import load_state_dict
else:
raise EnvironmentError(
"Can't load the model in PyTorch format because PyTorch is not installed. "
"Please, install PyTorch or use native Flax weights."
)
# Step 1: Get the pytorch file
pytorch_model_file = load_state_dict(model_file)
# Step 2: Convert the weights
state = convert_pytorch_state_dict_to_flax(pytorch_model_file, model)
else:
try:
with open(model_file, "rb") as state_f:
state = from_bytes(cls, state_f.read())
except (UnpicklingError, msgpack.exceptions.ExtraData) as e:
try:
with open(model_file) as f:
if f.read().startswith("version"):
raise OSError(
"You seem to have cloned a repository without having git-lfs installed. Please"
" install git-lfs and run `git lfs install` followed by `git lfs pull` in the"
" folder you cloned."
)
else:
raise ValueError from e
except (UnicodeDecodeError, ValueError):
raise EnvironmentError(f"Unable to convert {model_file} to Flax deserializable object. ")
# make sure all arrays are stored as jnp.ndarray
# NOTE: This is to prevent a bug this will be fixed in Flax >= v0.3.4:
# https://github.com/google/flax/issues/1261
state = jax.tree_util.tree_map(lambda x: jax.device_put(x, jax.local_devices(backend="cpu")[0]), state)
# flatten dicts
state = flatten_dict(state)
params_shape_tree = jax.eval_shape(model.init_weights, rng=jax.random.PRNGKey(0))
required_params = set(flatten_dict(unfreeze(params_shape_tree)).keys())
shape_state = flatten_dict(unfreeze(params_shape_tree))
missing_keys = required_params - set(state.keys())
unexpected_keys = set(state.keys()) - required_params
if missing_keys:
logger.warning(
f"The checkpoint {pretrained_model_name_or_path} is missing required keys: {missing_keys}. "
"Make sure to call model.init_weights to initialize the missing weights."
)
cls._missing_keys = missing_keys
for key in state.keys():
if key in shape_state and state[key].shape != shape_state[key].shape:
raise ValueError(
f"Trying to load the pretrained weight for {key} failed: checkpoint has shape "
f"{state[key].shape} which is incompatible with the model shape {shape_state[key].shape}. "
)
# remove unexpected keys to not be saved again
for unexpected_key in unexpected_keys:
del state[unexpected_key]
if len(unexpected_keys) > 0:
logger.warning(
f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when"
f" initializing {model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are"
f" initializing {model.__class__.__name__} from the checkpoint of a model trained on another task or"
" with another architecture."
)
else:
logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n")
if len(missing_keys) > 0:
logger.warning(
f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
f" {pretrained_model_name_or_path} and are newly initialized: {missing_keys}\nYou should probably"
" TRAIN this model on a down-stream task to be able to use it for predictions and inference."
)
else:
logger.info(
f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at"
f" {pretrained_model_name_or_path}.\nIf your task is similar to the task the model of the checkpoint"
f" was trained on, you can already use {model.__class__.__name__} for predictions without further"
" training."
)
return model, unflatten_dict(state)
def save_pretrained(
self,
save_directory: Union[str, os.PathLike],
params: Union[Dict, FrozenDict],
is_main_process: bool = True,
push_to_hub: bool = False,
**kwargs,
):
"""
Save a model and its configuration file to a directory so that it can be reloaded using the
[`~FlaxModelMixin.from_pretrained`] class method.
Arguments:
save_directory (`str` or `os.PathLike`):
Directory to save a model and its configuration file to. Will be created if it doesn't exist.
params (`Union[Dict, FrozenDict]`):
A `PyTree` of model parameters.
is_main_process (`bool`, *optional*, defaults to `True`):
Whether the process calling this is the main process or not. Useful during distributed training and you
need to call this function on all processes. In this case, set `is_main_process=True` only on the main
process to avoid race conditions.
push_to_hub (`bool`, *optional*, defaults to `False`):
Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
namespace).
kwargs (`Dict[str, Any]`, *optional*):
Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
"""
if os.path.isfile(save_directory):
logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
return
os.makedirs(save_directory, exist_ok=True)
if push_to_hub:
commit_message = kwargs.pop("commit_message", None)
private = kwargs.pop("private", False)
create_pr = kwargs.pop("create_pr", False)
token = kwargs.pop("token", None)
repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
repo_id = create_repo(repo_id, exist_ok=True, private=private, token=token).repo_id
model_to_save = self
# Attach architecture to the config
# Save the config
if is_main_process:
model_to_save.save_config(save_directory)
# save model
output_model_file = os.path.join(save_directory, FLAX_WEIGHTS_NAME)
with open(output_model_file, "wb") as f:
model_bytes = to_bytes(params)
f.write(model_bytes)
logger.info(f"Model weights saved in {output_model_file}")
if push_to_hub:
self._upload_folder(
save_directory,
repo_id,
token=token,
commit_message=commit_message,
create_pr=create_pr,
)
from ..utils import deprecate
from .unets.unet_1d_blocks import (
AttnDownBlock1D,
AttnUpBlock1D,
DownBlock1D,
DownBlock1DNoSkip,
DownResnetBlock1D,
Downsample1d,
MidResTemporalBlock1D,
OutConv1DBlock,
OutValueFunctionBlock,
ResConvBlock,
SelfAttention1d,
UNetMidBlock1D,
UpBlock1D,
UpBlock1DNoSkip,
UpResnetBlock1D,
Upsample1d,
ValueFunctionMidBlock1D,
)
class DownResnetBlock1D(DownResnetBlock1D):
deprecation_message = "Importing `DownResnetBlock1D` from `diffusers.models.unet_1d_blocks` is deprecated and this will be removed in a future version. Please use `from diffusers.models.unets.unet_1d_blocks import DownResnetBlock1D`, instead."
deprecate("DownResnetBlock1D", "0.29", deprecation_message)
class UpResnetBlock1D(UpResnetBlock1D):
deprecation_message = "Importing `UpResnetBlock1D` from `diffusers.models.unet_1d_blocks` is deprecated and this will be removed in a future version. Please use `from diffusers.models.unets.unet_1d_blocks import UpResnetBlock1D`, instead."
deprecate("UpResnetBlock1D", "0.29", deprecation_message)
class ValueFunctionMidBlock1D(ValueFunctionMidBlock1D):
deprecation_message = "Importing `ValueFunctionMidBlock1D` from `diffusers.models.unet_1d_blocks` is deprecated and this will be removed in a future version. Please use `from diffusers.models.unets.unet_1d_blocks import ValueFunctionMidBlock1D`, instead."
deprecate("ValueFunctionMidBlock1D", "0.29", deprecation_message)
class OutConv1DBlock(OutConv1DBlock):
deprecation_message = "Importing `OutConv1DBlock` from `diffusers.models.unet_1d_blocks` is deprecated and this will be removed in a future version. Please use `from diffusers.models.unets.unet_1d_blocks import OutConv1DBlock`, instead."
deprecate("OutConv1DBlock", "0.29", deprecation_message)
class OutValueFunctionBlock(OutValueFunctionBlock):
deprecation_message = "Importing `OutValueFunctionBlock` from `diffusers.models.unet_1d_blocks` is deprecated and this will be removed in a future version. Please use `from diffusers.models.unets.unet_1d_blocks import OutValueFunctionBlock`, instead."
deprecate("OutValueFunctionBlock", "0.29", deprecation_message)
class Downsample1d(Downsample1d):
deprecation_message = "Importing `Downsample1d` from `diffusers.models.unet_1d_blocks` is deprecated and this will be removed in a future version. Please use `from diffusers.models.unets.unet_1d_blocks import Downsample1d`, instead."
deprecate("Downsample1d", "0.29", deprecation_message)
class Upsample1d(Upsample1d):
deprecation_message = "Importing `Upsample1d` from `diffusers.models.unet_1d_blocks` is deprecated and this will be removed in a future version. Please use `from diffusers.models.unets.unet_1d_blocks import Upsample1d`, instead."
deprecate("Upsample1d", "0.29", deprecation_message)
class SelfAttention1d(SelfAttention1d):
deprecation_message = "Importing `SelfAttention1d` from `diffusers.models.unet_1d_blocks` is deprecated and this will be removed in a future version. Please use `from diffusers.models.unets.unet_1d_blocks import SelfAttention1d`, instead."
deprecate("SelfAttention1d", "0.29", deprecation_message)
class ResConvBlock(ResConvBlock):
deprecation_message = "Importing `ResConvBlock` from `diffusers.models.unet_1d_blocks` is deprecated and this will be removed in a future version. Please use `from diffusers.models.unets.unet_1d_blocks import ResConvBlock`, instead."
deprecate("ResConvBlock", "0.29", deprecation_message)
class UNetMidBlock1D(UNetMidBlock1D):
deprecation_message = "Importing `UNetMidBlock1D` from `diffusers.models.unet_1d_blocks` is deprecated and this will be removed in a future version. Please use `from diffusers.models.unets.unet_1d_blocks import UNetMidBlock1D`, instead."
deprecate("UNetMidBlock1D", "0.29", deprecation_message)
class AttnDownBlock1D(AttnDownBlock1D):
deprecation_message = "Importing `AttnDownBlock1D` from `diffusers.models.unet_1d_blocks` is deprecated and this will be removed in a future version. Please use `from diffusers.models.unets.unet_1d_blocks import AttnDownBlock1D`, instead."
deprecate("AttnDownBlock1D", "0.29", deprecation_message)
class DownBlock1D(DownBlock1D):
deprecation_message = "Importing `DownBlock1D` from `diffusers.models.unet_1d_blocks` is deprecated and this will be removed in a future version. Please use `from diffusers.models.unets.unet_1d_blocks import DownBlock1D`, instead."
deprecate("DownBlock1D", "0.29", deprecation_message)
class DownBlock1DNoSkip(DownBlock1DNoSkip):
deprecation_message = "Importing `DownBlock1DNoSkip` from `diffusers.models.unet_1d_blocks` is deprecated and this will be removed in a future version. Please use `from diffusers.models.unets.unet_1d_blocks import DownBlock1DNoSkip`, instead."
deprecate("DownBlock1DNoSkip", "0.29", deprecation_message)
class AttnUpBlock1D(AttnUpBlock1D):
deprecation_message = "Importing `AttnUpBlock1D` from `diffusers.models.unet_1d_blocks` is deprecated and this will be removed in a future version. Please use `from diffusers.models.unets.unet_1d_blocks import AttnUpBlock1D`, instead."
deprecate("AttnUpBlock1D", "0.29", deprecation_message)
class UpBlock1D(UpBlock1D):
deprecation_message = "Importing `UpBlock1D` from `diffusers.models.unet_1d_blocks` is deprecated and this will be removed in a future version. Please use `from diffusers.models.unets.unet_1d_blocks import UpBlock1D`, instead."
deprecate("UpBlock1D", "0.29", deprecation_message)
class UpBlock1DNoSkip(UpBlock1DNoSkip):
deprecation_message = "Importing `UpBlock1DNoSkip` from `diffusers.models.unet_1d_blocks` is deprecated and this will be removed in a future version. Please use `from diffusers.models.unets.unet_1d_blocks import UpBlock1DNoSkip`, instead."
deprecate("UpBlock1DNoSkip", "0.29", deprecation_message)
class MidResTemporalBlock1D(MidResTemporalBlock1D):
deprecation_message = "Importing `MidResTemporalBlock1D` from `diffusers.models.unet_1d_blocks` is deprecated and this will be removed in a future version. Please use `from diffusers.models.unets.unet_1d_blocks import MidResTemporalBlock1D`, instead."
deprecate("MidResTemporalBlock1D", "0.29", deprecation_message)
def get_down_block(
down_block_type: str,
num_layers: int,
in_channels: int,
out_channels: int,
temb_channels: int,
add_downsample: bool,
):
deprecation_message = "Importing `get_down_block` from `diffusers.models.unet_1d_blocks` is deprecated and this will be removed in a future version. Please use `from diffusers.models.unets.unet_1d_blocks import get_down_block`, instead."
deprecate("get_down_block", "0.29", deprecation_message)
from .unets.unet_1d_blocks import get_down_block
return get_down_block(
down_block_type=down_block_type,
num_layers=num_layers,
in_channels=in_channels,
out_channels=out_channels,
temb_channels=temb_channels,
add_downsample=add_downsample,
)
def get_up_block(
up_block_type: str, num_layers: int, in_channels: int, out_channels: int, temb_channels: int, add_upsample: bool
):
deprecation_message = "Importing `get_up_block` from `diffusers.models.unet_1d_blocks` is deprecated and this will be removed in a future version. Please use `from diffusers.models.unets.unet_1d_blocks import get_up_block`, instead."
deprecate("get_up_block", "0.29", deprecation_message)
from .unets.unet_1d_blocks import get_up_block
return get_up_block(
up_block_type=up_block_type,
num_layers=num_layers,
in_channels=in_channels,
out_channels=out_channels,
temb_channels=temb_channels,
add_upsample=add_upsample,
)
def get_mid_block(
mid_block_type: str,
num_layers: int,
in_channels: int,
mid_channels: int,
out_channels: int,
embed_dim: int,
add_downsample: bool,
):
deprecation_message = "Importing `get_mid_block` from `diffusers.models.unet_1d_blocks` is deprecated and this will be removed in a future version. Please use `from diffusers.models.unets.unet_1d_blocks import get_mid_block`, instead."
deprecate("get_mid_block", "0.29", deprecation_message)
from .unets.unet_1d_blocks import get_mid_block
return get_mid_block(
mid_block_type=mid_block_type,
num_layers=num_layers,
in_channels=in_channels,
mid_channels=mid_channels,
out_channels=out_channels,
embed_dim=embed_dim,
add_downsample=add_downsample,
)
def get_out_block(
*, out_block_type: str, num_groups_out: int, embed_dim: int, out_channels: int, act_fn: str, fc_dim: int
):
deprecation_message = "Importing `get_out_block` from `diffusers.models.unet_1d_blocks` is deprecated and this will be removed in a future version. Please use `from diffusers.models.unets.unet_1d_blocks import get_out_block`, instead."
deprecate("get_out_block", "0.29", deprecation_message)
from .unets.unet_1d_blocks import get_out_block
return get_out_block(
out_block_type=out_block_type,
num_groups_out=num_groups_out,
embed_dim=embed_dim,
out_channels=out_channels,
act_fn=act_fn,
fc_dim=fc_dim,
)
import math
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from torch import nn
from ..utils import USE_PEFT_BACKEND, deprecate
from .activations import get_activation
from .attention_processor import Attention
from .lora import LoRACompatibleLinear
def get_timestep_embedding(
timesteps: torch.Tensor,
embedding_dim: int,
flip_sin_to_cos: bool = False,
downscale_freq_shift: float = 1,
scale: float = 1,
max_period: int = 10000,
):
"""
This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings.
:param timesteps: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param embedding_dim: the dimension of the output. :param max_period: controls the minimum frequency of the
embeddings. :return: an [N x dim] Tensor of positional embeddings.
"""
assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array"
half_dim = embedding_dim // 2
exponent = -math.log(max_period) * torch.arange(
start=0, end=half_dim, dtype=torch.float32, device=timesteps.device
)
exponent = exponent / (half_dim - downscale_freq_shift)
emb = torch.exp(exponent)
emb = timesteps[:, None].float() * emb[None, :]
# scale embeddings
emb = scale * emb
# concat sine and cosine embeddings
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1)
# flip sine and cosine embeddings
if flip_sin_to_cos:
emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1)
# zero pad
if embedding_dim % 2 == 1:
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
return emb
def get_2d_sincos_pos_embed(
embed_dim, grid_size, cls_token=False, extra_tokens=0, interpolation_scale=1.0, base_size=16
):
"""
grid_size: int of the grid height and width return: pos_embed: [grid_size*grid_size, embed_dim] or
[1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
"""
if isinstance(grid_size, int):
grid_size = (grid_size, grid_size)
grid_h = np.arange(grid_size[0], dtype=np.float32) / (grid_size[0] / base_size) / interpolation_scale
grid_w = np.arange(grid_size[1], dtype=np.float32) / (grid_size[1] / base_size) / interpolation_scale
grid = np.meshgrid(grid_w, grid_h) # here w goes first
grid = np.stack(grid, axis=0)
grid = grid.reshape([2, 1, grid_size[1], grid_size[0]])
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
if cls_token and extra_tokens > 0:
pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0)
return pos_embed
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
if embed_dim % 2 != 0:
raise ValueError("embed_dim must be divisible by 2")
# use half of dimensions to encode grid_h
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
return emb
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
"""
embed_dim: output dimension for each position pos: a list of positions to be encoded: size (M,) out: (M, D)
"""
if embed_dim % 2 != 0:
raise ValueError("embed_dim must be divisible by 2")
omega = np.arange(embed_dim // 2, dtype=np.float64)
omega /= embed_dim / 2.0
omega = 1.0 / 10000**omega # (D/2,)
pos = pos.reshape(-1) # (M,)
out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product
emb_sin = np.sin(out) # (M, D/2)
emb_cos = np.cos(out) # (M, D/2)
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
return emb
class PatchEmbed(nn.Module):
"""2D Image to Patch Embedding"""
def __init__(
self,
height=224,
width=224,
patch_size=16,
in_channels=3,
embed_dim=768,
layer_norm=False,
flatten=True,
bias=True,
interpolation_scale=1,
):
super().__init__()
num_patches = (height // patch_size) * (width // patch_size)
self.flatten = flatten
self.layer_norm = layer_norm
self.proj = nn.Conv2d(
in_channels, embed_dim, kernel_size=(patch_size, patch_size), stride=patch_size, bias=bias
)
if layer_norm:
self.norm = nn.LayerNorm(embed_dim, elementwise_affine=False, eps=1e-6)
else:
self.norm = None
self.patch_size = patch_size
# See:
# https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L161
self.height, self.width = height // patch_size, width // patch_size
self.base_size = height // patch_size
self.interpolation_scale = interpolation_scale
pos_embed = get_2d_sincos_pos_embed(
embed_dim, int(num_patches**0.5), base_size=self.base_size, interpolation_scale=self.interpolation_scale
)
self.register_buffer("pos_embed", torch.from_numpy(pos_embed).float().unsqueeze(0), persistent=False)
def forward(self, latent):
height, width = latent.shape[-2] // self.patch_size, latent.shape[-1] // self.patch_size
latent = self.proj(latent)
if self.flatten:
latent = latent.flatten(2).transpose(1, 2) # BCHW -> BNC
if self.layer_norm:
latent = self.norm(latent)
# Interpolate positional embeddings if needed.
# (For PixArt-Alpha: https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L162C151-L162C160)
if self.height != height or self.width != width:
pos_embed = get_2d_sincos_pos_embed(
embed_dim=self.pos_embed.shape[-1],
grid_size=(height, width),
base_size=self.base_size,
interpolation_scale=self.interpolation_scale,
)
pos_embed = torch.from_numpy(pos_embed)
pos_embed = pos_embed.float().unsqueeze(0).to(latent.device)
else:
pos_embed = self.pos_embed
return (latent + pos_embed).to(latent.dtype)
class TimestepEmbedding(nn.Module):
def __init__(
self,
in_channels: int,
time_embed_dim: int,
act_fn: str = "silu",
out_dim: int = None,
post_act_fn: Optional[str] = None,
cond_proj_dim=None,
sample_proj_bias=True,
):
super().__init__()
linear_cls = nn.Linear if USE_PEFT_BACKEND else LoRACompatibleLinear
self.linear_1 = linear_cls(in_channels, time_embed_dim, sample_proj_bias)
if cond_proj_dim is not None:
self.cond_proj = nn.Linear(cond_proj_dim, in_channels, bias=False)
else:
self.cond_proj = None
self.act = get_activation(act_fn)
if out_dim is not None:
time_embed_dim_out = out_dim
else:
time_embed_dim_out = time_embed_dim
self.linear_2 = linear_cls(time_embed_dim, time_embed_dim_out, sample_proj_bias)
if post_act_fn is None:
self.post_act = None
else:
self.post_act = get_activation(post_act_fn)
def forward(self, sample, condition=None):
if condition is not None:
sample = sample + self.cond_proj(condition)
sample = self.linear_1(sample)
if self.act is not None:
sample = self.act(sample)
sample = self.linear_2(sample)
if self.post_act is not None:
sample = self.post_act(sample)
return sample
class Timesteps(nn.Module):
def __init__(self, num_channels: int, flip_sin_to_cos: bool, downscale_freq_shift: float):
super().__init__()
self.num_channels = num_channels
self.flip_sin_to_cos = flip_sin_to_cos
self.downscale_freq_shift = downscale_freq_shift
def forward(self, timesteps):
t_emb = get_timestep_embedding(
timesteps,
self.num_channels,
flip_sin_to_cos=self.flip_sin_to_cos,
downscale_freq_shift=self.downscale_freq_shift,
)
return t_emb
class GaussianFourierProjection(nn.Module):
"""Gaussian Fourier embeddings for noise levels."""
def __init__(
self, embedding_size: int = 256, scale: float = 1.0, set_W_to_weight=True, log=True, flip_sin_to_cos=False
):
super().__init__()
self.weight = nn.Parameter(torch.randn(embedding_size) * scale, requires_grad=False)
self.log = log
self.flip_sin_to_cos = flip_sin_to_cos
if set_W_to_weight:
# to delete later
self.W = nn.Parameter(torch.randn(embedding_size) * scale, requires_grad=False)
self.weight = self.W
def forward(self, x):
if self.log:
x = torch.log(x)
x_proj = x[:, None] * self.weight[None, :] * 2 * np.pi
if self.flip_sin_to_cos:
out = torch.cat([torch.cos(x_proj), torch.sin(x_proj)], dim=-1)
else:
out = torch.cat([torch.sin(x_proj), torch.cos(x_proj)], dim=-1)
return out
class SinusoidalPositionalEmbedding(nn.Module):
"""Apply positional information to a sequence of embeddings.
Takes in a sequence of embeddings with shape (batch_size, seq_length, embed_dim) and adds positional embeddings to
them
Args:
embed_dim: (int): Dimension of the positional embedding.
max_seq_length: Maximum sequence length to apply positional embeddings
"""
def __init__(self, embed_dim: int, max_seq_length: int = 32):
super().__init__()
position = torch.arange(max_seq_length).unsqueeze(1)
div_term = torch.exp(torch.arange(0, embed_dim, 2) * (-math.log(10000.0) / embed_dim))
pe = torch.zeros(1, max_seq_length, embed_dim)
pe[0, :, 0::2] = torch.sin(position * div_term)
pe[0, :, 1::2] = torch.cos(position * div_term)
self.register_buffer("pe", pe)
def forward(self, x):
_, seq_length, _ = x.shape
x = x + self.pe[:, :seq_length]
return x
class ImagePositionalEmbeddings(nn.Module):
"""
Converts latent image classes into vector embeddings. Sums the vector embeddings with positional embeddings for the
height and width of the latent space.
For more details, see figure 10 of the dall-e paper: https://arxiv.org/abs/2102.12092
For VQ-diffusion:
Output vector embeddings are used as input for the transformer.
Note that the vector embeddings for the transformer are different than the vector embeddings from the VQVAE.
Args:
num_embed (`int`):
Number of embeddings for the latent pixels embeddings.
height (`int`):
Height of the latent image i.e. the number of height embeddings.
width (`int`):
Width of the latent image i.e. the number of width embeddings.
embed_dim (`int`):
Dimension of the produced vector embeddings. Used for the latent pixel, height, and width embeddings.
"""
def __init__(
self,
num_embed: int,
height: int,
width: int,
embed_dim: int,
):
super().__init__()
self.height = height
self.width = width
self.num_embed = num_embed
self.embed_dim = embed_dim
self.emb = nn.Embedding(self.num_embed, embed_dim)
self.height_emb = nn.Embedding(self.height, embed_dim)
self.width_emb = nn.Embedding(self.width, embed_dim)
def forward(self, index):
emb = self.emb(index)
height_emb = self.height_emb(torch.arange(self.height, device=index.device).view(1, self.height))
# 1 x H x D -> 1 x H x 1 x D
height_emb = height_emb.unsqueeze(2)
width_emb = self.width_emb(torch.arange(self.width, device=index.device).view(1, self.width))
# 1 x W x D -> 1 x 1 x W x D
width_emb = width_emb.unsqueeze(1)
pos_emb = height_emb + width_emb
# 1 x H x W x D -> 1 x L xD
pos_emb = pos_emb.view(1, self.height * self.width, -1)
emb = emb + pos_emb[:, : emb.shape[1], :]
return emb
class LabelEmbedding(nn.Module):
"""
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
Args:
num_classes (`int`): The number of classes.
hidden_size (`int`): The size of the vector embeddings.
dropout_prob (`float`): The probability of dropping a label.
"""
def __init__(self, num_classes, hidden_size, dropout_prob):
super().__init__()
use_cfg_embedding = dropout_prob > 0
self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size)
self.num_classes = num_classes
self.dropout_prob = dropout_prob
def token_drop(self, labels, force_drop_ids=None):
"""
Drops labels to enable classifier-free guidance.
"""
if force_drop_ids is None:
drop_ids = torch.rand(labels.shape[0], device=labels.device) < self.dropout_prob
else:
drop_ids = torch.tensor(force_drop_ids == 1)
labels = torch.where(drop_ids, self.num_classes, labels)
return labels
def forward(self, labels: torch.LongTensor, force_drop_ids=None):
use_dropout = self.dropout_prob > 0
if (self.training and use_dropout) or (force_drop_ids is not None):
labels = self.token_drop(labels, force_drop_ids)
embeddings = self.embedding_table(labels)
return embeddings
class TextImageProjection(nn.Module):
def __init__(
self,
text_embed_dim: int = 1024,
image_embed_dim: int = 768,
cross_attention_dim: int = 768,
num_image_text_embeds: int = 10,
):
super().__init__()
self.num_image_text_embeds = num_image_text_embeds
self.image_embeds = nn.Linear(image_embed_dim, self.num_image_text_embeds * cross_attention_dim)
self.text_proj = nn.Linear(text_embed_dim, cross_attention_dim)
def forward(self, text_embeds: torch.FloatTensor, image_embeds: torch.FloatTensor):
batch_size = text_embeds.shape[0]
# image
image_text_embeds = self.image_embeds(image_embeds)
image_text_embeds = image_text_embeds.reshape(batch_size, self.num_image_text_embeds, -1)
# text
text_embeds = self.text_proj(text_embeds)
return torch.cat([image_text_embeds, text_embeds], dim=1)
class ImageProjection(nn.Module):
def __init__(
self,
image_embed_dim: int = 768,
cross_attention_dim: int = 768,
num_image_text_embeds: int = 32,
):
super().__init__()
self.num_image_text_embeds = num_image_text_embeds
self.image_embeds = nn.Linear(image_embed_dim, self.num_image_text_embeds * cross_attention_dim)
self.norm = nn.LayerNorm(cross_attention_dim)
def forward(self, image_embeds: torch.FloatTensor):
batch_size = image_embeds.shape[0]
# image
image_embeds = self.image_embeds(image_embeds)
image_embeds = image_embeds.reshape(batch_size, self.num_image_text_embeds, -1)
image_embeds = self.norm(image_embeds)
return image_embeds
class IPAdapterFullImageProjection(nn.Module):
def __init__(self, image_embed_dim=1024, cross_attention_dim=1024):
super().__init__()
from .attention import FeedForward
self.ff = FeedForward(image_embed_dim, cross_attention_dim, mult=1, activation_fn="gelu")
self.norm = nn.LayerNorm(cross_attention_dim)
def forward(self, image_embeds: torch.FloatTensor):
return self.norm(self.ff(image_embeds))
class CombinedTimestepLabelEmbeddings(nn.Module):
def __init__(self, num_classes, embedding_dim, class_dropout_prob=0.1):
super().__init__()
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=1)
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
self.class_embedder = LabelEmbedding(num_classes, embedding_dim, class_dropout_prob)
def forward(self, timestep, class_labels, hidden_dtype=None):
timesteps_proj = self.time_proj(timestep)
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype)) # (N, D)
class_labels = self.class_embedder(class_labels) # (N, D)
conditioning = timesteps_emb + class_labels # (N, D)
return conditioning
class TextTimeEmbedding(nn.Module):
def __init__(self, encoder_dim: int, time_embed_dim: int, num_heads: int = 64):
super().__init__()
self.norm1 = nn.LayerNorm(encoder_dim)
self.pool = AttentionPooling(num_heads, encoder_dim)
self.proj = nn.Linear(encoder_dim, time_embed_dim)
self.norm2 = nn.LayerNorm(time_embed_dim)
def forward(self, hidden_states):
hidden_states = self.norm1(hidden_states)
hidden_states = self.pool(hidden_states)
hidden_states = self.proj(hidden_states)
hidden_states = self.norm2(hidden_states)
return hidden_states
class TextImageTimeEmbedding(nn.Module):
def __init__(self, text_embed_dim: int = 768, image_embed_dim: int = 768, time_embed_dim: int = 1536):
super().__init__()
self.text_proj = nn.Linear(text_embed_dim, time_embed_dim)
self.text_norm = nn.LayerNorm(time_embed_dim)
self.image_proj = nn.Linear(image_embed_dim, time_embed_dim)
def forward(self, text_embeds: torch.FloatTensor, image_embeds: torch.FloatTensor):
# text
time_text_embeds = self.text_proj(text_embeds)
time_text_embeds = self.text_norm(time_text_embeds)
# image
time_image_embeds = self.image_proj(image_embeds)
return time_image_embeds + time_text_embeds
class ImageTimeEmbedding(nn.Module):
def __init__(self, image_embed_dim: int = 768, time_embed_dim: int = 1536):
super().__init__()
self.image_proj = nn.Linear(image_embed_dim, time_embed_dim)
self.image_norm = nn.LayerNorm(time_embed_dim)
def forward(self, image_embeds: torch.FloatTensor):
# image
time_image_embeds = self.image_proj(image_embeds)
time_image_embeds = self.image_norm(time_image_embeds)
return time_image_embeds
class ImageHintTimeEmbedding(nn.Module):
def __init__(self, image_embed_dim: int = 768, time_embed_dim: int = 1536):
super().__init__()
self.image_proj = nn.Linear(image_embed_dim, time_embed_dim)
self.image_norm = nn.LayerNorm(time_embed_dim)
self.input_hint_block = nn.Sequential(
nn.Conv2d(3, 16, 3, padding=1),
nn.SiLU(),
nn.Conv2d(16, 16, 3, padding=1),
nn.SiLU(),
nn.Conv2d(16, 32, 3, padding=1, stride=2),
nn.SiLU(),
nn.Conv2d(32, 32, 3, padding=1),
nn.SiLU(),
nn.Conv2d(32, 96, 3, padding=1, stride=2),
nn.SiLU(),
nn.Conv2d(96, 96, 3, padding=1),
nn.SiLU(),
nn.Conv2d(96, 256, 3, padding=1, stride=2),
nn.SiLU(),
nn.Conv2d(256, 4, 3, padding=1),
)
def forward(self, image_embeds: torch.FloatTensor, hint: torch.FloatTensor):
# image
time_image_embeds = self.image_proj(image_embeds)
time_image_embeds = self.image_norm(time_image_embeds)
hint = self.input_hint_block(hint)
return time_image_embeds, hint
class AttentionPooling(nn.Module):
# Copied from https://github.com/deep-floyd/IF/blob/2f91391f27dd3c468bf174be5805b4cc92980c0b/deepfloyd_if/model/nn.py#L54
def __init__(self, num_heads, embed_dim, dtype=None):
super().__init__()
self.dtype = dtype
self.positional_embedding = nn.Parameter(torch.randn(1, embed_dim) / embed_dim**0.5)
self.k_proj = nn.Linear(embed_dim, embed_dim, dtype=self.dtype)
self.q_proj = nn.Linear(embed_dim, embed_dim, dtype=self.dtype)
self.v_proj = nn.Linear(embed_dim, embed_dim, dtype=self.dtype)
self.num_heads = num_heads
self.dim_per_head = embed_dim // self.num_heads
def forward(self, x):
bs, length, width = x.size()
def shape(x):
# (bs, length, width) --> (bs, length, n_heads, dim_per_head)
x = x.view(bs, -1, self.num_heads, self.dim_per_head)
# (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
x = x.transpose(1, 2)
# (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
x = x.reshape(bs * self.num_heads, -1, self.dim_per_head)
# (bs*n_heads, length, dim_per_head) --> (bs*n_heads, dim_per_head, length)
x = x.transpose(1, 2)
return x
class_token = x.mean(dim=1, keepdim=True) + self.positional_embedding.to(x.dtype)
x = torch.cat([class_token, x], dim=1) # (bs, length+1, width)
# (bs*n_heads, class_token_length, dim_per_head)
q = shape(self.q_proj(class_token))
# (bs*n_heads, length+class_token_length, dim_per_head)
k = shape(self.k_proj(x))
v = shape(self.v_proj(x))
# (bs*n_heads, class_token_length, length+class_token_length):
scale = 1 / math.sqrt(math.sqrt(self.dim_per_head))
weight = torch.einsum("bct,bcs->bts", q * scale, k * scale) # More stable with f16 than dividing afterwards
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
# (bs*n_heads, dim_per_head, class_token_length)
a = torch.einsum("bts,bcs->bct", weight, v)
# (bs, length+1, width)
a = a.reshape(bs, -1, 1).transpose(1, 2)
return a[:, 0, :] # cls_token
def get_fourier_embeds_from_boundingbox(embed_dim, box):
"""
Args:
embed_dim: int
box: a 3-D tensor [B x N x 4] representing the bounding boxes for GLIGEN pipeline
Returns:
[B x N x embed_dim] tensor of positional embeddings
"""
batch_size, num_boxes = box.shape[:2]
emb = 100 ** (torch.arange(embed_dim) / embed_dim)
emb = emb[None, None, None].to(device=box.device, dtype=box.dtype)
emb = emb * box.unsqueeze(-1)
emb = torch.stack((emb.sin(), emb.cos()), dim=-1)
emb = emb.permute(0, 1, 3, 4, 2).reshape(batch_size, num_boxes, embed_dim * 2 * 4)
return emb
class GLIGENTextBoundingboxProjection(nn.Module):
def __init__(self, positive_len, out_dim, feature_type="text-only", fourier_freqs=8):
super().__init__()
self.positive_len = positive_len
self.out_dim = out_dim
self.fourier_embedder_dim = fourier_freqs
self.position_dim = fourier_freqs * 2 * 4 # 2: sin/cos, 4: xyxy
if isinstance(out_dim, tuple):
out_dim = out_dim[0]
if feature_type == "text-only":
self.linears = nn.Sequential(
nn.Linear(self.positive_len + self.position_dim, 512),
nn.SiLU(),
nn.Linear(512, 512),
nn.SiLU(),
nn.Linear(512, out_dim),
)
self.null_positive_feature = torch.nn.Parameter(torch.zeros([self.positive_len]))
elif feature_type == "text-image":
self.linears_text = nn.Sequential(
nn.Linear(self.positive_len + self.position_dim, 512),
nn.SiLU(),
nn.Linear(512, 512),
nn.SiLU(),
nn.Linear(512, out_dim),
)
self.linears_image = nn.Sequential(
nn.Linear(self.positive_len + self.position_dim, 512),
nn.SiLU(),
nn.Linear(512, 512),
nn.SiLU(),
nn.Linear(512, out_dim),
)
self.null_text_feature = torch.nn.Parameter(torch.zeros([self.positive_len]))
self.null_image_feature = torch.nn.Parameter(torch.zeros([self.positive_len]))
self.null_position_feature = torch.nn.Parameter(torch.zeros([self.position_dim]))
def forward(
self,
boxes,
masks,
positive_embeddings=None,
phrases_masks=None,
image_masks=None,
phrases_embeddings=None,
image_embeddings=None,
):
masks = masks.unsqueeze(-1)
# embedding position (it may includes padding as placeholder)
xyxy_embedding = get_fourier_embeds_from_boundingbox(self.fourier_embedder_dim, boxes) # B*N*4 -> B*N*C
# learnable null embedding
xyxy_null = self.null_position_feature.view(1, 1, -1)
# replace padding with learnable null embedding
xyxy_embedding = xyxy_embedding * masks + (1 - masks) * xyxy_null
# positionet with text only information
if positive_embeddings is not None:
# learnable null embedding
positive_null = self.null_positive_feature.view(1, 1, -1)
# replace padding with learnable null embedding
positive_embeddings = positive_embeddings * masks + (1 - masks) * positive_null
objs = self.linears(torch.cat([positive_embeddings, xyxy_embedding], dim=-1))
# positionet with text and image infomation
else:
phrases_masks = phrases_masks.unsqueeze(-1)
image_masks = image_masks.unsqueeze(-1)
# learnable null embedding
text_null = self.null_text_feature.view(1, 1, -1)
image_null = self.null_image_feature.view(1, 1, -1)
# replace padding with learnable null embedding
phrases_embeddings = phrases_embeddings * phrases_masks + (1 - phrases_masks) * text_null
image_embeddings = image_embeddings * image_masks + (1 - image_masks) * image_null
objs_text = self.linears_text(torch.cat([phrases_embeddings, xyxy_embedding], dim=-1))
objs_image = self.linears_image(torch.cat([image_embeddings, xyxy_embedding], dim=-1))
objs = torch.cat([objs_text, objs_image], dim=1)
return objs
class PixArtAlphaCombinedTimestepSizeEmbeddings(nn.Module):
"""
For PixArt-Alpha.
Reference:
https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L164C9-L168C29
"""
def __init__(self, embedding_dim, size_emb_dim, use_additional_conditions: bool = False):
super().__init__()
self.outdim = size_emb_dim
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
self.use_additional_conditions = use_additional_conditions
if use_additional_conditions:
self.additional_condition_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
self.resolution_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=size_emb_dim)
self.aspect_ratio_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=size_emb_dim)
def forward(self, timestep, resolution, aspect_ratio, batch_size, hidden_dtype):
timesteps_proj = self.time_proj(timestep)
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype)) # (N, D)
if self.use_additional_conditions:
resolution_emb = self.additional_condition_proj(resolution.flatten()).to(hidden_dtype)
resolution_emb = self.resolution_embedder(resolution_emb).reshape(batch_size, -1)
aspect_ratio_emb = self.additional_condition_proj(aspect_ratio.flatten()).to(hidden_dtype)
aspect_ratio_emb = self.aspect_ratio_embedder(aspect_ratio_emb).reshape(batch_size, -1)
conditioning = timesteps_emb + torch.cat([resolution_emb, aspect_ratio_emb], dim=1)
else:
conditioning = timesteps_emb
return conditioning
class PixArtAlphaTextProjection(nn.Module):
"""
Projects caption embeddings. Also handles dropout for classifier-free guidance.
Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py
"""
def __init__(self, in_features, hidden_size, num_tokens=120):
super().__init__()
self.linear_1 = nn.Linear(in_features=in_features, out_features=hidden_size, bias=True)
self.act_1 = nn.GELU(approximate="tanh")
self.linear_2 = nn.Linear(in_features=hidden_size, out_features=hidden_size, bias=True)
def forward(self, caption):
hidden_states = self.linear_1(caption)
hidden_states = self.act_1(hidden_states)
hidden_states = self.linear_2(hidden_states)
return hidden_states
class IPAdapterPlusImageProjection(nn.Module):
"""Resampler of IP-Adapter Plus.
Args:
----
embed_dims (int): The feature dimension. Defaults to 768.
output_dims (int): The number of output channels, that is the same
number of the channels in the
`unet.config.cross_attention_dim`. Defaults to 1024.
hidden_dims (int): The number of hidden channels. Defaults to 1280.
depth (int): The number of blocks. Defaults to 8.
dim_head (int): The number of head channels. Defaults to 64.
heads (int): Parallel attention heads. Defaults to 16.
num_queries (int): The number of queries. Defaults to 8.
ffn_ratio (float): The expansion ratio of feedforward network hidden
layer channels. Defaults to 4.
"""
def __init__(
self,
embed_dims: int = 768,
output_dims: int = 1024,
hidden_dims: int = 1280,
depth: int = 4,
dim_head: int = 64,
heads: int = 16,
num_queries: int = 8,
ffn_ratio: float = 4,
) -> None:
super().__init__()
from .attention import FeedForward # Lazy import to avoid circular import
self.latents = nn.Parameter(torch.randn(1, num_queries, hidden_dims) / hidden_dims**0.5)
self.proj_in = nn.Linear(embed_dims, hidden_dims)
self.proj_out = nn.Linear(hidden_dims, output_dims)
self.norm_out = nn.LayerNorm(output_dims)
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(
nn.ModuleList(
[
nn.LayerNorm(hidden_dims),
nn.LayerNorm(hidden_dims),
Attention(
query_dim=hidden_dims,
dim_head=dim_head,
heads=heads,
out_bias=False,
),
nn.Sequential(
nn.LayerNorm(hidden_dims),
FeedForward(hidden_dims, hidden_dims, activation_fn="gelu", mult=ffn_ratio, bias=False),
),
]
)
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Forward pass.
Args:
----
x (torch.Tensor): Input Tensor.
Returns:
-------
torch.Tensor: Output Tensor.
"""
latents = self.latents.repeat(x.size(0), 1, 1)
x = self.proj_in(x)
for ln0, ln1, attn, ff in self.layers:
residual = latents
encoder_hidden_states = ln0(x)
latents = ln1(latents)
encoder_hidden_states = torch.cat([encoder_hidden_states, latents], dim=-2)
latents = attn(latents, encoder_hidden_states) + residual
latents = ff(latents) + latents
latents = self.proj_out(latents)
return self.norm_out(latents)
class MultiIPAdapterImageProjection(nn.Module):
def __init__(self, IPAdapterImageProjectionLayers: Union[List[nn.Module], Tuple[nn.Module]]):
super().__init__()
self.image_projection_layers = nn.ModuleList(IPAdapterImageProjectionLayers)
def forward(self, image_embeds: List[torch.FloatTensor]):
projected_image_embeds = []
# currently, we accept `image_embeds` as
# 1. a tensor (deprecated) with shape [batch_size, embed_dim] or [batch_size, sequence_length, embed_dim]
# 2. list of `n` tensors where `n` is number of ip-adapters, each tensor can hae shape [batch_size, num_images, embed_dim] or [batch_size, num_images, sequence_length, embed_dim]
if not isinstance(image_embeds, list):
deprecation_message = (
"You have passed a tensor as `image_embeds`.This is deprecated and will be removed in a future release."
" Please make sure to update your script to pass `image_embeds` as a list of tensors to supress this warning."
)
deprecate("image_embeds not a list", "1.0.0", deprecation_message, standard_warn=False)
image_embeds = [image_embeds.unsqueeze(1)]
if len(image_embeds) != len(self.image_projection_layers):
raise ValueError(
f"image_embeds must have the same length as image_projection_layers, got {len(image_embeds)} and {len(self.image_projection_layers)}"
)
for image_embed, image_projection_layer in zip(image_embeds, self.image_projection_layers):
batch_size, num_images = image_embed.shape[0], image_embed.shape[1]
image_embed = image_embed.reshape((batch_size * num_images,) + image_embed.shape[2:])
image_embed = image_projection_layer(image_embed)
image_embed = image_embed.reshape((batch_size, num_images) + image_embed.shape[1:])
projected_image_embeds.append(image_embed)
return projected_image_embeds
from ..utils import deprecate
from .transformers.t5_film_transformer import (
DecoderLayer,
NewGELUActivation,
T5DenseGatedActDense,
T5FilmDecoder,
T5FiLMLayer,
T5LayerCrossAttention,
T5LayerFFCond,
T5LayerNorm,
T5LayerSelfAttentionCond,
)
class T5FilmDecoder(T5FilmDecoder):
deprecation_message = "Importing `T5FilmDecoder` from `diffusers.models.t5_film_transformer` is deprecated and this will be removed in a future version. Please use `from diffusers.models.transformers.t5_film_transformer import T5FilmDecoder`, instead."
deprecate("T5FilmDecoder", "0.29", deprecation_message)
class DecoderLayer(DecoderLayer):
deprecation_message = "Importing `DecoderLayer` from `diffusers.models.t5_film_transformer` is deprecated and this will be removed in a future version. Please use `from diffusers.models.transformers.t5_film_transformer import DecoderLayer`, instead."
deprecate("DecoderLayer", "0.29", deprecation_message)
class T5LayerSelfAttentionCond(T5LayerSelfAttentionCond):
deprecation_message = "Importing `T5LayerSelfAttentionCond` from `diffusers.models.t5_film_transformer` is deprecated and this will be removed in a future version. Please use `from diffusers.models.transformers.t5_film_transformer import T5LayerSelfAttentionCond`, instead."
deprecate("T5LayerSelfAttentionCond", "0.29", deprecation_message)
class T5LayerCrossAttention(T5LayerCrossAttention):
deprecation_message = "Importing `T5LayerCrossAttention` from `diffusers.models.t5_film_transformer` is deprecated and this will be removed in a future version. Please use `from diffusers.models.transformers.t5_film_transformer import T5LayerCrossAttention`, instead."
deprecate("T5LayerCrossAttention", "0.29", deprecation_message)
class T5LayerFFCond(T5LayerFFCond):
deprecation_message = "Importing `T5LayerFFCond` from `diffusers.models.t5_film_transformer` is deprecated and this will be removed in a future version. Please use `from diffusers.models.transformers.t5_film_transformer import T5LayerFFCond`, instead."
deprecate("T5LayerFFCond", "0.29", deprecation_message)
class T5DenseGatedActDense(T5DenseGatedActDense):
deprecation_message = "Importing `T5DenseGatedActDense` from `diffusers.models.t5_film_transformer` is deprecated and this will be removed in a future version. Please use `from diffusers.models.transformers.t5_film_transformer import T5DenseGatedActDense`, instead."
deprecate("T5DenseGatedActDense", "0.29", deprecation_message)
class T5LayerNorm(T5LayerNorm):
deprecation_message = "Importing `T5LayerNorm` from `diffusers.models.t5_film_transformer` is deprecated and this will be removed in a future version. Please use `from diffusers.models.transformers.t5_film_transformer import T5LayerNorm`, instead."
deprecate("T5LayerNorm", "0.29", deprecation_message)
class NewGELUActivation(NewGELUActivation):
deprecation_message = "Importing `T5LayerNorm` from `diffusers.models.t5_film_transformer` is deprecated and this will be removed in a future version. Please use `from diffusers.models.transformers.t5_film_transformer import NewGELUActivation`, instead."
deprecate("NewGELUActivation", "0.29", deprecation_message)
class T5FiLMLayer(T5FiLMLayer):
deprecation_message = "Importing `T5FiLMLayer` from `diffusers.models.t5_film_transformer` is deprecated and this will be removed in a future version. Please use `from diffusers.models.transformers.t5_film_transformer import T5FiLMLayer`, instead."
deprecate("T5FiLMLayer", "0.29", deprecation_message)
from ...utils import is_flax_available, is_torch_available
if is_torch_available():
from .unet_1d import UNet1DModel
from .unet_2d import UNet2DModel
from .unet_2d_condition import UNet2DConditionModel
from .unet_3d_condition import UNet3DConditionModel
from .unet_i2vgen_xl import I2VGenXLUNet
from .unet_kandinsky3 import Kandinsky3UNet
from .unet_motion_model import MotionAdapter, UNetMotionModel
from .unet_spatio_temporal_condition import UNetSpatioTemporalConditionModel
from .unet_stable_cascade import StableCascadeUNet
from .uvit_2d import UVit2DModel
if is_flax_available():
from .unet_2d_condition_flax import FlaxUNet2DConditionModel
from typing import Any, Dict, Optional, Tuple, Union
import torch
from torch import nn
from ...utils import is_torch_version
from ...utils.torch_utils import apply_freeu
from ..attention import Attention
from ..resnet import (
Downsample2D,
ResnetBlock2D,
SpatioTemporalResBlock,
TemporalConvLayer,
Upsample2D,
)
from ..transformers.dual_transformer_2d import DualTransformer2DModel
from ..transformers.transformer_2d import Transformer2DModel
from ..transformers.transformer_temporal import (
TransformerSpatioTemporalModel,
TransformerTemporalModel,
)
def get_down_block(
down_block_type: str,
num_layers: int,
in_channels: int,
out_channels: int,
temb_channels: int,
add_downsample: bool,
resnet_eps: float,
resnet_act_fn: str,
num_attention_heads: int,
resnet_groups: Optional[int] = None,
cross_attention_dim: Optional[int] = None,
downsample_padding: Optional[int] = None,
dual_cross_attention: bool = False,
use_linear_projection: bool = True,
only_cross_attention: bool = False,
upcast_attention: bool = False,
resnet_time_scale_shift: str = "default",
temporal_num_attention_heads: int = 8,
temporal_max_seq_length: int = 32,
transformer_layers_per_block: int = 1,
) -> Union[
"DownBlock3D",
"CrossAttnDownBlock3D",
"DownBlockMotion",
"CrossAttnDownBlockMotion",
"DownBlockSpatioTemporal",
"CrossAttnDownBlockSpatioTemporal",
]:
if down_block_type == "DownBlock3D":
return DownBlock3D(
num_layers=num_layers,
in_channels=in_channels,
out_channels=out_channels,
temb_channels=temb_channels,
add_downsample=add_downsample,
resnet_eps=resnet_eps,
resnet_act_fn=resnet_act_fn,
resnet_groups=resnet_groups,
downsample_padding=downsample_padding,
resnet_time_scale_shift=resnet_time_scale_shift,
)
elif down_block_type == "CrossAttnDownBlock3D":
if cross_attention_dim is None:
raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock3D")
return CrossAttnDownBlock3D(
num_layers=num_layers,
in_channels=in_channels,
out_channels=out_channels,
temb_channels=temb_channels,
add_downsample=add_downsample,
resnet_eps=resnet_eps,
resnet_act_fn=resnet_act_fn,
resnet_groups=resnet_groups,
downsample_padding=downsample_padding,
cross_attention_dim=cross_attention_dim,
num_attention_heads=num_attention_heads,
dual_cross_attention=dual_cross_attention,
use_linear_projection=use_linear_projection,
only_cross_attention=only_cross_attention,
upcast_attention=upcast_attention,
resnet_time_scale_shift=resnet_time_scale_shift,
)
if down_block_type == "DownBlockMotion":
return DownBlockMotion(
num_layers=num_layers,
in_channels=in_channels,
out_channels=out_channels,
temb_channels=temb_channels,
add_downsample=add_downsample,
resnet_eps=resnet_eps,
resnet_act_fn=resnet_act_fn,
resnet_groups=resnet_groups,
downsample_padding=downsample_padding,
resnet_time_scale_shift=resnet_time_scale_shift,
temporal_num_attention_heads=temporal_num_attention_heads,
temporal_max_seq_length=temporal_max_seq_length,
)
elif down_block_type == "CrossAttnDownBlockMotion":
if cross_attention_dim is None:
raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlockMotion")
return CrossAttnDownBlockMotion(
num_layers=num_layers,
in_channels=in_channels,
out_channels=out_channels,
temb_channels=temb_channels,
add_downsample=add_downsample,
resnet_eps=resnet_eps,
resnet_act_fn=resnet_act_fn,
resnet_groups=resnet_groups,
downsample_padding=downsample_padding,
cross_attention_dim=cross_attention_dim,
num_attention_heads=num_attention_heads,
dual_cross_attention=dual_cross_attention,
use_linear_projection=use_linear_projection,
only_cross_attention=only_cross_attention,
upcast_attention=upcast_attention,
resnet_time_scale_shift=resnet_time_scale_shift,
temporal_num_attention_heads=temporal_num_attention_heads,
temporal_max_seq_length=temporal_max_seq_length,
)
elif down_block_type == "DownBlockSpatioTemporal":
# added for SDV
return DownBlockSpatioTemporal(
num_layers=num_layers,
in_channels=in_channels,
out_channels=out_channels,
temb_channels=temb_channels,
add_downsample=add_downsample,
)
elif down_block_type == "CrossAttnDownBlockSpatioTemporal":
# added for SDV
if cross_attention_dim is None:
raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlockSpatioTemporal")
return CrossAttnDownBlockSpatioTemporal(
in_channels=in_channels,
out_channels=out_channels,
temb_channels=temb_channels,
num_layers=num_layers,
transformer_layers_per_block=transformer_layers_per_block,
add_downsample=add_downsample,
cross_attention_dim=cross_attention_dim,
num_attention_heads=num_attention_heads,
)
raise ValueError(f"{down_block_type} does not exist.")
def get_up_block(
up_block_type: str,
num_layers: int,
in_channels: int,
out_channels: int,
prev_output_channel: int,
temb_channels: int,
add_upsample: bool,
resnet_eps: float,
resnet_act_fn: str,
num_attention_heads: int,
resolution_idx: Optional[int] = None,
resnet_groups: Optional[int] = None,
cross_attention_dim: Optional[int] = None,
dual_cross_attention: bool = False,
use_linear_projection: bool = True,
only_cross_attention: bool = False,
upcast_attention: bool = False,
resnet_time_scale_shift: str = "default",
temporal_num_attention_heads: int = 8,
temporal_cross_attention_dim: Optional[int] = None,
temporal_max_seq_length: int = 32,
transformer_layers_per_block: int = 1,
dropout: float = 0.0,
) -> Union[
"UpBlock3D",
"CrossAttnUpBlock3D",
"UpBlockMotion",
"CrossAttnUpBlockMotion",
"UpBlockSpatioTemporal",
"CrossAttnUpBlockSpatioTemporal",
]:
if up_block_type == "UpBlock3D":
return UpBlock3D(
num_layers=num_layers,
in_channels=in_channels,
out_channels=out_channels,
prev_output_channel=prev_output_channel,
temb_channels=temb_channels,
add_upsample=add_upsample,
resnet_eps=resnet_eps,
resnet_act_fn=resnet_act_fn,
resnet_groups=resnet_groups,
resnet_time_scale_shift=resnet_time_scale_shift,
resolution_idx=resolution_idx,
)
elif up_block_type == "CrossAttnUpBlock3D":
if cross_attention_dim is None:
raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock3D")
return CrossAttnUpBlock3D(
num_layers=num_layers,
in_channels=in_channels,
out_channels=out_channels,
prev_output_channel=prev_output_channel,
temb_channels=temb_channels,
add_upsample=add_upsample,
resnet_eps=resnet_eps,
resnet_act_fn=resnet_act_fn,
resnet_groups=resnet_groups,
cross_attention_dim=cross_attention_dim,
num_attention_heads=num_attention_heads,
dual_cross_attention=dual_cross_attention,
use_linear_projection=use_linear_projection,
only_cross_attention=only_cross_attention,
upcast_attention=upcast_attention,
resnet_time_scale_shift=resnet_time_scale_shift,
resolution_idx=resolution_idx,
)
if up_block_type == "UpBlockMotion":
return UpBlockMotion(
num_layers=num_layers,
in_channels=in_channels,
out_channels=out_channels,
prev_output_channel=prev_output_channel,
temb_channels=temb_channels,
add_upsample=add_upsample,
resnet_eps=resnet_eps,
resnet_act_fn=resnet_act_fn,
resnet_groups=resnet_groups,
resnet_time_scale_shift=resnet_time_scale_shift,
resolution_idx=resolution_idx,
temporal_num_attention_heads=temporal_num_attention_heads,
temporal_max_seq_length=temporal_max_seq_length,
)
elif up_block_type == "CrossAttnUpBlockMotion":
if cross_attention_dim is None:
raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlockMotion")
return CrossAttnUpBlockMotion(
num_layers=num_layers,
in_channels=in_channels,
out_channels=out_channels,
prev_output_channel=prev_output_channel,
temb_channels=temb_channels,
add_upsample=add_upsample,
resnet_eps=resnet_eps,
resnet_act_fn=resnet_act_fn,
resnet_groups=resnet_groups,
cross_attention_dim=cross_attention_dim,
num_attention_heads=num_attention_heads,
dual_cross_attention=dual_cross_attention,
use_linear_projection=use_linear_projection,
only_cross_attention=only_cross_attention,
upcast_attention=upcast_attention,
resnet_time_scale_shift=resnet_time_scale_shift,
resolution_idx=resolution_idx,
temporal_num_attention_heads=temporal_num_attention_heads,
temporal_max_seq_length=temporal_max_seq_length,
)
elif up_block_type == "UpBlockSpatioTemporal":
# added for SDV
return UpBlockSpatioTemporal(
num_layers=num_layers,
in_channels=in_channels,
out_channels=out_channels,
prev_output_channel=prev_output_channel,
temb_channels=temb_channels,
resolution_idx=resolution_idx,
add_upsample=add_upsample,
)
elif up_block_type == "CrossAttnUpBlockSpatioTemporal":
# added for SDV
if cross_attention_dim is None:
raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlockSpatioTemporal")
return CrossAttnUpBlockSpatioTemporal(
in_channels=in_channels,
out_channels=out_channels,
prev_output_channel=prev_output_channel,
temb_channels=temb_channels,
num_layers=num_layers,
transformer_layers_per_block=transformer_layers_per_block,
add_upsample=add_upsample,
cross_attention_dim=cross_attention_dim,
num_attention_heads=num_attention_heads,
resolution_idx=resolution_idx,
)
raise ValueError(f"{up_block_type} does not exist.")
class UNetMidBlock3DCrossAttn(nn.Module):
def __init__(
self,
in_channels: int,
temb_channels: int,
dropout: float = 0.0,
num_layers: int = 1,
resnet_eps: float = 1e-6,
resnet_time_scale_shift: str = "default",
resnet_act_fn: str = "swish",
resnet_groups: int = 32,
resnet_pre_norm: bool = True,
num_attention_heads: int = 1,
output_scale_factor: float = 1.0,
cross_attention_dim: int = 1280,
dual_cross_attention: bool = False,
use_linear_projection: bool = True,
upcast_attention: bool = False,
):
super().__init__()
self.has_cross_attention = True
self.num_attention_heads = num_attention_heads
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
# there is always at least one resnet
resnets = [
ResnetBlock2D(
in_channels=in_channels,
out_channels=in_channels,
temb_channels=temb_channels,
eps=resnet_eps,
groups=resnet_groups,
dropout=dropout,
time_embedding_norm=resnet_time_scale_shift,
non_linearity=resnet_act_fn,
output_scale_factor=output_scale_factor,
pre_norm=resnet_pre_norm,
)
]
temp_convs = [
TemporalConvLayer(
in_channels,
in_channels,
dropout=0.1,
norm_num_groups=resnet_groups,
)
]
attentions = []
temp_attentions = []
for _ in range(num_layers):
attentions.append(
Transformer2DModel(
in_channels // num_attention_heads,
num_attention_heads,
in_channels=in_channels,
num_layers=1,
cross_attention_dim=cross_attention_dim,
norm_num_groups=resnet_groups,
use_linear_projection=use_linear_projection,
upcast_attention=upcast_attention,
)
)
temp_attentions.append(
TransformerTemporalModel(
in_channels // num_attention_heads,
num_attention_heads,
in_channels=in_channels,
num_layers=1,
cross_attention_dim=cross_attention_dim,
norm_num_groups=resnet_groups,
)
)
resnets.append(
ResnetBlock2D(
in_channels=in_channels,
out_channels=in_channels,
temb_channels=temb_channels,
eps=resnet_eps,
groups=resnet_groups,
dropout=dropout,
time_embedding_norm=resnet_time_scale_shift,
non_linearity=resnet_act_fn,
output_scale_factor=output_scale_factor,
pre_norm=resnet_pre_norm,
)
)
temp_convs.append(
TemporalConvLayer(
in_channels,
in_channels,
dropout=0.1,
norm_num_groups=resnet_groups,
)
)
self.resnets = nn.ModuleList(resnets)
self.temp_convs = nn.ModuleList(temp_convs)
self.attentions = nn.ModuleList(attentions)
self.temp_attentions = nn.ModuleList(temp_attentions)
def forward(
self,
hidden_states: torch.FloatTensor,
temb: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
num_frames: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
) -> torch.FloatTensor:
hidden_states = self.resnets[0](hidden_states, temb)
hidden_states = self.temp_convs[0](hidden_states, num_frames=num_frames)
for attn, temp_attn, resnet, temp_conv in zip(
self.attentions, self.temp_attentions, self.resnets[1:], self.temp_convs[1:]
):
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
return_dict=False,
)[0]
hidden_states = temp_attn(
hidden_states,
num_frames=num_frames,
cross_attention_kwargs=cross_attention_kwargs,
return_dict=False,
)[0]
hidden_states = resnet(hidden_states, temb)
hidden_states = temp_conv(hidden_states, num_frames=num_frames)
return hidden_states
class CrossAttnDownBlock3D(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
temb_channels: int,
dropout: float = 0.0,
num_layers: int = 1,
resnet_eps: float = 1e-6,
resnet_time_scale_shift: str = "default",
resnet_act_fn: str = "swish",
resnet_groups: int = 32,
resnet_pre_norm: bool = True,
num_attention_heads: int = 1,
cross_attention_dim: int = 1280,
output_scale_factor: float = 1.0,
downsample_padding: int = 1,
add_downsample: bool = True,
dual_cross_attention: bool = False,
use_linear_projection: bool = False,
only_cross_attention: bool = False,
upcast_attention: bool = False,
):
super().__init__()
resnets = []
attentions = []
temp_attentions = []
temp_convs = []
self.has_cross_attention = True
self.num_attention_heads = num_attention_heads
for i in range(num_layers):
in_channels = in_channels if i == 0 else out_channels
resnets.append(
ResnetBlock2D(
in_channels=in_channels,
out_channels=out_channels,
temb_channels=temb_channels,
eps=resnet_eps,
groups=resnet_groups,
dropout=dropout,
time_embedding_norm=resnet_time_scale_shift,
non_linearity=resnet_act_fn,
output_scale_factor=output_scale_factor,
pre_norm=resnet_pre_norm,
)
)
temp_convs.append(
TemporalConvLayer(
out_channels,
out_channels,
dropout=0.1,
norm_num_groups=resnet_groups,
)
)
attentions.append(
Transformer2DModel(
out_channels // num_attention_heads,
num_attention_heads,
in_channels=out_channels,
num_layers=1,
cross_attention_dim=cross_attention_dim,
norm_num_groups=resnet_groups,
use_linear_projection=use_linear_projection,
only_cross_attention=only_cross_attention,
upcast_attention=upcast_attention,
)
)
temp_attentions.append(
TransformerTemporalModel(
out_channels // num_attention_heads,
num_attention_heads,
in_channels=out_channels,
num_layers=1,
cross_attention_dim=cross_attention_dim,
norm_num_groups=resnet_groups,
)
)
self.resnets = nn.ModuleList(resnets)
self.temp_convs = nn.ModuleList(temp_convs)
self.attentions = nn.ModuleList(attentions)
self.temp_attentions = nn.ModuleList(temp_attentions)
if add_downsample:
self.downsamplers = nn.ModuleList(
[
Downsample2D(
out_channels,
use_conv=True,
out_channels=out_channels,
padding=downsample_padding,
name="op",
)
]
)
else:
self.downsamplers = None
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.FloatTensor,
temb: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
num_frames: int = 1,
cross_attention_kwargs: Dict[str, Any] = None,
) -> Union[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
# TODO(Patrick, William) - attention mask is not used
output_states = ()
for resnet, temp_conv, attn, temp_attn in zip(
self.resnets, self.temp_convs, self.attentions, self.temp_attentions
):
hidden_states = resnet(hidden_states, temb)
hidden_states = temp_conv(hidden_states, num_frames=num_frames)
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
return_dict=False,
)[0]
hidden_states = temp_attn(
hidden_states,
num_frames=num_frames,
cross_attention_kwargs=cross_attention_kwargs,
return_dict=False,
)[0]
output_states += (hidden_states,)
if self.downsamplers is not None:
for downsampler in self.downsamplers:
hidden_states = downsampler(hidden_states)
output_states += (hidden_states,)
return hidden_states, output_states
class DownBlock3D(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
temb_channels: int,
dropout: float = 0.0,
num_layers: int = 1,
resnet_eps: float = 1e-6,
resnet_time_scale_shift: str = "default",
resnet_act_fn: str = "swish",
resnet_groups: int = 32,
resnet_pre_norm: bool = True,
output_scale_factor: float = 1.0,
add_downsample: bool = True,
downsample_padding: int = 1,
):
super().__init__()
resnets = []
temp_convs = []
for i in range(num_layers):
in_channels = in_channels if i == 0 else out_channels
resnets.append(
ResnetBlock2D(
in_channels=in_channels,
out_channels=out_channels,
temb_channels=temb_channels,
eps=resnet_eps,
groups=resnet_groups,
dropout=dropout,
time_embedding_norm=resnet_time_scale_shift,
non_linearity=resnet_act_fn,
output_scale_factor=output_scale_factor,
pre_norm=resnet_pre_norm,
)
)
temp_convs.append(
TemporalConvLayer(
out_channels,
out_channels,
dropout=0.1,
norm_num_groups=resnet_groups,
)
)
self.resnets = nn.ModuleList(resnets)
self.temp_convs = nn.ModuleList(temp_convs)
if add_downsample:
self.downsamplers = nn.ModuleList(
[
Downsample2D(
out_channels,
use_conv=True,
out_channels=out_channels,
padding=downsample_padding,
name="op",
)
]
)
else:
self.downsamplers = None
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.FloatTensor,
temb: Optional[torch.FloatTensor] = None,
num_frames: int = 1,
) -> Union[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
output_states = ()
for resnet, temp_conv in zip(self.resnets, self.temp_convs):
hidden_states = resnet(hidden_states, temb)
hidden_states = temp_conv(hidden_states, num_frames=num_frames)
output_states += (hidden_states,)
if self.downsamplers is not None:
for downsampler in self.downsamplers:
hidden_states = downsampler(hidden_states)
output_states += (hidden_states,)
return hidden_states, output_states
class CrossAttnUpBlock3D(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
prev_output_channel: int,
temb_channels: int,
dropout: float = 0.0,
num_layers: int = 1,
resnet_eps: float = 1e-6,
resnet_time_scale_shift: str = "default",
resnet_act_fn: str = "swish",
resnet_groups: int = 32,
resnet_pre_norm: bool = True,
num_attention_heads: int = 1,
cross_attention_dim: int = 1280,
output_scale_factor: float = 1.0,
add_upsample: bool = True,
dual_cross_attention: bool = False,
use_linear_projection: bool = False,
only_cross_attention: bool = False,
upcast_attention: bool = False,
resolution_idx: Optional[int] = None,
):
super().__init__()
resnets = []
temp_convs = []
attentions = []
temp_attentions = []
self.has_cross_attention = True
self.num_attention_heads = num_attention_heads
for i in range(num_layers):
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
resnet_in_channels = prev_output_channel if i == 0 else out_channels
resnets.append(
ResnetBlock2D(
in_channels=resnet_in_channels + res_skip_channels,
out_channels=out_channels,
temb_channels=temb_channels,
eps=resnet_eps,
groups=resnet_groups,
dropout=dropout,
time_embedding_norm=resnet_time_scale_shift,
non_linearity=resnet_act_fn,
output_scale_factor=output_scale_factor,
pre_norm=resnet_pre_norm,
)
)
temp_convs.append(
TemporalConvLayer(
out_channels,
out_channels,
dropout=0.1,
norm_num_groups=resnet_groups,
)
)
attentions.append(
Transformer2DModel(
out_channels // num_attention_heads,
num_attention_heads,
in_channels=out_channels,
num_layers=1,
cross_attention_dim=cross_attention_dim,
norm_num_groups=resnet_groups,
use_linear_projection=use_linear_projection,
only_cross_attention=only_cross_attention,
upcast_attention=upcast_attention,
)
)
temp_attentions.append(
TransformerTemporalModel(
out_channels // num_attention_heads,
num_attention_heads,
in_channels=out_channels,
num_layers=1,
cross_attention_dim=cross_attention_dim,
norm_num_groups=resnet_groups,
)
)
self.resnets = nn.ModuleList(resnets)
self.temp_convs = nn.ModuleList(temp_convs)
self.attentions = nn.ModuleList(attentions)
self.temp_attentions = nn.ModuleList(temp_attentions)
if add_upsample:
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
else:
self.upsamplers = None
self.gradient_checkpointing = False
self.resolution_idx = resolution_idx
def forward(
self,
hidden_states: torch.FloatTensor,
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
temb: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
upsample_size: Optional[int] = None,
attention_mask: Optional[torch.FloatTensor] = None,
num_frames: int = 1,
cross_attention_kwargs: Dict[str, Any] = None,
) -> torch.FloatTensor:
is_freeu_enabled = (
getattr(self, "s1", None)
and getattr(self, "s2", None)
and getattr(self, "b1", None)
and getattr(self, "b2", None)
)
# TODO(Patrick, William) - attention mask is not used
for resnet, temp_conv, attn, temp_attn in zip(
self.resnets, self.temp_convs, self.attentions, self.temp_attentions
):
# pop res hidden states
res_hidden_states = res_hidden_states_tuple[-1]
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
# FreeU: Only operate on the first two stages
if is_freeu_enabled:
hidden_states, res_hidden_states = apply_freeu(
self.resolution_idx,
hidden_states,
res_hidden_states,
s1=self.s1,
s2=self.s2,
b1=self.b1,
b2=self.b2,
)
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
hidden_states = resnet(hidden_states, temb)
hidden_states = temp_conv(hidden_states, num_frames=num_frames)
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
return_dict=False,
)[0]
hidden_states = temp_attn(
hidden_states,
num_frames=num_frames,
cross_attention_kwargs=cross_attention_kwargs,
return_dict=False,
)[0]
if self.upsamplers is not None:
for upsampler in self.upsamplers:
hidden_states = upsampler(hidden_states, upsample_size)
return hidden_states
class UpBlock3D(nn.Module):
def __init__(
self,
in_channels: int,
prev_output_channel: int,
out_channels: int,
temb_channels: int,
dropout: float = 0.0,
num_layers: int = 1,
resnet_eps: float = 1e-6,
resnet_time_scale_shift: str = "default",
resnet_act_fn: str = "swish",
resnet_groups: int = 32,
resnet_pre_norm: bool = True,
output_scale_factor: float = 1.0,
add_upsample: bool = True,
resolution_idx: Optional[int] = None,
):
super().__init__()
resnets = []
temp_convs = []
for i in range(num_layers):
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
resnet_in_channels = prev_output_channel if i == 0 else out_channels
resnets.append(
ResnetBlock2D(
in_channels=resnet_in_channels + res_skip_channels,
out_channels=out_channels,
temb_channels=temb_channels,
eps=resnet_eps,
groups=resnet_groups,
dropout=dropout,
time_embedding_norm=resnet_time_scale_shift,
non_linearity=resnet_act_fn,
output_scale_factor=output_scale_factor,
pre_norm=resnet_pre_norm,
)
)
temp_convs.append(
TemporalConvLayer(
out_channels,
out_channels,
dropout=0.1,
norm_num_groups=resnet_groups,
)
)
self.resnets = nn.ModuleList(resnets)
self.temp_convs = nn.ModuleList(temp_convs)
if add_upsample:
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
else:
self.upsamplers = None
self.gradient_checkpointing = False
self.resolution_idx = resolution_idx
def forward(
self,
hidden_states: torch.FloatTensor,
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
temb: Optional[torch.FloatTensor] = None,
upsample_size: Optional[int] = None,
num_frames: int = 1,
) -> torch.FloatTensor:
is_freeu_enabled = (
getattr(self, "s1", None)
and getattr(self, "s2", None)
and getattr(self, "b1", None)
and getattr(self, "b2", None)
)
for resnet, temp_conv in zip(self.resnets, self.temp_convs):
# pop res hidden states
res_hidden_states = res_hidden_states_tuple[-1]
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
# FreeU: Only operate on the first two stages
if is_freeu_enabled:
hidden_states, res_hidden_states = apply_freeu(
self.resolution_idx,
hidden_states,
res_hidden_states,
s1=self.s1,
s2=self.s2,
b1=self.b1,
b2=self.b2,
)
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
hidden_states = resnet(hidden_states, temb)
hidden_states = temp_conv(hidden_states, num_frames=num_frames)
if self.upsamplers is not None:
for upsampler in self.upsamplers:
hidden_states = upsampler(hidden_states, upsample_size)
return hidden_states
class DownBlockMotion(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
temb_channels: int,
dropout: float = 0.0,
num_layers: int = 1,
resnet_eps: float = 1e-6,
resnet_time_scale_shift: str = "default",
resnet_act_fn: str = "swish",
resnet_groups: int = 32,
resnet_pre_norm: bool = True,
output_scale_factor: float = 1.0,
add_downsample: bool = True,
downsample_padding: int = 1,
temporal_num_attention_heads: int = 1,
temporal_cross_attention_dim: Optional[int] = None,
temporal_max_seq_length: int = 32,
):
super().__init__()
resnets = []
motion_modules = []
for i in range(num_layers):
in_channels = in_channels if i == 0 else out_channels
resnets.append(
ResnetBlock2D(
in_channels=in_channels,
out_channels=out_channels,
temb_channels=temb_channels,
eps=resnet_eps,
groups=resnet_groups,
dropout=dropout,
time_embedding_norm=resnet_time_scale_shift,
non_linearity=resnet_act_fn,
output_scale_factor=output_scale_factor,
pre_norm=resnet_pre_norm,
)
)
motion_modules.append(
TransformerTemporalModel(
num_attention_heads=temporal_num_attention_heads,
in_channels=out_channels,
norm_num_groups=resnet_groups,
cross_attention_dim=temporal_cross_attention_dim,
attention_bias=False,
activation_fn="geglu",
positional_embeddings="sinusoidal",
num_positional_embeddings=temporal_max_seq_length,
attention_head_dim=out_channels // temporal_num_attention_heads,
)
)
self.resnets = nn.ModuleList(resnets)
self.motion_modules = nn.ModuleList(motion_modules)
if add_downsample:
self.downsamplers = nn.ModuleList(
[
Downsample2D(
out_channels,
use_conv=True,
out_channels=out_channels,
padding=downsample_padding,
name="op",
)
]
)
else:
self.downsamplers = None
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.FloatTensor,
temb: Optional[torch.FloatTensor] = None,
scale: float = 1.0,
num_frames: int = 1,
) -> Union[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
output_states = ()
blocks = zip(self.resnets, self.motion_modules)
for resnet, motion_module in blocks:
if self.training and self.gradient_checkpointing:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
if is_torch_version(">=", "1.11.0"):
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet),
hidden_states,
temb,
use_reentrant=False,
)
else:
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet), hidden_states, temb, scale
)
else:
hidden_states = resnet(hidden_states, temb, scale=scale)
hidden_states = motion_module(hidden_states, num_frames=num_frames)[0]
output_states = output_states + (hidden_states,)
if self.downsamplers is not None:
for downsampler in self.downsamplers:
hidden_states = downsampler(hidden_states, scale=scale)
output_states = output_states + (hidden_states,)
return hidden_states, output_states
class CrossAttnDownBlockMotion(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
temb_channels: int,
dropout: float = 0.0,
num_layers: int = 1,
transformer_layers_per_block: int = 1,
resnet_eps: float = 1e-6,
resnet_time_scale_shift: str = "default",
resnet_act_fn: str = "swish",
resnet_groups: int = 32,
resnet_pre_norm: bool = True,
num_attention_heads: int = 1,
cross_attention_dim: int = 1280,
output_scale_factor: float = 1.0,
downsample_padding: int = 1,
add_downsample: bool = True,
dual_cross_attention: bool = False,
use_linear_projection: bool = False,
only_cross_attention: bool = False,
upcast_attention: bool = False,
attention_type: str = "default",
temporal_cross_attention_dim: Optional[int] = None,
temporal_num_attention_heads: int = 8,
temporal_max_seq_length: int = 32,
):
super().__init__()
resnets = []
attentions = []
motion_modules = []
self.has_cross_attention = True
self.num_attention_heads = num_attention_heads
for i in range(num_layers):
in_channels = in_channels if i == 0 else out_channels
resnets.append(
ResnetBlock2D(
in_channels=in_channels,
out_channels=out_channels,
temb_channels=temb_channels,
eps=resnet_eps,
groups=resnet_groups,
dropout=dropout,
time_embedding_norm=resnet_time_scale_shift,
non_linearity=resnet_act_fn,
output_scale_factor=output_scale_factor,
pre_norm=resnet_pre_norm,
)
)
if not dual_cross_attention:
attentions.append(
Transformer2DModel(
num_attention_heads,
out_channels // num_attention_heads,
in_channels=out_channels,
num_layers=transformer_layers_per_block,
cross_attention_dim=cross_attention_dim,
norm_num_groups=resnet_groups,
use_linear_projection=use_linear_projection,
only_cross_attention=only_cross_attention,
upcast_attention=upcast_attention,
attention_type=attention_type,
)
)
else:
attentions.append(
DualTransformer2DModel(
num_attention_heads,
out_channels // num_attention_heads,
in_channels=out_channels,
num_layers=1,
cross_attention_dim=cross_attention_dim,
norm_num_groups=resnet_groups,
)
)
motion_modules.append(
TransformerTemporalModel(
num_attention_heads=temporal_num_attention_heads,
in_channels=out_channels,
norm_num_groups=resnet_groups,
cross_attention_dim=temporal_cross_attention_dim,
attention_bias=False,
activation_fn="geglu",
positional_embeddings="sinusoidal",
num_positional_embeddings=temporal_max_seq_length,
attention_head_dim=out_channels // temporal_num_attention_heads,
)
)
self.attentions = nn.ModuleList(attentions)
self.resnets = nn.ModuleList(resnets)
self.motion_modules = nn.ModuleList(motion_modules)
if add_downsample:
self.downsamplers = nn.ModuleList(
[
Downsample2D(
out_channels,
use_conv=True,
out_channels=out_channels,
padding=downsample_padding,
name="op",
)
]
)
else:
self.downsamplers = None
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.FloatTensor,
temb: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
num_frames: int = 1,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
additional_residuals: Optional[torch.FloatTensor] = None,
):
output_states = ()
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
blocks = list(zip(self.resnets, self.attentions, self.motion_modules))
for i, (resnet, attn, motion_module) in enumerate(blocks):
if self.training and self.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet),
hidden_states,
temb,
**ckpt_kwargs,
)
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
attention_mask=attention_mask,
encoder_attention_mask=encoder_attention_mask,
return_dict=False,
)[0]
else:
hidden_states = resnet(hidden_states, temb, scale=lora_scale)
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
attention_mask=attention_mask,
encoder_attention_mask=encoder_attention_mask,
return_dict=False,
)[0]
hidden_states = motion_module(
hidden_states,
num_frames=num_frames,
)[0]
# apply additional residuals to the output of the last pair of resnet and attention blocks
if i == len(blocks) - 1 and additional_residuals is not None:
hidden_states = hidden_states + additional_residuals
output_states = output_states + (hidden_states,)
if self.downsamplers is not None:
for downsampler in self.downsamplers:
hidden_states = downsampler(hidden_states, scale=lora_scale)
output_states = output_states + (hidden_states,)
return hidden_states, output_states
class CrossAttnUpBlockMotion(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
prev_output_channel: int,
temb_channels: int,
resolution_idx: Optional[int] = None,
dropout: float = 0.0,
num_layers: int = 1,
transformer_layers_per_block: int = 1,
resnet_eps: float = 1e-6,
resnet_time_scale_shift: str = "default",
resnet_act_fn: str = "swish",
resnet_groups: int = 32,
resnet_pre_norm: bool = True,
num_attention_heads: int = 1,
cross_attention_dim: int = 1280,
output_scale_factor: float = 1.0,
add_upsample: bool = True,
dual_cross_attention: bool = False,
use_linear_projection: bool = False,
only_cross_attention: bool = False,
upcast_attention: bool = False,
attention_type: str = "default",
temporal_cross_attention_dim: Optional[int] = None,
temporal_num_attention_heads: int = 8,
temporal_max_seq_length: int = 32,
):
super().__init__()
resnets = []
attentions = []
motion_modules = []
self.has_cross_attention = True
self.num_attention_heads = num_attention_heads
for i in range(num_layers):
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
resnet_in_channels = prev_output_channel if i == 0 else out_channels
resnets.append(
ResnetBlock2D(
in_channels=resnet_in_channels + res_skip_channels,
out_channels=out_channels,
temb_channels=temb_channels,
eps=resnet_eps,
groups=resnet_groups,
dropout=dropout,
time_embedding_norm=resnet_time_scale_shift,
non_linearity=resnet_act_fn,
output_scale_factor=output_scale_factor,
pre_norm=resnet_pre_norm,
)
)
if not dual_cross_attention:
attentions.append(
Transformer2DModel(
num_attention_heads,
out_channels // num_attention_heads,
in_channels=out_channels,
num_layers=transformer_layers_per_block,
cross_attention_dim=cross_attention_dim,
norm_num_groups=resnet_groups,
use_linear_projection=use_linear_projection,
only_cross_attention=only_cross_attention,
upcast_attention=upcast_attention,
attention_type=attention_type,
)
)
else:
attentions.append(
DualTransformer2DModel(
num_attention_heads,
out_channels // num_attention_heads,
in_channels=out_channels,
num_layers=1,
cross_attention_dim=cross_attention_dim,
norm_num_groups=resnet_groups,
)
)
motion_modules.append(
TransformerTemporalModel(
num_attention_heads=temporal_num_attention_heads,
in_channels=out_channels,
norm_num_groups=resnet_groups,
cross_attention_dim=temporal_cross_attention_dim,
attention_bias=False,
activation_fn="geglu",
positional_embeddings="sinusoidal",
num_positional_embeddings=temporal_max_seq_length,
attention_head_dim=out_channels // temporal_num_attention_heads,
)
)
self.attentions = nn.ModuleList(attentions)
self.resnets = nn.ModuleList(resnets)
self.motion_modules = nn.ModuleList(motion_modules)
if add_upsample:
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
else:
self.upsamplers = None
self.gradient_checkpointing = False
self.resolution_idx = resolution_idx
def forward(
self,
hidden_states: torch.FloatTensor,
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
temb: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
upsample_size: Optional[int] = None,
attention_mask: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
num_frames: int = 1,
) -> torch.FloatTensor:
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
is_freeu_enabled = (
getattr(self, "s1", None)
and getattr(self, "s2", None)
and getattr(self, "b1", None)
and getattr(self, "b2", None)
)
blocks = zip(self.resnets, self.attentions, self.motion_modules)
for resnet, attn, motion_module in blocks:
# pop res hidden states
res_hidden_states = res_hidden_states_tuple[-1]
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
# FreeU: Only operate on the first two stages
if is_freeu_enabled:
hidden_states, res_hidden_states = apply_freeu(
self.resolution_idx,
hidden_states,
res_hidden_states,
s1=self.s1,
s2=self.s2,
b1=self.b1,
b2=self.b2,
)
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
if self.training and self.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet),
hidden_states,
temb,
**ckpt_kwargs,
)
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
attention_mask=attention_mask,
encoder_attention_mask=encoder_attention_mask,
return_dict=False,
)[0]
else:
hidden_states = resnet(hidden_states, temb, scale=lora_scale)
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
attention_mask=attention_mask,
encoder_attention_mask=encoder_attention_mask,
return_dict=False,
)[0]
hidden_states = motion_module(
hidden_states,
num_frames=num_frames,
)[0]
if self.upsamplers is not None:
for upsampler in self.upsamplers:
hidden_states = upsampler(hidden_states, upsample_size, scale=lora_scale)
return hidden_states
class UpBlockMotion(nn.Module):
def __init__(
self,
in_channels: int,
prev_output_channel: int,
out_channels: int,
temb_channels: int,
resolution_idx: Optional[int] = None,
dropout: float = 0.0,
num_layers: int = 1,
resnet_eps: float = 1e-6,
resnet_time_scale_shift: str = "default",
resnet_act_fn: str = "swish",
resnet_groups: int = 32,
resnet_pre_norm: bool = True,
output_scale_factor: float = 1.0,
add_upsample: bool = True,
temporal_norm_num_groups: int = 32,
temporal_cross_attention_dim: Optional[int] = None,
temporal_num_attention_heads: int = 8,
temporal_max_seq_length: int = 32,
):
super().__init__()
resnets = []
motion_modules = []
for i in range(num_layers):
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
resnet_in_channels = prev_output_channel if i == 0 else out_channels
resnets.append(
ResnetBlock2D(
in_channels=resnet_in_channels + res_skip_channels,
out_channels=out_channels,
temb_channels=temb_channels,
eps=resnet_eps,
groups=resnet_groups,
dropout=dropout,
time_embedding_norm=resnet_time_scale_shift,
non_linearity=resnet_act_fn,
output_scale_factor=output_scale_factor,
pre_norm=resnet_pre_norm,
)
)
motion_modules.append(
TransformerTemporalModel(
num_attention_heads=temporal_num_attention_heads,
in_channels=out_channels,
norm_num_groups=temporal_norm_num_groups,
cross_attention_dim=temporal_cross_attention_dim,
attention_bias=False,
activation_fn="geglu",
positional_embeddings="sinusoidal",
num_positional_embeddings=temporal_max_seq_length,
attention_head_dim=out_channels // temporal_num_attention_heads,
)
)
self.resnets = nn.ModuleList(resnets)
self.motion_modules = nn.ModuleList(motion_modules)
if add_upsample:
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
else:
self.upsamplers = None
self.gradient_checkpointing = False
self.resolution_idx = resolution_idx
def forward(
self,
hidden_states: torch.FloatTensor,
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
temb: Optional[torch.FloatTensor] = None,
upsample_size=None,
scale: float = 1.0,
num_frames: int = 1,
) -> torch.FloatTensor:
is_freeu_enabled = (
getattr(self, "s1", None)
and getattr(self, "s2", None)
and getattr(self, "b1", None)
and getattr(self, "b2", None)
)
blocks = zip(self.resnets, self.motion_modules)
for resnet, motion_module in blocks:
# pop res hidden states
res_hidden_states = res_hidden_states_tuple[-1]
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
# FreeU: Only operate on the first two stages
if is_freeu_enabled:
hidden_states, res_hidden_states = apply_freeu(
self.resolution_idx,
hidden_states,
res_hidden_states,
s1=self.s1,
s2=self.s2,
b1=self.b1,
b2=self.b2,
)
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
if self.training and self.gradient_checkpointing:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
if is_torch_version(">=", "1.11.0"):
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet),
hidden_states,
temb,
use_reentrant=False,
)
else:
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet), hidden_states, temb
)
else:
hidden_states = resnet(hidden_states, temb, scale=scale)
hidden_states = motion_module(hidden_states, num_frames=num_frames)[0]
if self.upsamplers is not None:
for upsampler in self.upsamplers:
hidden_states = upsampler(hidden_states, upsample_size, scale=scale)
return hidden_states
class UNetMidBlockCrossAttnMotion(nn.Module):
def __init__(
self,
in_channels: int,
temb_channels: int,
dropout: float = 0.0,
num_layers: int = 1,
transformer_layers_per_block: int = 1,
resnet_eps: float = 1e-6,
resnet_time_scale_shift: str = "default",
resnet_act_fn: str = "swish",
resnet_groups: int = 32,
resnet_pre_norm: bool = True,
num_attention_heads: int = 1,
output_scale_factor: float = 1.0,
cross_attention_dim: int = 1280,
dual_cross_attention: float = False,
use_linear_projection: float = False,
upcast_attention: float = False,
attention_type: str = "default",
temporal_num_attention_heads: int = 1,
temporal_cross_attention_dim: Optional[int] = None,
temporal_max_seq_length: int = 32,
):
super().__init__()
self.has_cross_attention = True
self.num_attention_heads = num_attention_heads
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
# there is always at least one resnet
resnets = [
ResnetBlock2D(
in_channels=in_channels,
out_channels=in_channels,
temb_channels=temb_channels,
eps=resnet_eps,
groups=resnet_groups,
dropout=dropout,
time_embedding_norm=resnet_time_scale_shift,
non_linearity=resnet_act_fn,
output_scale_factor=output_scale_factor,
pre_norm=resnet_pre_norm,
)
]
attentions = []
motion_modules = []
for _ in range(num_layers):
if not dual_cross_attention:
attentions.append(
Transformer2DModel(
num_attention_heads,
in_channels // num_attention_heads,
in_channels=in_channels,
num_layers=transformer_layers_per_block,
cross_attention_dim=cross_attention_dim,
norm_num_groups=resnet_groups,
use_linear_projection=use_linear_projection,
upcast_attention=upcast_attention,
attention_type=attention_type,
)
)
else:
attentions.append(
DualTransformer2DModel(
num_attention_heads,
in_channels // num_attention_heads,
in_channels=in_channels,
num_layers=1,
cross_attention_dim=cross_attention_dim,
norm_num_groups=resnet_groups,
)
)
resnets.append(
ResnetBlock2D(
in_channels=in_channels,
out_channels=in_channels,
temb_channels=temb_channels,
eps=resnet_eps,
groups=resnet_groups,
dropout=dropout,
time_embedding_norm=resnet_time_scale_shift,
non_linearity=resnet_act_fn,
output_scale_factor=output_scale_factor,
pre_norm=resnet_pre_norm,
)
)
motion_modules.append(
TransformerTemporalModel(
num_attention_heads=temporal_num_attention_heads,
attention_head_dim=in_channels // temporal_num_attention_heads,
in_channels=in_channels,
norm_num_groups=resnet_groups,
cross_attention_dim=temporal_cross_attention_dim,
attention_bias=False,
positional_embeddings="sinusoidal",
num_positional_embeddings=temporal_max_seq_length,
activation_fn="geglu",
)
)
self.attentions = nn.ModuleList(attentions)
self.resnets = nn.ModuleList(resnets)
self.motion_modules = nn.ModuleList(motion_modules)
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.FloatTensor,
temb: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
num_frames: int = 1,
) -> torch.FloatTensor:
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
hidden_states = self.resnets[0](hidden_states, temb, scale=lora_scale)
blocks = zip(self.attentions, self.resnets[1:], self.motion_modules)
for attn, resnet, motion_module in blocks:
if self.training and self.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
attention_mask=attention_mask,
encoder_attention_mask=encoder_attention_mask,
return_dict=False,
)[0]
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(motion_module),
hidden_states,
temb,
**ckpt_kwargs,
)
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet),
hidden_states,
temb,
**ckpt_kwargs,
)
else:
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
attention_mask=attention_mask,
encoder_attention_mask=encoder_attention_mask,
return_dict=False,
)[0]
hidden_states = motion_module(
hidden_states,
num_frames=num_frames,
)[0]
hidden_states = resnet(hidden_states, temb, scale=lora_scale)
return hidden_states
class MidBlockTemporalDecoder(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
attention_head_dim: int = 512,
num_layers: int = 1,
upcast_attention: bool = False,
):
super().__init__()
resnets = []
attentions = []
for i in range(num_layers):
input_channels = in_channels if i == 0 else out_channels
resnets.append(
SpatioTemporalResBlock(
in_channels=input_channels,
out_channels=out_channels,
temb_channels=None,
eps=1e-6,
temporal_eps=1e-5,
merge_factor=0.0,
merge_strategy="learned",
switch_spatial_to_temporal_mix=True,
)
)
attentions.append(
Attention(
query_dim=in_channels,
heads=in_channels // attention_head_dim,
dim_head=attention_head_dim,
eps=1e-6,
upcast_attention=upcast_attention,
norm_num_groups=32,
bias=True,
residual_connection=True,
)
)
self.attentions = nn.ModuleList(attentions)
self.resnets = nn.ModuleList(resnets)
def forward(
self,
hidden_states: torch.FloatTensor,
image_only_indicator: torch.FloatTensor,
):
hidden_states = self.resnets[0](
hidden_states,
image_only_indicator=image_only_indicator,
)
for resnet, attn in zip(self.resnets[1:], self.attentions):
hidden_states = attn(hidden_states)
hidden_states = resnet(
hidden_states,
image_only_indicator=image_only_indicator,
)
return hidden_states
class UpBlockTemporalDecoder(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
num_layers: int = 1,
add_upsample: bool = True,
):
super().__init__()
resnets = []
for i in range(num_layers):
input_channels = in_channels if i == 0 else out_channels
resnets.append(
SpatioTemporalResBlock(
in_channels=input_channels,
out_channels=out_channels,
temb_channels=None,
eps=1e-6,
temporal_eps=1e-5,
merge_factor=0.0,
merge_strategy="learned",
switch_spatial_to_temporal_mix=True,
)
)
self.resnets = nn.ModuleList(resnets)
if add_upsample:
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
else:
self.upsamplers = None
def forward(
self,
hidden_states: torch.FloatTensor,
image_only_indicator: torch.FloatTensor,
) -> torch.FloatTensor:
for resnet in self.resnets:
hidden_states = resnet(
hidden_states,
image_only_indicator=image_only_indicator,
)
if self.upsamplers is not None:
for upsampler in self.upsamplers:
hidden_states = upsampler(hidden_states)
return hidden_states
class UNetMidBlockSpatioTemporal(nn.Module):
def __init__(
self,
in_channels: int,
temb_channels: int,
num_layers: int = 1,
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
num_attention_heads: int = 1,
cross_attention_dim: int = 1280,
):
super().__init__()
self.has_cross_attention = True
self.num_attention_heads = num_attention_heads
# support for variable transformer layers per block
if isinstance(transformer_layers_per_block, int):
transformer_layers_per_block = [transformer_layers_per_block] * num_layers
# there is always at least one resnet
resnets = [
SpatioTemporalResBlock(
in_channels=in_channels,
out_channels=in_channels,
temb_channels=temb_channels,
eps=1e-5,
)
]
attentions = []
for i in range(num_layers):
attentions.append(
TransformerSpatioTemporalModel(
num_attention_heads,
in_channels // num_attention_heads,
in_channels=in_channels,
num_layers=transformer_layers_per_block[i],
cross_attention_dim=cross_attention_dim,
)
)
resnets.append(
SpatioTemporalResBlock(
in_channels=in_channels,
out_channels=in_channels,
temb_channels=temb_channels,
eps=1e-5,
)
)
self.attentions = nn.ModuleList(attentions)
self.resnets = nn.ModuleList(resnets)
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.FloatTensor,
temb: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
image_only_indicator: Optional[torch.Tensor] = None,
) -> torch.FloatTensor:
hidden_states = self.resnets[0](
hidden_states,
temb,
image_only_indicator=image_only_indicator,
)
for attn, resnet in zip(self.attentions, self.resnets[1:]):
if self.training and self.gradient_checkpointing: # TODO
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
image_only_indicator=image_only_indicator,
return_dict=False,
)[0]
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet),
hidden_states,
temb,
image_only_indicator,
**ckpt_kwargs,
)
else:
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
image_only_indicator=image_only_indicator,
return_dict=False,
)[0]
hidden_states = resnet(
hidden_states,
temb,
image_only_indicator=image_only_indicator,
)
return hidden_states
class DownBlockSpatioTemporal(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
temb_channels: int,
num_layers: int = 1,
add_downsample: bool = True,
):
super().__init__()
resnets = []
for i in range(num_layers):
in_channels = in_channels if i == 0 else out_channels
resnets.append(
SpatioTemporalResBlock(
in_channels=in_channels,
out_channels=out_channels,
temb_channels=temb_channels,
eps=1e-5,
)
)
self.resnets = nn.ModuleList(resnets)
if add_downsample:
self.downsamplers = nn.ModuleList(
[
Downsample2D(
out_channels,
use_conv=True,
out_channels=out_channels,
name="op",
)
]
)
else:
self.downsamplers = None
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.FloatTensor,
temb: Optional[torch.FloatTensor] = None,
image_only_indicator: Optional[torch.Tensor] = None,
) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
output_states = ()
for resnet in self.resnets:
if self.training and self.gradient_checkpointing:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
if is_torch_version(">=", "1.11.0"):
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet),
hidden_states,
temb,
image_only_indicator,
use_reentrant=False,
)
else:
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet),
hidden_states,
temb,
image_only_indicator,
)
else:
hidden_states = resnet(
hidden_states,
temb,
image_only_indicator=image_only_indicator,
)
output_states = output_states + (hidden_states,)
if self.downsamplers is not None:
for downsampler in self.downsamplers:
hidden_states = downsampler(hidden_states)
output_states = output_states + (hidden_states,)
return hidden_states, output_states
class CrossAttnDownBlockSpatioTemporal(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
temb_channels: int,
num_layers: int = 1,
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
num_attention_heads: int = 1,
cross_attention_dim: int = 1280,
add_downsample: bool = True,
):
super().__init__()
resnets = []
attentions = []
self.has_cross_attention = True
self.num_attention_heads = num_attention_heads
if isinstance(transformer_layers_per_block, int):
transformer_layers_per_block = [transformer_layers_per_block] * num_layers
for i in range(num_layers):
in_channels = in_channels if i == 0 else out_channels
resnets.append(
SpatioTemporalResBlock(
in_channels=in_channels,
out_channels=out_channels,
temb_channels=temb_channels,
eps=1e-6,
)
)
attentions.append(
TransformerSpatioTemporalModel(
num_attention_heads,
out_channels // num_attention_heads,
in_channels=out_channels,
num_layers=transformer_layers_per_block[i],
cross_attention_dim=cross_attention_dim,
)
)
self.attentions = nn.ModuleList(attentions)
self.resnets = nn.ModuleList(resnets)
if add_downsample:
self.downsamplers = nn.ModuleList(
[
Downsample2D(
out_channels,
use_conv=True,
out_channels=out_channels,
padding=1,
name="op",
)
]
)
else:
self.downsamplers = None
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.FloatTensor,
temb: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
image_only_indicator: Optional[torch.Tensor] = None,
) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
output_states = ()
blocks = list(zip(self.resnets, self.attentions))
for resnet, attn in blocks:
if self.training and self.gradient_checkpointing: # TODO
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet),
hidden_states,
temb,
image_only_indicator,
**ckpt_kwargs,
)
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
image_only_indicator=image_only_indicator,
return_dict=False,
)[0]
else:
hidden_states = resnet(
hidden_states,
temb,
image_only_indicator=image_only_indicator,
)
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
image_only_indicator=image_only_indicator,
return_dict=False,
)[0]
output_states = output_states + (hidden_states,)
if self.downsamplers is not None:
for downsampler in self.downsamplers:
hidden_states = downsampler(hidden_states)
output_states = output_states + (hidden_states,)
return hidden_states, output_states
class UpBlockSpatioTemporal(nn.Module):
def __init__(
self,
in_channels: int,
prev_output_channel: int,
out_channels: int,
temb_channels: int,
resolution_idx: Optional[int] = None,
num_layers: int = 1,
resnet_eps: float = 1e-6,
add_upsample: bool = True,
):
super().__init__()
resnets = []
for i in range(num_layers):
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
resnet_in_channels = prev_output_channel if i == 0 else out_channels
resnets.append(
SpatioTemporalResBlock(
in_channels=resnet_in_channels + res_skip_channels,
out_channels=out_channels,
temb_channels=temb_channels,
eps=resnet_eps,
)
)
self.resnets = nn.ModuleList(resnets)
if add_upsample:
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
else:
self.upsamplers = None
self.gradient_checkpointing = False
self.resolution_idx = resolution_idx
def forward(
self,
hidden_states: torch.FloatTensor,
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
temb: Optional[torch.FloatTensor] = None,
image_only_indicator: Optional[torch.Tensor] = None,
) -> torch.FloatTensor:
for resnet in self.resnets:
# pop res hidden states
res_hidden_states = res_hidden_states_tuple[-1]
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
if self.training and self.gradient_checkpointing:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
if is_torch_version(">=", "1.11.0"):
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet),
hidden_states,
temb,
image_only_indicator,
use_reentrant=False,
)
else:
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet),
hidden_states,
temb,
image_only_indicator,
)
else:
hidden_states = resnet(
hidden_states,
temb,
image_only_indicator=image_only_indicator,
)
if self.upsamplers is not None:
for upsampler in self.upsamplers:
hidden_states = upsampler(hidden_states)
return hidden_states
class CrossAttnUpBlockSpatioTemporal(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
prev_output_channel: int,
temb_channels: int,
resolution_idx: Optional[int] = None,
num_layers: int = 1,
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
resnet_eps: float = 1e-6,
num_attention_heads: int = 1,
cross_attention_dim: int = 1280,
add_upsample: bool = True,
):
super().__init__()
resnets = []
attentions = []
self.has_cross_attention = True
self.num_attention_heads = num_attention_heads
if isinstance(transformer_layers_per_block, int):
transformer_layers_per_block = [transformer_layers_per_block] * num_layers
for i in range(num_layers):
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
resnet_in_channels = prev_output_channel if i == 0 else out_channels
resnets.append(
SpatioTemporalResBlock(
in_channels=resnet_in_channels + res_skip_channels,
out_channels=out_channels,
temb_channels=temb_channels,
eps=resnet_eps,
)
)
attentions.append(
TransformerSpatioTemporalModel(
num_attention_heads,
out_channels // num_attention_heads,
in_channels=out_channels,
num_layers=transformer_layers_per_block[i],
cross_attention_dim=cross_attention_dim,
)
)
self.attentions = nn.ModuleList(attentions)
self.resnets = nn.ModuleList(resnets)
if add_upsample:
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
else:
self.upsamplers = None
self.gradient_checkpointing = False
self.resolution_idx = resolution_idx
def forward(
self,
hidden_states: torch.FloatTensor,
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
temb: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
image_only_indicator: Optional[torch.Tensor] = None,
) -> torch.FloatTensor:
for resnet, attn in zip(self.resnets, self.attentions):
# pop res hidden states
res_hidden_states = res_hidden_states_tuple[-1]
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
if self.training and self.gradient_checkpointing: # TODO
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet),
hidden_states,
temb,
image_only_indicator,
**ckpt_kwargs,
)
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
image_only_indicator=image_only_indicator,
return_dict=False,
)[0]
else:
hidden_states = resnet(
hidden_states,
temb,
image_only_indicator=image_only_indicator,
)
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
image_only_indicator=image_only_indicator,
return_dict=False,
)[0]
if self.upsamplers is not None:
for upsampler in self.upsamplers:
hidden_states = upsampler(hidden_states)
return hidden_states
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.utils.checkpoint
from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import PeftAdapterMixin, UNet2DConditionLoadersMixin
from ...utils import USE_PEFT_BACKEND, BaseOutput, deprecate, logging, scale_lora_layers, unscale_lora_layers
from ..activations import get_activation
from ..attention_processor import (
ADDED_KV_ATTENTION_PROCESSORS,
CROSS_ATTENTION_PROCESSORS,
Attention,
AttentionProcessor,
AttnAddedKVProcessor,
AttnProcessor,
)
from ..embeddings import (
GaussianFourierProjection,
GLIGENTextBoundingboxProjection,
ImageHintTimeEmbedding,
ImageProjection,
ImageTimeEmbedding,
TextImageProjection,
TextImageTimeEmbedding,
TextTimeEmbedding,
TimestepEmbedding,
Timesteps,
)
from ..modeling_utils import ModelMixin
from .unet_2d_blocks import (
get_down_block,
get_mid_block,
get_up_block,
)
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
@dataclass
class UNet2DConditionOutput(BaseOutput):
"""
The output of [`UNet2DConditionModel`].
Args:
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
"""
sample: torch.FloatTensor = None
class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin, PeftAdapterMixin):
r"""
A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
shaped output.
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
for all models (such as downloading or saving).
Parameters:
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
Height and width of input/output sample.
in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
Whether to flip the sin to cos in the time embedding.
freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
The tuple of downsample blocks to use.
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
Block type for middle of UNet, it can be one of `UNetMidBlock2DCrossAttn`, `UNetMidBlock2D`, or
`UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
The tuple of upsample blocks to use.
only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
Whether to include self-attention in the basic transformer blocks, see
[`~models.attention.BasicTransformerBlock`].
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
The tuple of output channels for each block.
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
If `None`, normalization and activation layers is skipped in post-processing.
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
The dimension of the cross attention features.
transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1):
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
reverse_transformer_layers_per_block : (`Tuple[Tuple]`, *optional*, defaults to None):
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`], in the upsampling
blocks of the U-Net. Only relevant if `transformer_layers_per_block` is of type `Tuple[Tuple]` and for
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
encoder_hid_dim (`int`, *optional*, defaults to None):
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
dimension to `cross_attention_dim`.
encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
num_attention_heads (`int`, *optional*):
The number of attention heads. If not defined, defaults to `attention_head_dim`
resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
class_embed_type (`str`, *optional*, defaults to `None`):
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
addition_embed_type (`str`, *optional*, defaults to `None`):
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
"text". "text" will use the `TextTimeEmbedding` layer.
addition_time_embed_dim: (`int`, *optional*, defaults to `None`):
Dimension for the timestep embeddings.
num_class_embeds (`int`, *optional*, defaults to `None`):
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
class conditioning with `class_embed_type` equal to `None`.
time_embedding_type (`str`, *optional*, defaults to `positional`):
The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
time_embedding_dim (`int`, *optional*, defaults to `None`):
An optional override for the dimension of the projected time embedding.
time_embedding_act_fn (`str`, *optional*, defaults to `None`):
Optional activation function to use only once on the time embeddings before they are passed to the rest of
the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
timestep_post_act (`str`, *optional*, defaults to `None`):
The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
time_cond_proj_dim (`int`, *optional*, defaults to `None`):
The dimension of `cond_proj` layer in the timestep embedding.
conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer. conv_out_kernel (`int`,
*optional*, default to `3`): The kernel size of `conv_out` layer. projection_class_embeddings_input_dim (`int`,
*optional*): The dimension of the `class_labels` input when
`class_embed_type="projection"`. Required when `class_embed_type="projection"`.
class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
embeddings with the class embeddings.
mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
`only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
`only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
otherwise.
"""
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
sample_size: Optional[int] = None,
in_channels: int = 4,
out_channels: int = 4,
center_input_sample: bool = False,
flip_sin_to_cos: bool = True,
freq_shift: int = 0,
down_block_types: Tuple[str] = (
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"DownBlock2D",
),
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
only_cross_attention: Union[bool, Tuple[bool]] = False,
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
layers_per_block: Union[int, Tuple[int]] = 2,
downsample_padding: int = 1,
mid_block_scale_factor: float = 1,
dropout: float = 0.0,
act_fn: str = "silu",
norm_num_groups: Optional[int] = 32,
norm_eps: float = 1e-5,
cross_attention_dim: Union[int, Tuple[int]] = 1280,
transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1,
reverse_transformer_layers_per_block: Optional[Tuple[Tuple[int]]] = None,
encoder_hid_dim: Optional[int] = None,
encoder_hid_dim_type: Optional[str] = None,
attention_head_dim: Union[int, Tuple[int]] = 8,
num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
dual_cross_attention: bool = False,
use_linear_projection: bool = False,
class_embed_type: Optional[str] = None,
addition_embed_type: Optional[str] = None,
addition_time_embed_dim: Optional[int] = None,
num_class_embeds: Optional[int] = None,
upcast_attention: bool = False,
resnet_time_scale_shift: str = "default",
resnet_skip_time_act: bool = False,
resnet_out_scale_factor: float = 1.0,
time_embedding_type: str = "positional",
time_embedding_dim: Optional[int] = None,
time_embedding_act_fn: Optional[str] = None,
timestep_post_act: Optional[str] = None,
time_cond_proj_dim: Optional[int] = None,
conv_in_kernel: int = 3,
conv_out_kernel: int = 3,
projection_class_embeddings_input_dim: Optional[int] = None,
attention_type: str = "default",
class_embeddings_concat: bool = False,
mid_block_only_cross_attention: Optional[bool] = None,
cross_attention_norm: Optional[str] = None,
addition_embed_type_num_heads: int = 64,
):
super().__init__()
self.sample_size = sample_size
if num_attention_heads is not None:
raise ValueError(
"At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
)
# If `num_attention_heads` is not defined (which is the case for most models)
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
# The reason for this behavior is to correct for incorrectly named variables that were introduced
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
# which is why we correct for the naming here.
num_attention_heads = num_attention_heads or attention_head_dim
# Check inputs
self._check_config(
down_block_types=down_block_types,
up_block_types=up_block_types,
only_cross_attention=only_cross_attention,
block_out_channels=block_out_channels,
layers_per_block=layers_per_block,
cross_attention_dim=cross_attention_dim,
transformer_layers_per_block=transformer_layers_per_block,
reverse_transformer_layers_per_block=reverse_transformer_layers_per_block,
attention_head_dim=attention_head_dim,
num_attention_heads=num_attention_heads,
)
# input
conv_in_padding = (conv_in_kernel - 1) // 2
self.conv_in = nn.Conv2d(
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
)
# time
time_embed_dim, timestep_input_dim = self._set_time_proj(
time_embedding_type,
block_out_channels=block_out_channels,
flip_sin_to_cos=flip_sin_to_cos,
freq_shift=freq_shift,
time_embedding_dim=time_embedding_dim,
)
self.time_embedding = TimestepEmbedding(
timestep_input_dim,
time_embed_dim,
act_fn=act_fn,
post_act_fn=timestep_post_act,
cond_proj_dim=time_cond_proj_dim,
)
self._set_encoder_hid_proj(
encoder_hid_dim_type,
cross_attention_dim=cross_attention_dim,
encoder_hid_dim=encoder_hid_dim,
)
# class embedding
self._set_class_embedding(
class_embed_type,
act_fn=act_fn,
num_class_embeds=num_class_embeds,
projection_class_embeddings_input_dim=projection_class_embeddings_input_dim,
time_embed_dim=time_embed_dim,
timestep_input_dim=timestep_input_dim,
)
self._set_add_embedding(
addition_embed_type,
addition_embed_type_num_heads=addition_embed_type_num_heads,
addition_time_embed_dim=addition_time_embed_dim,
cross_attention_dim=cross_attention_dim,
encoder_hid_dim=encoder_hid_dim,
flip_sin_to_cos=flip_sin_to_cos,
freq_shift=freq_shift,
projection_class_embeddings_input_dim=projection_class_embeddings_input_dim,
time_embed_dim=time_embed_dim,
)
if time_embedding_act_fn is None:
self.time_embed_act = None
else:
self.time_embed_act = get_activation(time_embedding_act_fn)
self.down_blocks = nn.ModuleList([])
self.up_blocks = nn.ModuleList([])
if isinstance(only_cross_attention, bool):
if mid_block_only_cross_attention is None:
mid_block_only_cross_attention = only_cross_attention
only_cross_attention = [only_cross_attention] * len(down_block_types)
if mid_block_only_cross_attention is None:
mid_block_only_cross_attention = False
if isinstance(num_attention_heads, int):
num_attention_heads = (num_attention_heads,) * len(down_block_types)
if isinstance(attention_head_dim, int):
attention_head_dim = (attention_head_dim,) * len(down_block_types)
if isinstance(cross_attention_dim, int):
cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
if isinstance(layers_per_block, int):
layers_per_block = [layers_per_block] * len(down_block_types)
if isinstance(transformer_layers_per_block, int):
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
if class_embeddings_concat:
# The time embeddings are concatenated with the class embeddings. The dimension of the
# time embeddings passed to the down, middle, and up blocks is twice the dimension of the
# regular time embeddings
blocks_time_embed_dim = time_embed_dim * 2
else:
blocks_time_embed_dim = time_embed_dim
# down
output_channel = block_out_channels[0]
for i, down_block_type in enumerate(down_block_types):
input_channel = output_channel
output_channel = block_out_channels[i]
is_final_block = i == len(block_out_channels) - 1
down_block = get_down_block(
down_block_type,
num_layers=layers_per_block[i],
transformer_layers_per_block=transformer_layers_per_block[i],
in_channels=input_channel,
out_channels=output_channel,
temb_channels=blocks_time_embed_dim,
add_downsample=not is_final_block,
resnet_eps=norm_eps,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
cross_attention_dim=cross_attention_dim[i],
num_attention_heads=num_attention_heads[i],
downsample_padding=downsample_padding,
dual_cross_attention=dual_cross_attention,
use_linear_projection=use_linear_projection,
only_cross_attention=only_cross_attention[i],
upcast_attention=upcast_attention,
resnet_time_scale_shift=resnet_time_scale_shift,
attention_type=attention_type,
resnet_skip_time_act=resnet_skip_time_act,
resnet_out_scale_factor=resnet_out_scale_factor,
cross_attention_norm=cross_attention_norm,
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
dropout=dropout,
)
self.down_blocks.append(down_block)
# mid
self.mid_block = get_mid_block(
mid_block_type,
temb_channels=blocks_time_embed_dim,
in_channels=block_out_channels[-1],
resnet_eps=norm_eps,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
output_scale_factor=mid_block_scale_factor,
transformer_layers_per_block=transformer_layers_per_block[-1],
num_attention_heads=num_attention_heads[-1],
cross_attention_dim=cross_attention_dim[-1],
dual_cross_attention=dual_cross_attention,
use_linear_projection=use_linear_projection,
mid_block_only_cross_attention=mid_block_only_cross_attention,
upcast_attention=upcast_attention,
resnet_time_scale_shift=resnet_time_scale_shift,
attention_type=attention_type,
resnet_skip_time_act=resnet_skip_time_act,
cross_attention_norm=cross_attention_norm,
attention_head_dim=attention_head_dim[-1],
dropout=dropout,
)
# count how many layers upsample the images
self.num_upsamplers = 0
# up
reversed_block_out_channels = list(reversed(block_out_channels))
reversed_num_attention_heads = list(reversed(num_attention_heads))
reversed_layers_per_block = list(reversed(layers_per_block))
reversed_cross_attention_dim = list(reversed(cross_attention_dim))
reversed_transformer_layers_per_block = (
list(reversed(transformer_layers_per_block))
if reverse_transformer_layers_per_block is None
else reverse_transformer_layers_per_block
)
only_cross_attention = list(reversed(only_cross_attention))
output_channel = reversed_block_out_channels[0]
for i, up_block_type in enumerate(up_block_types):
is_final_block = i == len(block_out_channels) - 1
prev_output_channel = output_channel
output_channel = reversed_block_out_channels[i]
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
# add upsample block for all BUT final layer
if not is_final_block:
add_upsample = True
self.num_upsamplers += 1
else:
add_upsample = False
up_block = get_up_block(
up_block_type,
num_layers=reversed_layers_per_block[i] + 1,
transformer_layers_per_block=reversed_transformer_layers_per_block[i],
in_channels=input_channel,
out_channels=output_channel,
prev_output_channel=prev_output_channel,
temb_channels=blocks_time_embed_dim,
add_upsample=add_upsample,
resnet_eps=norm_eps,
resnet_act_fn=act_fn,
resolution_idx=i,
resnet_groups=norm_num_groups,
cross_attention_dim=reversed_cross_attention_dim[i],
num_attention_heads=reversed_num_attention_heads[i],
dual_cross_attention=dual_cross_attention,
use_linear_projection=use_linear_projection,
only_cross_attention=only_cross_attention[i],
upcast_attention=upcast_attention,
resnet_time_scale_shift=resnet_time_scale_shift,
attention_type=attention_type,
resnet_skip_time_act=resnet_skip_time_act,
resnet_out_scale_factor=resnet_out_scale_factor,
cross_attention_norm=cross_attention_norm,
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
dropout=dropout,
)
self.up_blocks.append(up_block)
prev_output_channel = output_channel
# out
if norm_num_groups is not None:
self.conv_norm_out = nn.GroupNorm(
num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
)
self.conv_act = get_activation(act_fn)
else:
self.conv_norm_out = None
self.conv_act = None
conv_out_padding = (conv_out_kernel - 1) // 2
self.conv_out = nn.Conv2d(
block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
)
self._set_pos_net_if_use_gligen(attention_type=attention_type, cross_attention_dim=cross_attention_dim)
def _check_config(
self,
down_block_types: Tuple[str],
up_block_types: Tuple[str],
only_cross_attention: Union[bool, Tuple[bool]],
block_out_channels: Tuple[int],
layers_per_block: Union[int, Tuple[int]],
cross_attention_dim: Union[int, Tuple[int]],
transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple[int]]],
reverse_transformer_layers_per_block: bool,
attention_head_dim: int,
num_attention_heads: Optional[Union[int, Tuple[int]]],
):
if len(down_block_types) != len(up_block_types):
raise ValueError(
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
)
if len(block_out_channels) != len(down_block_types):
raise ValueError(
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
)
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
raise ValueError(
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
)
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
raise ValueError(
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
)
if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
raise ValueError(
f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
)
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
raise ValueError(
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
)
if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
raise ValueError(
f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
)
if isinstance(transformer_layers_per_block, list) and reverse_transformer_layers_per_block is None:
for layer_number_per_block in transformer_layers_per_block:
if isinstance(layer_number_per_block, list):
raise ValueError("Must provide 'reverse_transformer_layers_per_block` if using asymmetrical UNet.")
def _set_time_proj(
self,
time_embedding_type: str,
block_out_channels: int,
flip_sin_to_cos: bool,
freq_shift: float,
time_embedding_dim: int,
) -> Tuple[int, int]:
if time_embedding_type == "fourier":
time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
if time_embed_dim % 2 != 0:
raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
self.time_proj = GaussianFourierProjection(
time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
)
timestep_input_dim = time_embed_dim
elif time_embedding_type == "positional":
time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
timestep_input_dim = block_out_channels[0]
else:
raise ValueError(
f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
)
return time_embed_dim, timestep_input_dim
def _set_encoder_hid_proj(
self,
encoder_hid_dim_type: Optional[str],
cross_attention_dim: Union[int, Tuple[int]],
encoder_hid_dim: Optional[int],
):
if encoder_hid_dim_type is None and encoder_hid_dim is not None:
encoder_hid_dim_type = "text_proj"
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
if encoder_hid_dim is None and encoder_hid_dim_type is not None:
raise ValueError(
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
)
if encoder_hid_dim_type == "text_proj":
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
elif encoder_hid_dim_type == "text_image_proj":
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
# case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
self.encoder_hid_proj = TextImageProjection(
text_embed_dim=encoder_hid_dim,
image_embed_dim=cross_attention_dim,
cross_attention_dim=cross_attention_dim,
)
elif encoder_hid_dim_type == "image_proj":
# Kandinsky 2.2
self.encoder_hid_proj = ImageProjection(
image_embed_dim=encoder_hid_dim,
cross_attention_dim=cross_attention_dim,
)
elif encoder_hid_dim_type is not None:
raise ValueError(
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
)
else:
self.encoder_hid_proj = None
def _set_class_embedding(
self,
class_embed_type: Optional[str],
act_fn: str,
num_class_embeds: Optional[int],
projection_class_embeddings_input_dim: Optional[int],
time_embed_dim: int,
timestep_input_dim: int,
):
if class_embed_type is None and num_class_embeds is not None:
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
elif class_embed_type == "timestep":
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
elif class_embed_type == "identity":
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
elif class_embed_type == "projection":
if projection_class_embeddings_input_dim is None:
raise ValueError(
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
)
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
# 2. it projects from an arbitrary input dimension.
#
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
elif class_embed_type == "simple_projection":
if projection_class_embeddings_input_dim is None:
raise ValueError(
"`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
)
self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
else:
self.class_embedding = None
def _set_add_embedding(
self,
addition_embed_type: str,
addition_embed_type_num_heads: int,
addition_time_embed_dim: Optional[int],
flip_sin_to_cos: bool,
freq_shift: float,
cross_attention_dim: Optional[int],
encoder_hid_dim: Optional[int],
projection_class_embeddings_input_dim: Optional[int],
time_embed_dim: int,
):
if addition_embed_type == "text":
if encoder_hid_dim is not None:
text_time_embedding_from_dim = encoder_hid_dim
else:
text_time_embedding_from_dim = cross_attention_dim
self.add_embedding = TextTimeEmbedding(
text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
)
elif addition_embed_type == "text_image":
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
# case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
self.add_embedding = TextImageTimeEmbedding(
text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
)
elif addition_embed_type == "text_time":
self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
elif addition_embed_type == "image":
# Kandinsky 2.2
self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
elif addition_embed_type == "image_hint":
# Kandinsky 2.2 ControlNet
self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
elif addition_embed_type is not None:
raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
def _set_pos_net_if_use_gligen(self, attention_type: str, cross_attention_dim: int):
if attention_type in ["gated", "gated-text-image"]:
positive_len = 768
if isinstance(cross_attention_dim, int):
positive_len = cross_attention_dim
elif isinstance(cross_attention_dim, tuple) or isinstance(cross_attention_dim, list):
positive_len = cross_attention_dim[0]
feature_type = "text-only" if attention_type == "gated" else "text-image"
self.position_net = GLIGENTextBoundingboxProjection(
positive_len=positive_len, out_dim=cross_attention_dim, feature_type=feature_type
)
@property
def attn_processors(self) -> Dict[str, AttentionProcessor]:
r"""
Returns:
`dict` of attention processors: A dictionary containing all attention processors used in the model with
indexed by its weight name.
"""
# set recursively
processors = {}
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
if hasattr(module, "get_processor"):
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
for sub_name, child in module.named_children():
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
return processors
for name, module in self.named_children():
fn_recursive_add_processors(name, module, processors)
return processors
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
r"""
Sets the attention processor to use to compute attention.
Parameters:
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
The instantiated processor class or a dictionary of processor classes that will be set as the processor
for **all** `Attention` layers.
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
processor. This is strongly recommended when setting trainable attention processors.
"""
count = len(self.attn_processors.keys())
if isinstance(processor, dict) and len(processor) != count:
raise ValueError(
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
)
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
if hasattr(module, "set_processor"):
if not isinstance(processor, dict):
module.set_processor(processor)
else:
module.set_processor(processor.pop(f"{name}.processor"))
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
for name, module in self.named_children():
fn_recursive_attn_processor(name, module, processor)
def set_default_attn_processor(self):
"""
Disables custom attention processors and sets the default attention implementation.
"""
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
processor = AttnAddedKVProcessor()
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
processor = AttnProcessor()
else:
raise ValueError(
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
)
self.set_attn_processor(processor)
def set_attention_slice(self, slice_size: Union[str, int, List[int]] = "auto"):
r"""
Enable sliced attention computation.
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
Args:
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
must be a multiple of `slice_size`.
"""
sliceable_head_dims = []
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
if hasattr(module, "set_attention_slice"):
sliceable_head_dims.append(module.sliceable_head_dim)
for child in module.children():
fn_recursive_retrieve_sliceable_dims(child)
# retrieve number of attention layers
for module in self.children():
fn_recursive_retrieve_sliceable_dims(module)
num_sliceable_layers = len(sliceable_head_dims)
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
slice_size = [dim // 2 for dim in sliceable_head_dims]
elif slice_size == "max":
# make smallest slice possible
slice_size = num_sliceable_layers * [1]
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
if len(slice_size) != len(sliceable_head_dims):
raise ValueError(
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
)
for i in range(len(slice_size)):
size = slice_size[i]
dim = sliceable_head_dims[i]
if size is not None and size > dim:
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
# Recursively walk through all the children.
# Any children which exposes the set_attention_slice method
# gets the message
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
if hasattr(module, "set_attention_slice"):
module.set_attention_slice(slice_size.pop())
for child in module.children():
fn_recursive_set_attention_slice(child, slice_size)
reversed_slice_size = list(reversed(slice_size))
for module in self.children():
fn_recursive_set_attention_slice(module, reversed_slice_size)
def _set_gradient_checkpointing(self, module, value=False):
if hasattr(module, "gradient_checkpointing"):
module.gradient_checkpointing = value
def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
r"""Enables the FreeU mechanism from https://arxiv.org/abs/2309.11497.
The suffixes after the scaling factors represent the stage blocks where they are being applied.
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of values that
are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
Args:
s1 (`float`):
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
mitigate the "oversmoothing effect" in the enhanced denoising process.
s2 (`float`):
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
mitigate the "oversmoothing effect" in the enhanced denoising process.
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
"""
for i, upsample_block in enumerate(self.up_blocks):
setattr(upsample_block, "s1", s1)
setattr(upsample_block, "s2", s2)
setattr(upsample_block, "b1", b1)
setattr(upsample_block, "b2", b2)
def disable_freeu(self):
"""Disables the FreeU mechanism."""
freeu_keys = {"s1", "s2", "b1", "b2"}
for i, upsample_block in enumerate(self.up_blocks):
for k in freeu_keys:
if hasattr(upsample_block, k) or getattr(upsample_block, k, None) is not None:
setattr(upsample_block, k, None)
def fuse_qkv_projections(self):
"""
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query,
key, value) are fused. For cross-attention modules, key and value projection matrices are fused.
<Tip warning={true}>
This API is 🧪 experimental.
</Tip>
"""
self.original_attn_processors = None
for _, attn_processor in self.attn_processors.items():
if "Added" in str(attn_processor.__class__.__name__):
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
self.original_attn_processors = self.attn_processors
for module in self.modules():
if isinstance(module, Attention):
module.fuse_projections(fuse=True)
def unfuse_qkv_projections(self):
"""Disables the fused QKV projection if enabled.
<Tip warning={true}>
This API is 🧪 experimental.
</Tip>
"""
if self.original_attn_processors is not None:
self.set_attn_processor(self.original_attn_processors)
def unload_lora(self):
"""Unloads LoRA weights."""
deprecate(
"unload_lora",
"0.28.0",
"Calling `unload_lora()` is deprecated and will be removed in a future version. Please install `peft` and then call `disable_adapters().",
)
for module in self.modules():
if hasattr(module, "set_lora_layer"):
module.set_lora_layer(None)
def get_time_embed(
self, sample: torch.Tensor, timestep: Union[torch.Tensor, float, int]
) -> Optional[torch.Tensor]:
timesteps = timestep
if not torch.is_tensor(timesteps):
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
# This would be a good case for the `match` statement (Python 3.10+)
is_mps = sample.device.type == "mps"
if isinstance(timestep, float):
dtype = torch.float32 if is_mps else torch.float64
else:
dtype = torch.int32 if is_mps else torch.int64
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
elif len(timesteps.shape) == 0:
timesteps = timesteps[None].to(sample.device)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timesteps = timesteps.expand(sample.shape[0])
t_emb = self.time_proj(timesteps)
# `Timesteps` does not contain any weights and will always return f32 tensors
# but time_embedding might actually be running in fp16. so we need to cast here.
# there might be better ways to encapsulate this.
t_emb = t_emb.to(dtype=sample.dtype)
return t_emb
def get_class_embed(self, sample: torch.Tensor, class_labels: Optional[torch.Tensor]) -> Optional[torch.Tensor]:
class_emb = None
if self.class_embedding is not None:
if class_labels is None:
raise ValueError("class_labels should be provided when num_class_embeds > 0")
if self.config.class_embed_type == "timestep":
class_labels = self.time_proj(class_labels)
# `Timesteps` does not contain any weights and will always return f32 tensors
# there might be better ways to encapsulate this.
class_labels = class_labels.to(dtype=sample.dtype)
class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
return class_emb
def get_aug_embed(
self, emb: torch.Tensor, encoder_hidden_states: torch.Tensor, added_cond_kwargs: Dict[str, Any]
) -> Optional[torch.Tensor]:
aug_emb = None
if self.config.addition_embed_type == "text":
aug_emb = self.add_embedding(encoder_hidden_states)
elif self.config.addition_embed_type == "text_image":
# Kandinsky 2.1 - style
if "image_embeds" not in added_cond_kwargs:
raise ValueError(
f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
)
image_embs = added_cond_kwargs.get("image_embeds")
text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
aug_emb = self.add_embedding(text_embs, image_embs)
elif self.config.addition_embed_type == "text_time":
# SDXL - style
if "text_embeds" not in added_cond_kwargs:
raise ValueError(
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
)
text_embeds = added_cond_kwargs.get("text_embeds")
if "time_ids" not in added_cond_kwargs:
raise ValueError(
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
)
time_ids = added_cond_kwargs.get("time_ids")
time_embeds = self.add_time_proj(time_ids.flatten())
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
add_embeds = add_embeds.to(emb.dtype)
aug_emb = self.add_embedding(add_embeds)
elif self.config.addition_embed_type == "image":
# Kandinsky 2.2 - style
if "image_embeds" not in added_cond_kwargs:
raise ValueError(
f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
)
image_embs = added_cond_kwargs.get("image_embeds")
aug_emb = self.add_embedding(image_embs)
elif self.config.addition_embed_type == "image_hint":
# Kandinsky 2.2 - style
if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs:
raise ValueError(
f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
)
image_embs = added_cond_kwargs.get("image_embeds")
hint = added_cond_kwargs.get("hint")
aug_emb = self.add_embedding(image_embs, hint)
return aug_emb
def process_encoder_hidden_states(
self, encoder_hidden_states: torch.Tensor, added_cond_kwargs: Dict[str, Any]
) -> torch.Tensor:
if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
# Kadinsky 2.1 - style
if "image_embeds" not in added_cond_kwargs:
raise ValueError(
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
)
image_embeds = added_cond_kwargs.get("image_embeds")
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
# Kandinsky 2.2 - style
if "image_embeds" not in added_cond_kwargs:
raise ValueError(
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
)
image_embeds = added_cond_kwargs.get("image_embeds")
encoder_hidden_states = self.encoder_hid_proj(image_embeds)
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "ip_image_proj":
if "image_embeds" not in added_cond_kwargs:
raise ValueError(
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'ip_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
)
image_embeds = added_cond_kwargs.get("image_embeds")
image_embeds = self.encoder_hid_proj(image_embeds)
encoder_hidden_states = (encoder_hidden_states, image_embeds)
return encoder_hidden_states
def forward(
self,
sample: torch.FloatTensor,
timestep: Union[torch.Tensor, float, int],
encoder_hidden_states: torch.Tensor,
class_labels: Optional[torch.Tensor] = None,
timestep_cond: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
mid_block_additional_residual: Optional[torch.Tensor] = None,
down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
return_dict: bool = True,
) -> Union[UNet2DConditionOutput, Tuple]:
r"""
The [`UNet2DConditionModel`] forward method.
Args:
sample (`torch.FloatTensor`):
The noisy input tensor with the following shape `(batch, channel, height, width)`.
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
encoder_hidden_states (`torch.FloatTensor`):
The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
class_labels (`torch.Tensor`, *optional*, defaults to `None`):
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
timestep_cond: (`torch.Tensor`, *optional*, defaults to `None`):
Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed
through the `self.time_embedding` layer to obtain the timestep embeddings.
attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
negative values to the attention scores corresponding to "discard" tokens.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
added_cond_kwargs: (`dict`, *optional*):
A kwargs dictionary containing additional embeddings that if specified are added to the embeddings that
are passed along to the UNet blocks.
down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*):
A tuple of tensors that if specified are added to the residuals of down unet blocks.
mid_block_additional_residual: (`torch.Tensor`, *optional*):
A tensor that if specified is added to the residual of the middle unet block.
encoder_attention_mask (`torch.Tensor`):
A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
`True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
which adds large negative values to the attention scores corresponding to "discard" tokens.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
tuple.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the [`AttnProcessor`].
added_cond_kwargs: (`dict`, *optional*):
A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that
are passed along to the UNet blocks.
down_block_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
additional residuals to be added to UNet long skip connections from down blocks to up blocks for
example from ControlNet side model(s)
mid_block_additional_residual (`torch.Tensor`, *optional*):
additional residual to be added to UNet mid block output, for example from ControlNet side model
down_intrablock_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
additional residuals to be added within UNet down blocks, for example from T2I-Adapter side model(s)
Returns:
[`~models.unets.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
If `return_dict` is True, an [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise
a `tuple` is returned where the first element is the sample tensor.
"""
# By default samples have to be AT least a multiple of the overall upsampling factor.
# The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
# However, the upsampling interpolation output size can be forced to fit any upsampling size
# on the fly if necessary.
default_overall_up_factor = 2**self.num_upsamplers
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
forward_upsample_size = False
upsample_size = None
for dim in sample.shape[-2:]:
if dim % default_overall_up_factor != 0:
# Forward upsample size to force interpolation output size.
forward_upsample_size = True
break
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension
# expects mask of shape:
# [batch, key_tokens]
# adds singleton query_tokens dimension:
# [batch, 1, key_tokens]
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
if attention_mask is not None:
# assume that mask is expressed as:
# (1 = keep, 0 = discard)
# convert mask into a bias that can be added to attention scores:
# (keep = +0, discard = -10000.0)
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
attention_mask = attention_mask.unsqueeze(1)
# convert encoder_attention_mask to a bias the same way we do for attention_mask
if encoder_attention_mask is not None:
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
# 0. center input if necessary
if self.config.center_input_sample:
sample = 2 * sample - 1.0
# 1. time
t_emb = self.get_time_embed(sample=sample, timestep=timestep)
emb = self.time_embedding(t_emb, timestep_cond)
aug_emb = None
class_emb = self.get_class_embed(sample=sample, class_labels=class_labels)
if class_emb is not None:
if self.config.class_embeddings_concat:
emb = torch.cat([emb, class_emb], dim=-1)
else:
emb = emb + class_emb
aug_emb = self.get_aug_embed(
emb=emb, encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
)
if self.config.addition_embed_type == "image_hint":
aug_emb, hint = aug_emb
sample = torch.cat([sample, hint], dim=1)
emb = emb + aug_emb if aug_emb is not None else emb
if self.time_embed_act is not None:
emb = self.time_embed_act(emb)
encoder_hidden_states = self.process_encoder_hidden_states(
encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
)
# 2. pre-process
sample = self.conv_in(sample)
# 2.5 GLIGEN position net
if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None:
cross_attention_kwargs = cross_attention_kwargs.copy()
gligen_args = cross_attention_kwargs.pop("gligen")
cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)}
# 3. down
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
# using new arg down_intrablock_additional_residuals for T2I-Adapters, to distinguish from controlnets
is_adapter = down_intrablock_additional_residuals is not None
# maintain backward compatibility for legacy usage, where
# T2I-Adapter and ControlNet both use down_block_additional_residuals arg
# but can only use one or the other
if not is_adapter and mid_block_additional_residual is None and down_block_additional_residuals is not None:
deprecate(
"T2I should not use down_block_additional_residuals",
"1.3.0",
"Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \
and will be removed in diffusers 1.3.0. `down_block_additional_residuals` should only be used \
for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ",
standard_warn=False,
)
down_intrablock_additional_residuals = down_block_additional_residuals
is_adapter = True
down_block_res_samples = (sample,)
for downsample_block in self.down_blocks:
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
# For t2i-adapter CrossAttnDownBlock2D
additional_residuals = {}
if is_adapter and len(down_intrablock_additional_residuals) > 0:
additional_residuals["additional_residuals"] = down_intrablock_additional_residuals.pop(0)
sample, res_samples = downsample_block(
hidden_states=sample,
temb=emb,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
cross_attention_kwargs=cross_attention_kwargs,
encoder_attention_mask=encoder_attention_mask,
**additional_residuals,
)
else:
sample, res_samples = downsample_block(hidden_states=sample, temb=emb, scale=lora_scale)
if is_adapter and len(down_intrablock_additional_residuals) > 0:
sample += down_intrablock_additional_residuals.pop(0)
down_block_res_samples += res_samples
if is_controlnet:
new_down_block_res_samples = ()
for down_block_res_sample, down_block_additional_residual in zip(
down_block_res_samples, down_block_additional_residuals
):
down_block_res_sample = down_block_res_sample + down_block_additional_residual
new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
down_block_res_samples = new_down_block_res_samples
# 4. mid
if self.mid_block is not None:
if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
sample = self.mid_block(
sample,
emb,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
cross_attention_kwargs=cross_attention_kwargs,
encoder_attention_mask=encoder_attention_mask,
)
else:
sample = self.mid_block(sample, emb)
# To support T2I-Adapter-XL
if (
is_adapter
and len(down_intrablock_additional_residuals) > 0
and sample.shape == down_intrablock_additional_residuals[0].shape
):
sample += down_intrablock_additional_residuals.pop(0)
if is_controlnet:
sample = sample + mid_block_additional_residual
# 5. up
for i, upsample_block in enumerate(self.up_blocks):
is_final_block = i == len(self.up_blocks) - 1
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
# if we have not reached the final block and need to forward the
# upsample size, we do it here
if not is_final_block and forward_upsample_size:
upsample_size = down_block_res_samples[-1].shape[2:]
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
sample = upsample_block(
hidden_states=sample,
temb=emb,
res_hidden_states_tuple=res_samples,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
upsample_size=upsample_size,
attention_mask=attention_mask,
encoder_attention_mask=encoder_attention_mask,
)
else:
sample = upsample_block(
hidden_states=sample,
temb=emb,
res_hidden_states_tuple=res_samples,
upsample_size=upsample_size,
scale=lora_scale,
)
# 6. post-process
if self.conv_norm_out:
sample = self.conv_norm_out(sample)
sample = self.conv_act(sample)
sample = self.conv_out(sample)
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
if not return_dict:
return (sample,)
return UNet2DConditionOutput(sample=sample)
from dataclasses import dataclass
from typing import Dict, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...utils import BaseOutput, logging
from ..attention_processor import Attention, AttentionProcessor, AttnProcessor
from ..embeddings import TimestepEmbedding, Timesteps
from ..modeling_utils import ModelMixin
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
@dataclass
class Kandinsky3UNetOutput(BaseOutput):
sample: torch.FloatTensor = None
class Kandinsky3EncoderProj(nn.Module):
def __init__(self, encoder_hid_dim, cross_attention_dim):
super().__init__()
self.projection_linear = nn.Linear(encoder_hid_dim, cross_attention_dim, bias=False)
self.projection_norm = nn.LayerNorm(cross_attention_dim)
def forward(self, x):
x = self.projection_linear(x)
x = self.projection_norm(x)
return x
class Kandinsky3UNet(ModelMixin, ConfigMixin):
@register_to_config
def __init__(
self,
in_channels: int = 4,
time_embedding_dim: int = 1536,
groups: int = 32,
attention_head_dim: int = 64,
layers_per_block: Union[int, Tuple[int]] = 3,
block_out_channels: Tuple[int] = (384, 768, 1536, 3072),
cross_attention_dim: Union[int, Tuple[int]] = 4096,
encoder_hid_dim: int = 4096,
):
super().__init__()
# TOOD(Yiyi): Give better name and put into config for the following 4 parameters
expansion_ratio = 4
compression_ratio = 2
add_cross_attention = (False, True, True, True)
add_self_attention = (False, True, True, True)
out_channels = in_channels
init_channels = block_out_channels[0] // 2
self.time_proj = Timesteps(init_channels, flip_sin_to_cos=False, downscale_freq_shift=1)
self.time_embedding = TimestepEmbedding(
init_channels,
time_embedding_dim,
)
self.add_time_condition = Kandinsky3AttentionPooling(
time_embedding_dim, cross_attention_dim, attention_head_dim
)
self.conv_in = nn.Conv2d(in_channels, init_channels, kernel_size=3, padding=1)
self.encoder_hid_proj = Kandinsky3EncoderProj(encoder_hid_dim, cross_attention_dim)
hidden_dims = [init_channels] + list(block_out_channels)
in_out_dims = list(zip(hidden_dims[:-1], hidden_dims[1:]))
text_dims = [cross_attention_dim if is_exist else None for is_exist in add_cross_attention]
num_blocks = len(block_out_channels) * [layers_per_block]
layer_params = [num_blocks, text_dims, add_self_attention]
rev_layer_params = map(reversed, layer_params)
cat_dims = []
self.num_levels = len(in_out_dims)
self.down_blocks = nn.ModuleList([])
for level, ((in_dim, out_dim), res_block_num, text_dim, self_attention) in enumerate(
zip(in_out_dims, *layer_params)
):
down_sample = level != (self.num_levels - 1)
cat_dims.append(out_dim if level != (self.num_levels - 1) else 0)
self.down_blocks.append(
Kandinsky3DownSampleBlock(
in_dim,
out_dim,
time_embedding_dim,
text_dim,
res_block_num,
groups,
attention_head_dim,
expansion_ratio,
compression_ratio,
down_sample,
self_attention,
)
)
self.up_blocks = nn.ModuleList([])
for level, ((out_dim, in_dim), res_block_num, text_dim, self_attention) in enumerate(
zip(reversed(in_out_dims), *rev_layer_params)
):
up_sample = level != 0
self.up_blocks.append(
Kandinsky3UpSampleBlock(
in_dim,
cat_dims.pop(),
out_dim,
time_embedding_dim,
text_dim,
res_block_num,
groups,
attention_head_dim,
expansion_ratio,
compression_ratio,
up_sample,
self_attention,
)
)
self.conv_norm_out = nn.GroupNorm(groups, init_channels)
self.conv_act_out = nn.SiLU()
self.conv_out = nn.Conv2d(init_channels, out_channels, kernel_size=3, padding=1)
@property
def attn_processors(self) -> Dict[str, AttentionProcessor]:
r"""
Returns:
`dict` of attention processors: A dictionary containing all attention processors used in the model with
indexed by its weight name.
"""
# set recursively
processors = {}
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
if hasattr(module, "set_processor"):
processors[f"{name}.processor"] = module.processor
for sub_name, child in module.named_children():
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
return processors
for name, module in self.named_children():
fn_recursive_add_processors(name, module, processors)
return processors
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
r"""
Sets the attention processor to use to compute attention.
Parameters:
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
The instantiated processor class or a dictionary of processor classes that will be set as the processor
for **all** `Attention` layers.
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
processor. This is strongly recommended when setting trainable attention processors.
"""
count = len(self.attn_processors.keys())
if isinstance(processor, dict) and len(processor) != count:
raise ValueError(
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
)
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
if hasattr(module, "set_processor"):
if not isinstance(processor, dict):
module.set_processor(processor)
else:
module.set_processor(processor.pop(f"{name}.processor"))
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
for name, module in self.named_children():
fn_recursive_attn_processor(name, module, processor)
def set_default_attn_processor(self):
"""
Disables custom attention processors and sets the default attention implementation.
"""
self.set_attn_processor(AttnProcessor())
def _set_gradient_checkpointing(self, module, value=False):
if hasattr(module, "gradient_checkpointing"):
module.gradient_checkpointing = value
def forward(self, sample, timestep, encoder_hidden_states=None, encoder_attention_mask=None, return_dict=True):
if encoder_attention_mask is not None:
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
if not torch.is_tensor(timestep):
dtype = torch.float32 if isinstance(timestep, float) else torch.int32
timestep = torch.tensor([timestep], dtype=dtype, device=sample.device)
elif len(timestep.shape) == 0:
timestep = timestep[None].to(sample.device)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timestep = timestep.expand(sample.shape[0])
time_embed_input = self.time_proj(timestep).to(sample.dtype)
time_embed = self.time_embedding(time_embed_input)
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
if encoder_hidden_states is not None:
time_embed = self.add_time_condition(time_embed, encoder_hidden_states, encoder_attention_mask)
hidden_states = []
sample = self.conv_in(sample)
for level, down_sample in enumerate(self.down_blocks):
sample = down_sample(sample, time_embed, encoder_hidden_states, encoder_attention_mask)
if level != self.num_levels - 1:
hidden_states.append(sample)
for level, up_sample in enumerate(self.up_blocks):
if level != 0:
sample = torch.cat([sample, hidden_states.pop()], dim=1)
sample = up_sample(sample, time_embed, encoder_hidden_states, encoder_attention_mask)
sample = self.conv_norm_out(sample)
sample = self.conv_act_out(sample)
sample = self.conv_out(sample)
if not return_dict:
return (sample,)
return Kandinsky3UNetOutput(sample=sample)
class Kandinsky3UpSampleBlock(nn.Module):
def __init__(
self,
in_channels,
cat_dim,
out_channels,
time_embed_dim,
context_dim=None,
num_blocks=3,
groups=32,
head_dim=64,
expansion_ratio=4,
compression_ratio=2,
up_sample=True,
self_attention=True,
):
super().__init__()
up_resolutions = [[None, True if up_sample else None, None, None]] + [[None] * 4] * (num_blocks - 1)
hidden_channels = (
[(in_channels + cat_dim, in_channels)]
+ [(in_channels, in_channels)] * (num_blocks - 2)
+ [(in_channels, out_channels)]
)
attentions = []
resnets_in = []
resnets_out = []
self.self_attention = self_attention
self.context_dim = context_dim
if self_attention:
attentions.append(
Kandinsky3AttentionBlock(out_channels, time_embed_dim, None, groups, head_dim, expansion_ratio)
)
else:
attentions.append(nn.Identity())
for (in_channel, out_channel), up_resolution in zip(hidden_channels, up_resolutions):
resnets_in.append(
Kandinsky3ResNetBlock(in_channel, in_channel, time_embed_dim, groups, compression_ratio, up_resolution)
)
if context_dim is not None:
attentions.append(
Kandinsky3AttentionBlock(
in_channel, time_embed_dim, context_dim, groups, head_dim, expansion_ratio
)
)
else:
attentions.append(nn.Identity())
resnets_out.append(
Kandinsky3ResNetBlock(in_channel, out_channel, time_embed_dim, groups, compression_ratio)
)
self.attentions = nn.ModuleList(attentions)
self.resnets_in = nn.ModuleList(resnets_in)
self.resnets_out = nn.ModuleList(resnets_out)
def forward(self, x, time_embed, context=None, context_mask=None, image_mask=None):
for attention, resnet_in, resnet_out in zip(self.attentions[1:], self.resnets_in, self.resnets_out):
x = resnet_in(x, time_embed)
if self.context_dim is not None:
x = attention(x, time_embed, context, context_mask, image_mask)
x = resnet_out(x, time_embed)
if self.self_attention:
x = self.attentions[0](x, time_embed, image_mask=image_mask)
return x
class Kandinsky3DownSampleBlock(nn.Module):
def __init__(
self,
in_channels,
out_channels,
time_embed_dim,
context_dim=None,
num_blocks=3,
groups=32,
head_dim=64,
expansion_ratio=4,
compression_ratio=2,
down_sample=True,
self_attention=True,
):
super().__init__()
attentions = []
resnets_in = []
resnets_out = []
self.self_attention = self_attention
self.context_dim = context_dim
if self_attention:
attentions.append(
Kandinsky3AttentionBlock(in_channels, time_embed_dim, None, groups, head_dim, expansion_ratio)
)
else:
attentions.append(nn.Identity())
up_resolutions = [[None] * 4] * (num_blocks - 1) + [[None, None, False if down_sample else None, None]]
hidden_channels = [(in_channels, out_channels)] + [(out_channels, out_channels)] * (num_blocks - 1)
for (in_channel, out_channel), up_resolution in zip(hidden_channels, up_resolutions):
resnets_in.append(
Kandinsky3ResNetBlock(in_channel, out_channel, time_embed_dim, groups, compression_ratio)
)
if context_dim is not None:
attentions.append(
Kandinsky3AttentionBlock(
out_channel, time_embed_dim, context_dim, groups, head_dim, expansion_ratio
)
)
else:
attentions.append(nn.Identity())
resnets_out.append(
Kandinsky3ResNetBlock(
out_channel, out_channel, time_embed_dim, groups, compression_ratio, up_resolution
)
)
self.attentions = nn.ModuleList(attentions)
self.resnets_in = nn.ModuleList(resnets_in)
self.resnets_out = nn.ModuleList(resnets_out)
def forward(self, x, time_embed, context=None, context_mask=None, image_mask=None):
if self.self_attention:
x = self.attentions[0](x, time_embed, image_mask=image_mask)
for attention, resnet_in, resnet_out in zip(self.attentions[1:], self.resnets_in, self.resnets_out):
x = resnet_in(x, time_embed)
if self.context_dim is not None:
x = attention(x, time_embed, context, context_mask, image_mask)
x = resnet_out(x, time_embed)
return x
class Kandinsky3ConditionalGroupNorm(nn.Module):
def __init__(self, groups, normalized_shape, context_dim):
super().__init__()
self.norm = nn.GroupNorm(groups, normalized_shape, affine=False)
self.context_mlp = nn.Sequential(nn.SiLU(), nn.Linear(context_dim, 2 * normalized_shape))
self.context_mlp[1].weight.data.zero_()
self.context_mlp[1].bias.data.zero_()
def forward(self, x, context):
context = self.context_mlp(context)
for _ in range(len(x.shape[2:])):
context = context.unsqueeze(-1)
scale, shift = context.chunk(2, dim=1)
x = self.norm(x) * (scale + 1.0) + shift
return x
class Kandinsky3Block(nn.Module):
def __init__(self, in_channels, out_channels, time_embed_dim, kernel_size=3, norm_groups=32, up_resolution=None):
super().__init__()
self.group_norm = Kandinsky3ConditionalGroupNorm(norm_groups, in_channels, time_embed_dim)
self.activation = nn.SiLU()
if up_resolution is not None and up_resolution:
self.up_sample = nn.ConvTranspose2d(in_channels, in_channels, kernel_size=2, stride=2)
else:
self.up_sample = nn.Identity()
padding = int(kernel_size > 1)
self.projection = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, padding=padding)
if up_resolution is not None and not up_resolution:
self.down_sample = nn.Conv2d(out_channels, out_channels, kernel_size=2, stride=2)
else:
self.down_sample = nn.Identity()
def forward(self, x, time_embed):
x = self.group_norm(x, time_embed)
x = self.activation(x)
x = self.up_sample(x)
x = self.projection(x)
x = self.down_sample(x)
return x
class Kandinsky3ResNetBlock(nn.Module):
def __init__(
self, in_channels, out_channels, time_embed_dim, norm_groups=32, compression_ratio=2, up_resolutions=4 * [None]
):
super().__init__()
kernel_sizes = [1, 3, 3, 1]
hidden_channel = max(in_channels, out_channels) // compression_ratio
hidden_channels = (
[(in_channels, hidden_channel)] + [(hidden_channel, hidden_channel)] * 2 + [(hidden_channel, out_channels)]
)
self.resnet_blocks = nn.ModuleList(
[
Kandinsky3Block(in_channel, out_channel, time_embed_dim, kernel_size, norm_groups, up_resolution)
for (in_channel, out_channel), kernel_size, up_resolution in zip(
hidden_channels, kernel_sizes, up_resolutions
)
]
)
self.shortcut_up_sample = (
nn.ConvTranspose2d(in_channels, in_channels, kernel_size=2, stride=2)
if True in up_resolutions
else nn.Identity()
)
self.shortcut_projection = (
nn.Conv2d(in_channels, out_channels, kernel_size=1) if in_channels != out_channels else nn.Identity()
)
self.shortcut_down_sample = (
nn.Conv2d(out_channels, out_channels, kernel_size=2, stride=2)
if False in up_resolutions
else nn.Identity()
)
def forward(self, x, time_embed):
out = x
for resnet_block in self.resnet_blocks:
out = resnet_block(out, time_embed)
x = self.shortcut_up_sample(x)
x = self.shortcut_projection(x)
x = self.shortcut_down_sample(x)
x = x + out
return x
class Kandinsky3AttentionPooling(nn.Module):
def __init__(self, num_channels, context_dim, head_dim=64):
super().__init__()
self.attention = Attention(
context_dim,
context_dim,
dim_head=head_dim,
out_dim=num_channels,
out_bias=False,
)
def forward(self, x, context, context_mask=None):
context_mask = context_mask.to(dtype=context.dtype)
context = self.attention(context.mean(dim=1, keepdim=True), context, context_mask)
return x + context.squeeze(1)
class Kandinsky3AttentionBlock(nn.Module):
def __init__(self, num_channels, time_embed_dim, context_dim=None, norm_groups=32, head_dim=64, expansion_ratio=4):
super().__init__()
self.in_norm = Kandinsky3ConditionalGroupNorm(norm_groups, num_channels, time_embed_dim)
self.attention = Attention(
num_channels,
context_dim or num_channels,
dim_head=head_dim,
out_dim=num_channels,
out_bias=False,
)
hidden_channels = expansion_ratio * num_channels
self.out_norm = Kandinsky3ConditionalGroupNorm(norm_groups, num_channels, time_embed_dim)
self.feed_forward = nn.Sequential(
nn.Conv2d(num_channels, hidden_channels, kernel_size=1, bias=False),
nn.SiLU(),
nn.Conv2d(hidden_channels, num_channels, kernel_size=1, bias=False),
)
def forward(self, x, time_embed, context=None, context_mask=None, image_mask=None):
height, width = x.shape[-2:]
out = self.in_norm(x, time_embed)
out = out.reshape(x.shape[0], -1, height * width).permute(0, 2, 1)
context = context if context is not None else out
if context_mask is not None:
context_mask = context_mask.to(dtype=context.dtype)
out = self.attention(out, context, context_mask)
out = out.permute(0, 2, 1).unsqueeze(-1).reshape(out.shape[0], -1, height, width)
x = x + out
out = self.out_norm(x, time_embed)
out = self.feed_forward(out)
x = x + out
return x
from dataclasses import dataclass
from typing import Dict, Optional, Tuple, Union
import torch
import torch.nn as nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import UNet2DConditionLoadersMixin
from ...utils import BaseOutput, logging
from ..attention_processor import CROSS_ATTENTION_PROCESSORS, AttentionProcessor, AttnProcessor
from ..embeddings import TimestepEmbedding, Timesteps
from ..modeling_utils import ModelMixin
from .unet_3d_blocks import UNetMidBlockSpatioTemporal, get_down_block, get_up_block
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
@dataclass
class UNetSpatioTemporalConditionOutput(BaseOutput):
"""
The output of [`UNetSpatioTemporalConditionModel`].
Args:
sample (`torch.FloatTensor` of shape `(batch_size, num_frames, num_channels, height, width)`):
The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
"""
sample: torch.FloatTensor = None
class UNetSpatioTemporalConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
r"""
A conditional Spatio-Temporal UNet model that takes a noisy video frames, conditional state, and a timestep and returns a sample
shaped output.
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
for all models (such as downloading or saving).
Parameters:
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
Height and width of input/output sample.
in_channels (`int`, *optional*, defaults to 8): Number of channels in the input sample.
out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlockSpatioTemporal", "CrossAttnDownBlockSpatioTemporal", "CrossAttnDownBlockSpatioTemporal", "DownBlockSpatioTemporal")`):
The tuple of downsample blocks to use.
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal")`):
The tuple of upsample blocks to use.
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
The tuple of output channels for each block.
addition_time_embed_dim: (`int`, defaults to 256):
Dimension to to encode the additional time ids.
projection_class_embeddings_input_dim (`int`, defaults to 768):
The dimension of the projection of encoded `added_time_ids`.
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
The dimension of the cross attention features.
transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1):
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
[`~models.unet_3d_blocks.CrossAttnDownBlockSpatioTemporal`], [`~models.unet_3d_blocks.CrossAttnUpBlockSpatioTemporal`],
[`~models.unet_3d_blocks.UNetMidBlockSpatioTemporal`].
num_attention_heads (`int`, `Tuple[int]`, defaults to `(5, 10, 10, 20)`):
The number of attention heads.
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
"""
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
sample_size: Optional[int] = None,
in_channels: int = 8,
out_channels: int = 4,
down_block_types: Tuple[str] = (
"CrossAttnDownBlockSpatioTemporal",
"CrossAttnDownBlockSpatioTemporal",
"CrossAttnDownBlockSpatioTemporal",
"DownBlockSpatioTemporal",
),
up_block_types: Tuple[str] = (
"UpBlockSpatioTemporal",
"CrossAttnUpBlockSpatioTemporal",
"CrossAttnUpBlockSpatioTemporal",
"CrossAttnUpBlockSpatioTemporal",
),
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
addition_time_embed_dim: int = 256,
projection_class_embeddings_input_dim: int = 768,
layers_per_block: Union[int, Tuple[int]] = 2,
cross_attention_dim: Union[int, Tuple[int]] = 1024,
transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1,
num_attention_heads: Union[int, Tuple[int]] = (5, 10, 20, 20),
num_frames: int = 25,
):
super().__init__()
self.sample_size = sample_size
# Check inputs
if len(down_block_types) != len(up_block_types):
raise ValueError(
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
)
if len(block_out_channels) != len(down_block_types):
raise ValueError(
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
)
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
raise ValueError(
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
)
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
raise ValueError(
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
)
if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
raise ValueError(
f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
)
# input
self.conv_in = nn.Conv2d(
in_channels,
block_out_channels[0],
kernel_size=3,
padding=1,
)
# time
time_embed_dim = block_out_channels[0] * 4
self.time_proj = Timesteps(block_out_channels[0], True, downscale_freq_shift=0)
timestep_input_dim = block_out_channels[0]
self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
self.add_time_proj = Timesteps(addition_time_embed_dim, True, downscale_freq_shift=0)
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
self.down_blocks = nn.ModuleList([])
self.up_blocks = nn.ModuleList([])
if isinstance(num_attention_heads, int):
num_attention_heads = (num_attention_heads,) * len(down_block_types)
if isinstance(cross_attention_dim, int):
cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
if isinstance(layers_per_block, int):
layers_per_block = [layers_per_block] * len(down_block_types)
if isinstance(transformer_layers_per_block, int):
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
blocks_time_embed_dim = time_embed_dim
# down
output_channel = block_out_channels[0]
for i, down_block_type in enumerate(down_block_types):
input_channel = output_channel
output_channel = block_out_channels[i]
is_final_block = i == len(block_out_channels) - 1
down_block = get_down_block(
down_block_type,
num_layers=layers_per_block[i],
transformer_layers_per_block=transformer_layers_per_block[i],
in_channels=input_channel,
out_channels=output_channel,
temb_channels=blocks_time_embed_dim,
add_downsample=not is_final_block,
resnet_eps=1e-5,
cross_attention_dim=cross_attention_dim[i],
num_attention_heads=num_attention_heads[i],
resnet_act_fn="silu",
)
self.down_blocks.append(down_block)
# mid
self.mid_block = UNetMidBlockSpatioTemporal(
block_out_channels[-1],
temb_channels=blocks_time_embed_dim,
transformer_layers_per_block=transformer_layers_per_block[-1],
cross_attention_dim=cross_attention_dim[-1],
num_attention_heads=num_attention_heads[-1],
)
# count how many layers upsample the images
self.num_upsamplers = 0
# up
reversed_block_out_channels = list(reversed(block_out_channels))
reversed_num_attention_heads = list(reversed(num_attention_heads))
reversed_layers_per_block = list(reversed(layers_per_block))
reversed_cross_attention_dim = list(reversed(cross_attention_dim))
reversed_transformer_layers_per_block = list(reversed(transformer_layers_per_block))
output_channel = reversed_block_out_channels[0]
for i, up_block_type in enumerate(up_block_types):
is_final_block = i == len(block_out_channels) - 1
prev_output_channel = output_channel
output_channel = reversed_block_out_channels[i]
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
# add upsample block for all BUT final layer
if not is_final_block:
add_upsample = True
self.num_upsamplers += 1
else:
add_upsample = False
up_block = get_up_block(
up_block_type,
num_layers=reversed_layers_per_block[i] + 1,
transformer_layers_per_block=reversed_transformer_layers_per_block[i],
in_channels=input_channel,
out_channels=output_channel,
prev_output_channel=prev_output_channel,
temb_channels=blocks_time_embed_dim,
add_upsample=add_upsample,
resnet_eps=1e-5,
resolution_idx=i,
cross_attention_dim=reversed_cross_attention_dim[i],
num_attention_heads=reversed_num_attention_heads[i],
resnet_act_fn="silu",
)
self.up_blocks.append(up_block)
prev_output_channel = output_channel
# out
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=32, eps=1e-5)
self.conv_act = nn.SiLU()
self.conv_out = nn.Conv2d(
block_out_channels[0],
out_channels,
kernel_size=3,
padding=1,
)
@property
def attn_processors(self) -> Dict[str, AttentionProcessor]:
r"""
Returns:
`dict` of attention processors: A dictionary containing all attention processors used in the model with
indexed by its weight name.
"""
# set recursively
processors = {}
def fn_recursive_add_processors(
name: str,
module: torch.nn.Module,
processors: Dict[str, AttentionProcessor],
):
if hasattr(module, "get_processor"):
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
for sub_name, child in module.named_children():
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
return processors
for name, module in self.named_children():
fn_recursive_add_processors(name, module, processors)
return processors
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
r"""
Sets the attention processor to use to compute attention.
Parameters:
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
The instantiated processor class or a dictionary of processor classes that will be set as the processor
for **all** `Attention` layers.
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
processor. This is strongly recommended when setting trainable attention processors.
"""
count = len(self.attn_processors.keys())
if isinstance(processor, dict) and len(processor) != count:
raise ValueError(
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
)
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
if hasattr(module, "set_processor"):
if not isinstance(processor, dict):
module.set_processor(processor)
else:
module.set_processor(processor.pop(f"{name}.processor"))
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
for name, module in self.named_children():
fn_recursive_attn_processor(name, module, processor)
def set_default_attn_processor(self):
"""
Disables custom attention processors and sets the default attention implementation.
"""
if all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
processor = AttnProcessor()
else:
raise ValueError(
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
)
self.set_attn_processor(processor)
def _set_gradient_checkpointing(self, module, value=False):
if hasattr(module, "gradient_checkpointing"):
module.gradient_checkpointing = value
# Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.enable_forward_chunking
def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None:
"""
Sets the attention processor to use [feed forward
chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers).
Parameters:
chunk_size (`int`, *optional*):
The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually
over each tensor of dim=`dim`.
dim (`int`, *optional*, defaults to `0`):
The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch)
or dim=1 (sequence length).
"""
if dim not in [0, 1]:
raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}")
# By default chunk size is 1
chunk_size = chunk_size or 1
def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int):
if hasattr(module, "set_chunk_feed_forward"):
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)
for child in module.children():
fn_recursive_feed_forward(child, chunk_size, dim)
for module in self.children():
fn_recursive_feed_forward(module, chunk_size, dim)
def forward(
self,
sample: torch.FloatTensor,
timestep: Union[torch.Tensor, float, int],
encoder_hidden_states: torch.Tensor,
added_time_ids: torch.Tensor,
return_dict: bool = True,
) -> Union[UNetSpatioTemporalConditionOutput, Tuple]:
r"""
The [`UNetSpatioTemporalConditionModel`] forward method.
Args:
sample (`torch.FloatTensor`):
The noisy input tensor with the following shape `(batch, num_frames, channel, height, width)`.
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
encoder_hidden_states (`torch.FloatTensor`):
The encoder hidden states with shape `(batch, sequence_length, cross_attention_dim)`.
added_time_ids: (`torch.FloatTensor`):
The additional time ids with shape `(batch, num_additional_ids)`. These are encoded with sinusoidal
embeddings and added to the time embeddings.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] instead of a plain
tuple.
Returns:
[`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] or `tuple`:
If `return_dict` is True, an [`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] is returned, otherwise
a `tuple` is returned where the first element is the sample tensor.
"""
# 1. time
timesteps = timestep
if not torch.is_tensor(timesteps):
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
# This would be a good case for the `match` statement (Python 3.10+)
is_mps = sample.device.type == "mps"
if isinstance(timestep, float):
dtype = torch.float32 if is_mps else torch.float64
else:
dtype = torch.int32 if is_mps else torch.int64
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
elif len(timesteps.shape) == 0:
timesteps = timesteps[None].to(sample.device)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
batch_size, num_frames = sample.shape[:2]
timesteps = timesteps.expand(batch_size)
t_emb = self.time_proj(timesteps)
# `Timesteps` does not contain any weights and will always return f32 tensors
# but time_embedding might actually be running in fp16. so we need to cast here.
# there might be better ways to encapsulate this.
t_emb = t_emb.to(dtype=sample.dtype)
emb = self.time_embedding(t_emb)
time_embeds = self.add_time_proj(added_time_ids.flatten())
time_embeds = time_embeds.reshape((batch_size, -1))
time_embeds = time_embeds.to(emb.dtype)
aug_emb = self.add_embedding(time_embeds)
emb = emb + aug_emb
# Flatten the batch and frames dimensions
# sample: [batch, frames, channels, height, width] -> [batch * frames, channels, height, width]
sample = sample.flatten(0, 1)
# Repeat the embeddings num_video_frames times
# emb: [batch, channels] -> [batch * frames, channels]
emb = emb.repeat_interleave(num_frames, dim=0)
# encoder_hidden_states: [batch, 1, channels] -> [batch * frames, 1, channels]
encoder_hidden_states = encoder_hidden_states.repeat_interleave(num_frames, dim=0)
# 2. pre-process
sample = self.conv_in(sample)
image_only_indicator = torch.zeros(batch_size, num_frames, dtype=sample.dtype, device=sample.device)
down_block_res_samples = (sample,)
for downsample_block in self.down_blocks:
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
sample, res_samples = downsample_block(
hidden_states=sample,
temb=emb,
encoder_hidden_states=encoder_hidden_states,
image_only_indicator=image_only_indicator,
)
else:
sample, res_samples = downsample_block(
hidden_states=sample,
temb=emb,
image_only_indicator=image_only_indicator,
)
down_block_res_samples += res_samples
# 4. mid
sample = self.mid_block(
hidden_states=sample,
temb=emb,
encoder_hidden_states=encoder_hidden_states,
image_only_indicator=image_only_indicator,
)
# 5. up
for i, upsample_block in enumerate(self.up_blocks):
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
sample = upsample_block(
hidden_states=sample,
temb=emb,
res_hidden_states_tuple=res_samples,
encoder_hidden_states=encoder_hidden_states,
image_only_indicator=image_only_indicator,
)
else:
sample = upsample_block(
hidden_states=sample,
temb=emb,
res_hidden_states_tuple=res_samples,
image_only_indicator=image_only_indicator,
)
# 6. post-process
sample = self.conv_norm_out(sample)
sample = self.conv_act(sample)
sample = self.conv_out(sample)
# 7. Reshape back to original shape
sample = sample.reshape(batch_size, num_frames, *sample.shape[1:])
if not return_dict:
return (sample,)
return UNetSpatioTemporalConditionOutput(sample=sample)
import flax.linen as nn
import jax.numpy as jnp
from ..attention_flax import FlaxTransformer2DModel
from ..resnet_flax import FlaxDownsample2D, FlaxResnetBlock2D, FlaxUpsample2D
class FlaxCrossAttnDownBlock2D(nn.Module):
r"""
Cross Attention 2D Downsizing block - original architecture from Unet transformers:
https://arxiv.org/abs/2103.06104
Parameters:
in_channels (:obj:`int`):
Input channels
out_channels (:obj:`int`):
Output channels
dropout (:obj:`float`, *optional*, defaults to 0.0):
Dropout rate
num_layers (:obj:`int`, *optional*, defaults to 1):
Number of attention blocks layers
num_attention_heads (:obj:`int`, *optional*, defaults to 1):
Number of attention heads of each spatial transformer block
add_downsample (:obj:`bool`, *optional*, defaults to `True`):
Whether to add downsampling layer before each final output
use_memory_efficient_attention (`bool`, *optional*, defaults to `False`):
enable memory efficient attention https://arxiv.org/abs/2112.05682
split_head_dim (`bool`, *optional*, defaults to `False`):
Whether to split the head dimension into a new axis for the self-attention computation. In most cases,
enabling this flag should speed up the computation for Stable Diffusion 2.x and Stable Diffusion XL.
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
Parameters `dtype`
"""
in_channels: int
out_channels: int
dropout: float = 0.0
num_layers: int = 1
num_attention_heads: int = 1
add_downsample: bool = True
use_linear_projection: bool = False
only_cross_attention: bool = False
use_memory_efficient_attention: bool = False
split_head_dim: bool = False
dtype: jnp.dtype = jnp.float32
transformer_layers_per_block: int = 1
def setup(self):
resnets = []
attentions = []
for i in range(self.num_layers):
in_channels = self.in_channels if i == 0 else self.out_channels
res_block = FlaxResnetBlock2D(
in_channels=in_channels,
out_channels=self.out_channels,
dropout_prob=self.dropout,
dtype=self.dtype,
)
resnets.append(res_block)
attn_block = FlaxTransformer2DModel(
in_channels=self.out_channels,
n_heads=self.num_attention_heads,
d_head=self.out_channels // self.num_attention_heads,
depth=self.transformer_layers_per_block,
use_linear_projection=self.use_linear_projection,
only_cross_attention=self.only_cross_attention,
use_memory_efficient_attention=self.use_memory_efficient_attention,
split_head_dim=self.split_head_dim,
dtype=self.dtype,
)
attentions.append(attn_block)
self.resnets = resnets
self.attentions = attentions
if self.add_downsample:
self.downsamplers_0 = FlaxDownsample2D(self.out_channels, dtype=self.dtype)
def __call__(self, hidden_states, temb, encoder_hidden_states, deterministic=True):
output_states = ()
for resnet, attn in zip(self.resnets, self.attentions):
hidden_states = resnet(hidden_states, temb, deterministic=deterministic)
hidden_states = attn(hidden_states, encoder_hidden_states, deterministic=deterministic)
output_states += (hidden_states,)
if self.add_downsample:
hidden_states = self.downsamplers_0(hidden_states)
output_states += (hidden_states,)
return hidden_states, output_states
class FlaxDownBlock2D(nn.Module):
r"""
Flax 2D downsizing block
Parameters:
in_channels (:obj:`int`):
Input channels
out_channels (:obj:`int`):
Output channels
dropout (:obj:`float`, *optional*, defaults to 0.0):
Dropout rate
num_layers (:obj:`int`, *optional*, defaults to 1):
Number of attention blocks layers
add_downsample (:obj:`bool`, *optional*, defaults to `True`):
Whether to add downsampling layer before each final output
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
Parameters `dtype`
"""
in_channels: int
out_channels: int
dropout: float = 0.0
num_layers: int = 1
add_downsample: bool = True
dtype: jnp.dtype = jnp.float32
def setup(self):
resnets = []
for i in range(self.num_layers):
in_channels = self.in_channels if i == 0 else self.out_channels
res_block = FlaxResnetBlock2D(
in_channels=in_channels,
out_channels=self.out_channels,
dropout_prob=self.dropout,
dtype=self.dtype,
)
resnets.append(res_block)
self.resnets = resnets
if self.add_downsample:
self.downsamplers_0 = FlaxDownsample2D(self.out_channels, dtype=self.dtype)
def __call__(self, hidden_states, temb, deterministic=True):
output_states = ()
for resnet in self.resnets:
hidden_states = resnet(hidden_states, temb, deterministic=deterministic)
output_states += (hidden_states,)
if self.add_downsample:
hidden_states = self.downsamplers_0(hidden_states)
output_states += (hidden_states,)
return hidden_states, output_states
class FlaxCrossAttnUpBlock2D(nn.Module):
r"""
Cross Attention 2D Upsampling block - original architecture from Unet transformers:
https://arxiv.org/abs/2103.06104
Parameters:
in_channels (:obj:`int`):
Input channels
out_channels (:obj:`int`):
Output channels
dropout (:obj:`float`, *optional*, defaults to 0.0):
Dropout rate
num_layers (:obj:`int`, *optional*, defaults to 1):
Number of attention blocks layers
num_attention_heads (:obj:`int`, *optional*, defaults to 1):
Number of attention heads of each spatial transformer block
add_upsample (:obj:`bool`, *optional*, defaults to `True`):
Whether to add upsampling layer before each final output
use_memory_efficient_attention (`bool`, *optional*, defaults to `False`):
enable memory efficient attention https://arxiv.org/abs/2112.05682
split_head_dim (`bool`, *optional*, defaults to `False`):
Whether to split the head dimension into a new axis for the self-attention computation. In most cases,
enabling this flag should speed up the computation for Stable Diffusion 2.x and Stable Diffusion XL.
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
Parameters `dtype`
"""
in_channels: int
out_channels: int
prev_output_channel: int
dropout: float = 0.0
num_layers: int = 1
num_attention_heads: int = 1
add_upsample: bool = True
use_linear_projection: bool = False
only_cross_attention: bool = False
use_memory_efficient_attention: bool = False
split_head_dim: bool = False
dtype: jnp.dtype = jnp.float32
transformer_layers_per_block: int = 1
def setup(self):
resnets = []
attentions = []
for i in range(self.num_layers):
res_skip_channels = self.in_channels if (i == self.num_layers - 1) else self.out_channels
resnet_in_channels = self.prev_output_channel if i == 0 else self.out_channels
res_block = FlaxResnetBlock2D(
in_channels=resnet_in_channels + res_skip_channels,
out_channels=self.out_channels,
dropout_prob=self.dropout,
dtype=self.dtype,
)
resnets.append(res_block)
attn_block = FlaxTransformer2DModel(
in_channels=self.out_channels,
n_heads=self.num_attention_heads,
d_head=self.out_channels // self.num_attention_heads,
depth=self.transformer_layers_per_block,
use_linear_projection=self.use_linear_projection,
only_cross_attention=self.only_cross_attention,
use_memory_efficient_attention=self.use_memory_efficient_attention,
split_head_dim=self.split_head_dim,
dtype=self.dtype,
)
attentions.append(attn_block)
self.resnets = resnets
self.attentions = attentions
if self.add_upsample:
self.upsamplers_0 = FlaxUpsample2D(self.out_channels, dtype=self.dtype)
def __call__(self, hidden_states, res_hidden_states_tuple, temb, encoder_hidden_states, deterministic=True):
for resnet, attn in zip(self.resnets, self.attentions):
# pop res hidden states
res_hidden_states = res_hidden_states_tuple[-1]
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
hidden_states = jnp.concatenate((hidden_states, res_hidden_states), axis=-1)
hidden_states = resnet(hidden_states, temb, deterministic=deterministic)
hidden_states = attn(hidden_states, encoder_hidden_states, deterministic=deterministic)
if self.add_upsample:
hidden_states = self.upsamplers_0(hidden_states)
return hidden_states
class FlaxUpBlock2D(nn.Module):
r"""
Flax 2D upsampling block
Parameters:
in_channels (:obj:`int`):
Input channels
out_channels (:obj:`int`):
Output channels
prev_output_channel (:obj:`int`):
Output channels from the previous block
dropout (:obj:`float`, *optional*, defaults to 0.0):
Dropout rate
num_layers (:obj:`int`, *optional*, defaults to 1):
Number of attention blocks layers
add_downsample (:obj:`bool`, *optional*, defaults to `True`):
Whether to add downsampling layer before each final output
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
Parameters `dtype`
"""
in_channels: int
out_channels: int
prev_output_channel: int
dropout: float = 0.0
num_layers: int = 1
add_upsample: bool = True
dtype: jnp.dtype = jnp.float32
def setup(self):
resnets = []
for i in range(self.num_layers):
res_skip_channels = self.in_channels if (i == self.num_layers - 1) else self.out_channels
resnet_in_channels = self.prev_output_channel if i == 0 else self.out_channels
res_block = FlaxResnetBlock2D(
in_channels=resnet_in_channels + res_skip_channels,
out_channels=self.out_channels,
dropout_prob=self.dropout,
dtype=self.dtype,
)
resnets.append(res_block)
self.resnets = resnets
if self.add_upsample:
self.upsamplers_0 = FlaxUpsample2D(self.out_channels, dtype=self.dtype)
def __call__(self, hidden_states, res_hidden_states_tuple, temb, deterministic=True):
for resnet in self.resnets:
# pop res hidden states
res_hidden_states = res_hidden_states_tuple[-1]
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
hidden_states = jnp.concatenate((hidden_states, res_hidden_states), axis=-1)
hidden_states = resnet(hidden_states, temb, deterministic=deterministic)
if self.add_upsample:
hidden_states = self.upsamplers_0(hidden_states)
return hidden_states
class FlaxUNetMidBlock2DCrossAttn(nn.Module):
r"""
Cross Attention 2D Mid-level block - original architecture from Unet transformers: https://arxiv.org/abs/2103.06104
Parameters:
in_channels (:obj:`int`):
Input channels
dropout (:obj:`float`, *optional*, defaults to 0.0):
Dropout rate
num_layers (:obj:`int`, *optional*, defaults to 1):
Number of attention blocks layers
num_attention_heads (:obj:`int`, *optional*, defaults to 1):
Number of attention heads of each spatial transformer block
use_memory_efficient_attention (`bool`, *optional*, defaults to `False`):
enable memory efficient attention https://arxiv.org/abs/2112.05682
split_head_dim (`bool`, *optional*, defaults to `False`):
Whether to split the head dimension into a new axis for the self-attention computation. In most cases,
enabling this flag should speed up the computation for Stable Diffusion 2.x and Stable Diffusion XL.
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
Parameters `dtype`
"""
in_channels: int
dropout: float = 0.0
num_layers: int = 1
num_attention_heads: int = 1
use_linear_projection: bool = False
use_memory_efficient_attention: bool = False
split_head_dim: bool = False
dtype: jnp.dtype = jnp.float32
transformer_layers_per_block: int = 1
def setup(self):
# there is always at least one resnet
resnets = [
FlaxResnetBlock2D(
in_channels=self.in_channels,
out_channels=self.in_channels,
dropout_prob=self.dropout,
dtype=self.dtype,
)
]
attentions = []
for _ in range(self.num_layers):
attn_block = FlaxTransformer2DModel(
in_channels=self.in_channels,
n_heads=self.num_attention_heads,
d_head=self.in_channels // self.num_attention_heads,
depth=self.transformer_layers_per_block,
use_linear_projection=self.use_linear_projection,
use_memory_efficient_attention=self.use_memory_efficient_attention,
split_head_dim=self.split_head_dim,
dtype=self.dtype,
)
attentions.append(attn_block)
res_block = FlaxResnetBlock2D(
in_channels=self.in_channels,
out_channels=self.in_channels,
dropout_prob=self.dropout,
dtype=self.dtype,
)
resnets.append(res_block)
self.resnets = resnets
self.attentions = attentions
def __call__(self, hidden_states, temb, encoder_hidden_states, deterministic=True):
hidden_states = self.resnets[0](hidden_states, temb)
for attn, resnet in zip(self.attentions, self.resnets[1:]):
hidden_states = attn(hidden_states, encoder_hidden_states, deterministic=deterministic)
hidden_states = resnet(hidden_states, temb, deterministic=deterministic)
return hidden_states
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...utils import BaseOutput
from ..embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps
from ..modeling_utils import ModelMixin
from .unet_2d_blocks import UNetMidBlock2D, get_down_block, get_up_block
@dataclass
class UNet2DOutput(BaseOutput):
"""
The output of [`UNet2DModel`].
Args:
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
The hidden states output from the last layer of the model.
"""
sample: torch.FloatTensor
class UNet2DModel(ModelMixin, ConfigMixin):
r"""
A 2D UNet model that takes a noisy sample and a timestep and returns a sample shaped output.
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
for all models (such as downloading or saving).
Parameters:
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
Height and width of input/output sample. Dimensions must be a multiple of `2 ** (len(block_out_channels) -
1)`.
in_channels (`int`, *optional*, defaults to 3): Number of channels in the input sample.
out_channels (`int`, *optional*, defaults to 3): Number of channels in the output.
center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
time_embedding_type (`str`, *optional*, defaults to `"positional"`): Type of time embedding to use.
freq_shift (`int`, *optional*, defaults to 0): Frequency shift for Fourier time embedding.
flip_sin_to_cos (`bool`, *optional*, defaults to `True`):
Whether to flip sin to cos for Fourier time embedding.
down_block_types (`Tuple[str]`, *optional*, defaults to `("DownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D")`):
Tuple of downsample block types.
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2D"`):
Block type for middle of UNet, it can be either `UNetMidBlock2D` or `UnCLIPUNetMidBlock2D`.
up_block_types (`Tuple[str]`, *optional*, defaults to `("AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "UpBlock2D")`):
Tuple of upsample block types.
block_out_channels (`Tuple[int]`, *optional*, defaults to `(224, 448, 672, 896)`):
Tuple of block output channels.
layers_per_block (`int`, *optional*, defaults to `2`): The number of layers per block.
mid_block_scale_factor (`float`, *optional*, defaults to `1`): The scale factor for the mid block.
downsample_padding (`int`, *optional*, defaults to `1`): The padding for the downsample convolution.
downsample_type (`str`, *optional*, defaults to `conv`):
The downsample type for downsampling layers. Choose between "conv" and "resnet"
upsample_type (`str`, *optional*, defaults to `conv`):
The upsample type for upsampling layers. Choose between "conv" and "resnet"
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
attention_head_dim (`int`, *optional*, defaults to `8`): The attention head dimension.
norm_num_groups (`int`, *optional*, defaults to `32`): The number of groups for normalization.
attn_norm_num_groups (`int`, *optional*, defaults to `None`):
If set to an integer, a group norm layer will be created in the mid block's [`Attention`] layer with the
given number of groups. If left as `None`, the group norm layer will only be created if
`resnet_time_scale_shift` is set to `default`, and if created will have `norm_num_groups` groups.
norm_eps (`float`, *optional*, defaults to `1e-5`): The epsilon for normalization.
resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
class_embed_type (`str`, *optional*, defaults to `None`):
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
`"timestep"`, or `"identity"`.
num_class_embeds (`int`, *optional*, defaults to `None`):
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim` when performing class
conditioning with `class_embed_type` equal to `None`.
"""
@register_to_config
def __init__(
self,
sample_size: Optional[Union[int, Tuple[int, int]]] = None,
in_channels: int = 3,
out_channels: int = 3,
center_input_sample: bool = False,
time_embedding_type: str = "positional",
freq_shift: int = 0,
flip_sin_to_cos: bool = True,
down_block_types: Tuple[str, ...] = ("DownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D"),
up_block_types: Tuple[str, ...] = ("AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "UpBlock2D"),
block_out_channels: Tuple[int, ...] = (224, 448, 672, 896),
layers_per_block: int = 2,
mid_block_scale_factor: float = 1,
downsample_padding: int = 1,
downsample_type: str = "conv",
upsample_type: str = "conv",
dropout: float = 0.0,
act_fn: str = "silu",
attention_head_dim: Optional[int] = 8,
norm_num_groups: int = 32,
attn_norm_num_groups: Optional[int] = None,
norm_eps: float = 1e-5,
resnet_time_scale_shift: str = "default",
add_attention: bool = True,
class_embed_type: Optional[str] = None,
num_class_embeds: Optional[int] = None,
num_train_timesteps: Optional[int] = None,
):
super().__init__()
self.sample_size = sample_size
time_embed_dim = block_out_channels[0] * 4
# Check inputs
if len(down_block_types) != len(up_block_types):
raise ValueError(
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
)
if len(block_out_channels) != len(down_block_types):
raise ValueError(
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
)
# input
self.conv_in = nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1))
# time
if time_embedding_type == "fourier":
self.time_proj = GaussianFourierProjection(embedding_size=block_out_channels[0], scale=16)
timestep_input_dim = 2 * block_out_channels[0]
elif time_embedding_type == "positional":
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
timestep_input_dim = block_out_channels[0]
elif time_embedding_type == "learned":
self.time_proj = nn.Embedding(num_train_timesteps, block_out_channels[0])
timestep_input_dim = block_out_channels[0]
self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
# class embedding
if class_embed_type is None and num_class_embeds is not None:
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
elif class_embed_type == "timestep":
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
elif class_embed_type == "identity":
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
else:
self.class_embedding = None
self.down_blocks = nn.ModuleList([])
self.mid_block = None
self.up_blocks = nn.ModuleList([])
# down
output_channel = block_out_channels[0]
for i, down_block_type in enumerate(down_block_types):
input_channel = output_channel
output_channel = block_out_channels[i]
is_final_block = i == len(block_out_channels) - 1
down_block = get_down_block(
down_block_type,
num_layers=layers_per_block,
in_channels=input_channel,
out_channels=output_channel,
temb_channels=time_embed_dim,
add_downsample=not is_final_block,
resnet_eps=norm_eps,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
attention_head_dim=attention_head_dim if attention_head_dim is not None else output_channel,
downsample_padding=downsample_padding,
resnet_time_scale_shift=resnet_time_scale_shift,
downsample_type=downsample_type,
dropout=dropout,
)
self.down_blocks.append(down_block)
# mid
self.mid_block = UNetMidBlock2D(
in_channels=block_out_channels[-1],
temb_channels=time_embed_dim,
dropout=dropout,
resnet_eps=norm_eps,
resnet_act_fn=act_fn,
output_scale_factor=mid_block_scale_factor,
resnet_time_scale_shift=resnet_time_scale_shift,
attention_head_dim=attention_head_dim if attention_head_dim is not None else block_out_channels[-1],
resnet_groups=norm_num_groups,
attn_groups=attn_norm_num_groups,
add_attention=add_attention,
)
# up
reversed_block_out_channels = list(reversed(block_out_channels))
output_channel = reversed_block_out_channels[0]
for i, up_block_type in enumerate(up_block_types):
prev_output_channel = output_channel
output_channel = reversed_block_out_channels[i]
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
is_final_block = i == len(block_out_channels) - 1
up_block = get_up_block(
up_block_type,
num_layers=layers_per_block + 1,
in_channels=input_channel,
out_channels=output_channel,
prev_output_channel=prev_output_channel,
temb_channels=time_embed_dim,
add_upsample=not is_final_block,
resnet_eps=norm_eps,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
attention_head_dim=attention_head_dim if attention_head_dim is not None else output_channel,
resnet_time_scale_shift=resnet_time_scale_shift,
upsample_type=upsample_type,
dropout=dropout,
)
self.up_blocks.append(up_block)
prev_output_channel = output_channel
# out
num_groups_out = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4, 32)
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=num_groups_out, eps=norm_eps)
self.conv_act = nn.SiLU()
self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, kernel_size=3, padding=1)
def forward(
self,
sample: torch.FloatTensor,
timestep: Union[torch.Tensor, float, int],
class_labels: Optional[torch.Tensor] = None,
return_dict: bool = True,
) -> Union[UNet2DOutput, Tuple]:
r"""
The [`UNet2DModel`] forward method.
Args:
sample (`torch.FloatTensor`):
The noisy input tensor with the following shape `(batch, channel, height, width)`.
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
class_labels (`torch.FloatTensor`, *optional*, defaults to `None`):
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.unet_2d.UNet2DOutput`] instead of a plain tuple.
Returns:
[`~models.unet_2d.UNet2DOutput`] or `tuple`:
If `return_dict` is True, an [`~models.unet_2d.UNet2DOutput`] is returned, otherwise a `tuple` is
returned where the first element is the sample tensor.
"""
# 0. center input if necessary
if self.config.center_input_sample:
sample = 2 * sample - 1.0
# 1. time
timesteps = timestep
if not torch.is_tensor(timesteps):
timesteps = torch.tensor([timesteps], dtype=torch.long, device=sample.device)
elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0:
timesteps = timesteps[None].to(sample.device)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timesteps = timesteps * torch.ones(sample.shape[0], dtype=timesteps.dtype, device=timesteps.device)
t_emb = self.time_proj(timesteps)
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might actually be running in fp16. so we need to cast here.
# there might be better ways to encapsulate this.
t_emb = t_emb.to(dtype=self.dtype)
emb = self.time_embedding(t_emb)
if self.class_embedding is not None:
if class_labels is None:
raise ValueError("class_labels should be provided when doing class conditioning")
if self.config.class_embed_type == "timestep":
class_labels = self.time_proj(class_labels)
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
emb = emb + class_emb
elif self.class_embedding is None and class_labels is not None:
raise ValueError("class_embedding needs to be initialized in order to use class conditioning")
# 2. pre-process
skip_sample = sample
sample = self.conv_in(sample)
# 3. down
down_block_res_samples = (sample,)
for downsample_block in self.down_blocks:
if hasattr(downsample_block, "skip_conv"):
sample, res_samples, skip_sample = downsample_block(
hidden_states=sample, temb=emb, skip_sample=skip_sample
)
else:
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
down_block_res_samples += res_samples
# 4. mid
sample = self.mid_block(sample, emb)
# 5. up
skip_sample = None
for upsample_block in self.up_blocks:
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
if hasattr(upsample_block, "skip_conv"):
sample, skip_sample = upsample_block(sample, res_samples, emb, skip_sample)
else:
sample = upsample_block(sample, res_samples, emb)
# 6. post-process
sample = self.conv_norm_out(sample)
sample = self.conv_act(sample)
sample = self.conv_out(sample)
if skip_sample is not None:
sample += skip_sample
if self.config.time_embedding_type == "fourier":
timesteps = timesteps.reshape((sample.shape[0], *([1] * len(sample.shape[1:]))))
sample = sample / timesteps
if not return_dict:
return (sample,)
return UNet2DOutput(sample=sample)
from typing import Any, Dict, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.utils.checkpoint
from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import UNet2DConditionLoadersMixin
from ...utils import logging
from ..attention_processor import (
ADDED_KV_ATTENTION_PROCESSORS,
CROSS_ATTENTION_PROCESSORS,
Attention,
AttentionProcessor,
AttnAddedKVProcessor,
AttnProcessor,
)
from ..embeddings import TimestepEmbedding, Timesteps
from ..modeling_utils import ModelMixin
from ..transformers.transformer_temporal import TransformerTemporalModel
from .unet_2d_blocks import UNetMidBlock2DCrossAttn
from .unet_2d_condition import UNet2DConditionModel
from .unet_3d_blocks import (
CrossAttnDownBlockMotion,
CrossAttnUpBlockMotion,
DownBlockMotion,
UNetMidBlockCrossAttnMotion,
UpBlockMotion,
get_down_block,
get_up_block,
)
from .unet_3d_condition import UNet3DConditionOutput
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class MotionModules(nn.Module):
def __init__(
self,
in_channels: int,
layers_per_block: int = 2,
num_attention_heads: int = 8,
attention_bias: bool = False,
cross_attention_dim: Optional[int] = None,
activation_fn: str = "geglu",
norm_num_groups: int = 32,
max_seq_length: int = 32,
):
super().__init__()
self.motion_modules = nn.ModuleList([])
for i in range(layers_per_block):
self.motion_modules.append(
TransformerTemporalModel(
in_channels=in_channels,
norm_num_groups=norm_num_groups,
cross_attention_dim=cross_attention_dim,
activation_fn=activation_fn,
attention_bias=attention_bias,
num_attention_heads=num_attention_heads,
attention_head_dim=in_channels // num_attention_heads,
positional_embeddings="sinusoidal",
num_positional_embeddings=max_seq_length,
)
)
class MotionAdapter(ModelMixin, ConfigMixin):
@register_to_config
def __init__(
self,
block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280),
motion_layers_per_block: int = 2,
motion_mid_block_layers_per_block: int = 1,
motion_num_attention_heads: int = 8,
motion_norm_num_groups: int = 32,
motion_max_seq_length: int = 32,
use_motion_mid_block: bool = True,
conv_in_channels: Optional[int] = None,
):
"""Container to store AnimateDiff Motion Modules
Args:
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
The tuple of output channels for each UNet block.
motion_layers_per_block (`int`, *optional*, defaults to 2):
The number of motion layers per UNet block.
motion_mid_block_layers_per_block (`int`, *optional*, defaults to 1):
The number of motion layers in the middle UNet block.
motion_num_attention_heads (`int`, *optional*, defaults to 8):
The number of heads to use in each attention layer of the motion module.
motion_norm_num_groups (`int`, *optional*, defaults to 32):
The number of groups to use in each group normalization layer of the motion module.
motion_max_seq_length (`int`, *optional*, defaults to 32):
The maximum sequence length to use in the motion module.
use_motion_mid_block (`bool`, *optional*, defaults to True):
Whether to use a motion module in the middle of the UNet.
"""
super().__init__()
down_blocks = []
up_blocks = []
if conv_in_channels:
# input
self.conv_in = nn.Conv2d(conv_in_channels, block_out_channels[0], kernel_size=3, padding=1)
else:
self.conv_in = None
for i, channel in enumerate(block_out_channels):
output_channel = block_out_channels[i]
down_blocks.append(
MotionModules(
in_channels=output_channel,
norm_num_groups=motion_norm_num_groups,
cross_attention_dim=None,
activation_fn="geglu",
attention_bias=False,
num_attention_heads=motion_num_attention_heads,
max_seq_length=motion_max_seq_length,
layers_per_block=motion_layers_per_block,
)
)
if use_motion_mid_block:
self.mid_block = MotionModules(
in_channels=block_out_channels[-1],
norm_num_groups=motion_norm_num_groups,
cross_attention_dim=None,
activation_fn="geglu",
attention_bias=False,
num_attention_heads=motion_num_attention_heads,
layers_per_block=motion_mid_block_layers_per_block,
max_seq_length=motion_max_seq_length,
)
else:
self.mid_block = None
reversed_block_out_channels = list(reversed(block_out_channels))
output_channel = reversed_block_out_channels[0]
for i, channel in enumerate(reversed_block_out_channels):
output_channel = reversed_block_out_channels[i]
up_blocks.append(
MotionModules(
in_channels=output_channel,
norm_num_groups=motion_norm_num_groups,
cross_attention_dim=None,
activation_fn="geglu",
attention_bias=False,
num_attention_heads=motion_num_attention_heads,
max_seq_length=motion_max_seq_length,
layers_per_block=motion_layers_per_block + 1,
)
)
self.down_blocks = nn.ModuleList(down_blocks)
self.up_blocks = nn.ModuleList(up_blocks)
def forward(self, sample):
pass
class UNetMotionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
r"""
A modified conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a
sample shaped output.
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
for all models (such as downloading or saving).
"""
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
sample_size: Optional[int] = None,
in_channels: int = 4,
out_channels: int = 4,
down_block_types: Tuple[str, ...] = (
"CrossAttnDownBlockMotion",
"CrossAttnDownBlockMotion",
"CrossAttnDownBlockMotion",
"DownBlockMotion",
),
up_block_types: Tuple[str, ...] = (
"UpBlockMotion",
"CrossAttnUpBlockMotion",
"CrossAttnUpBlockMotion",
"CrossAttnUpBlockMotion",
),
block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280),
layers_per_block: int = 2,
downsample_padding: int = 1,
mid_block_scale_factor: float = 1,
act_fn: str = "silu",
norm_num_groups: int = 32,
norm_eps: float = 1e-5,
cross_attention_dim: int = 1280,
use_linear_projection: bool = False,
num_attention_heads: Union[int, Tuple[int, ...]] = 8,
motion_max_seq_length: int = 32,
motion_num_attention_heads: int = 8,
use_motion_mid_block: int = True,
encoder_hid_dim: Optional[int] = None,
encoder_hid_dim_type: Optional[str] = None,
time_cond_proj_dim: Optional[int] = None,
):
super().__init__()
self.sample_size = sample_size
# Check inputs
if len(down_block_types) != len(up_block_types):
raise ValueError(
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
)
if len(block_out_channels) != len(down_block_types):
raise ValueError(
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
)
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
raise ValueError(
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
)
# input
conv_in_kernel = 3
conv_out_kernel = 3
conv_in_padding = (conv_in_kernel - 1) // 2
self.conv_in = nn.Conv2d(
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
)
# time
time_embed_dim = block_out_channels[0] * 4
self.time_proj = Timesteps(block_out_channels[0], True, 0)
timestep_input_dim = block_out_channels[0]
self.time_embedding = TimestepEmbedding(
timestep_input_dim, time_embed_dim, act_fn=act_fn, cond_proj_dim=time_cond_proj_dim
)
if encoder_hid_dim_type is None:
self.encoder_hid_proj = None
# class embedding
self.down_blocks = nn.ModuleList([])
self.up_blocks = nn.ModuleList([])
if isinstance(num_attention_heads, int):
num_attention_heads = (num_attention_heads,) * len(down_block_types)
# down
output_channel = block_out_channels[0]
for i, down_block_type in enumerate(down_block_types):
input_channel = output_channel
output_channel = block_out_channels[i]
is_final_block = i == len(block_out_channels) - 1
down_block = get_down_block(
down_block_type,
num_layers=layers_per_block,
in_channels=input_channel,
out_channels=output_channel,
temb_channels=time_embed_dim,
add_downsample=not is_final_block,
resnet_eps=norm_eps,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
cross_attention_dim=cross_attention_dim,
num_attention_heads=num_attention_heads[i],
downsample_padding=downsample_padding,
use_linear_projection=use_linear_projection,
dual_cross_attention=False,
temporal_num_attention_heads=motion_num_attention_heads,
temporal_max_seq_length=motion_max_seq_length,
)
self.down_blocks.append(down_block)
# mid
if use_motion_mid_block:
self.mid_block = UNetMidBlockCrossAttnMotion(
in_channels=block_out_channels[-1],
temb_channels=time_embed_dim,
resnet_eps=norm_eps,
resnet_act_fn=act_fn,
output_scale_factor=mid_block_scale_factor,
cross_attention_dim=cross_attention_dim,
num_attention_heads=num_attention_heads[-1],
resnet_groups=norm_num_groups,
dual_cross_attention=False,
use_linear_projection=use_linear_projection,
temporal_num_attention_heads=motion_num_attention_heads,
temporal_max_seq_length=motion_max_seq_length,
)
else:
self.mid_block = UNetMidBlock2DCrossAttn(
in_channels=block_out_channels[-1],
temb_channels=time_embed_dim,
resnet_eps=norm_eps,
resnet_act_fn=act_fn,
output_scale_factor=mid_block_scale_factor,
cross_attention_dim=cross_attention_dim,
num_attention_heads=num_attention_heads[-1],
resnet_groups=norm_num_groups,
dual_cross_attention=False,
use_linear_projection=use_linear_projection,
)
# count how many layers upsample the images
self.num_upsamplers = 0
# up
reversed_block_out_channels = list(reversed(block_out_channels))
reversed_num_attention_heads = list(reversed(num_attention_heads))
output_channel = reversed_block_out_channels[0]
for i, up_block_type in enumerate(up_block_types):
is_final_block = i == len(block_out_channels) - 1
prev_output_channel = output_channel
output_channel = reversed_block_out_channels[i]
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
# add upsample block for all BUT final layer
if not is_final_block:
add_upsample = True
self.num_upsamplers += 1
else:
add_upsample = False
up_block = get_up_block(
up_block_type,
num_layers=layers_per_block + 1,
in_channels=input_channel,
out_channels=output_channel,
prev_output_channel=prev_output_channel,
temb_channels=time_embed_dim,
add_upsample=add_upsample,
resnet_eps=norm_eps,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
cross_attention_dim=cross_attention_dim,
num_attention_heads=reversed_num_attention_heads[i],
dual_cross_attention=False,
resolution_idx=i,
use_linear_projection=use_linear_projection,
temporal_num_attention_heads=motion_num_attention_heads,
temporal_max_seq_length=motion_max_seq_length,
)
self.up_blocks.append(up_block)
prev_output_channel = output_channel
# out
if norm_num_groups is not None:
self.conv_norm_out = nn.GroupNorm(
num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
)
self.conv_act = nn.SiLU()
else:
self.conv_norm_out = None
self.conv_act = None
conv_out_padding = (conv_out_kernel - 1) // 2
self.conv_out = nn.Conv2d(
block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
)
@classmethod
def from_unet2d(
cls,
unet: UNet2DConditionModel,
motion_adapter: Optional[MotionAdapter] = None,
load_weights: bool = True,
):
has_motion_adapter = motion_adapter is not None
# based on https://github.com/guoyww/AnimateDiff/blob/895f3220c06318ea0760131ec70408b466c49333/animatediff/models/unet.py#L459
config = unet.config
config["_class_name"] = cls.__name__
down_blocks = []
for down_blocks_type in config["down_block_types"]:
if "CrossAttn" in down_blocks_type:
down_blocks.append("CrossAttnDownBlockMotion")
else:
down_blocks.append("DownBlockMotion")
config["down_block_types"] = down_blocks
up_blocks = []
for down_blocks_type in config["up_block_types"]:
if "CrossAttn" in down_blocks_type:
up_blocks.append("CrossAttnUpBlockMotion")
else:
up_blocks.append("UpBlockMotion")
config["up_block_types"] = up_blocks
if has_motion_adapter:
config["motion_num_attention_heads"] = motion_adapter.config["motion_num_attention_heads"]
config["motion_max_seq_length"] = motion_adapter.config["motion_max_seq_length"]
config["use_motion_mid_block"] = motion_adapter.config["use_motion_mid_block"]
# For PIA UNets we need to set the number input channels to 9
if motion_adapter.config["conv_in_channels"]:
config["in_channels"] = motion_adapter.config["conv_in_channels"]
# Need this for backwards compatibility with UNet2DConditionModel checkpoints
if not config.get("num_attention_heads"):
config["num_attention_heads"] = config["attention_head_dim"]
model = cls.from_config(config)
if not load_weights:
return model
# Logic for loading PIA UNets which allow the first 4 channels to be any UNet2DConditionModel conv_in weight
# while the last 5 channels must be PIA conv_in weights.
if has_motion_adapter and motion_adapter.config["conv_in_channels"]:
model.conv_in = motion_adapter.conv_in
updated_conv_in_weight = torch.cat(
[unet.conv_in.weight, motion_adapter.conv_in.weight[:, 4:, :, :]], dim=1
)
model.conv_in.load_state_dict({"weight": updated_conv_in_weight, "bias": unet.conv_in.bias})
else:
model.conv_in.load_state_dict(unet.conv_in.state_dict())
model.time_proj.load_state_dict(unet.time_proj.state_dict())
model.time_embedding.load_state_dict(unet.time_embedding.state_dict())
for i, down_block in enumerate(unet.down_blocks):
model.down_blocks[i].resnets.load_state_dict(down_block.resnets.state_dict())
if hasattr(model.down_blocks[i], "attentions"):
model.down_blocks[i].attentions.load_state_dict(down_block.attentions.state_dict())
if model.down_blocks[i].downsamplers:
model.down_blocks[i].downsamplers.load_state_dict(down_block.downsamplers.state_dict())
for i, up_block in enumerate(unet.up_blocks):
model.up_blocks[i].resnets.load_state_dict(up_block.resnets.state_dict())
if hasattr(model.up_blocks[i], "attentions"):
model.up_blocks[i].attentions.load_state_dict(up_block.attentions.state_dict())
if model.up_blocks[i].upsamplers:
model.up_blocks[i].upsamplers.load_state_dict(up_block.upsamplers.state_dict())
model.mid_block.resnets.load_state_dict(unet.mid_block.resnets.state_dict())
model.mid_block.attentions.load_state_dict(unet.mid_block.attentions.state_dict())
if unet.conv_norm_out is not None:
model.conv_norm_out.load_state_dict(unet.conv_norm_out.state_dict())
if unet.conv_act is not None:
model.conv_act.load_state_dict(unet.conv_act.state_dict())
model.conv_out.load_state_dict(unet.conv_out.state_dict())
if has_motion_adapter:
model.load_motion_modules(motion_adapter)
# ensure that the Motion UNet is the same dtype as the UNet2DConditionModel
model.to(unet.dtype)
return model
def freeze_unet2d_params(self) -> None:
"""Freeze the weights of just the UNet2DConditionModel, and leave the motion modules
unfrozen for fine tuning.
"""
# Freeze everything
for param in self.parameters():
param.requires_grad = False
# Unfreeze Motion Modules
for down_block in self.down_blocks:
motion_modules = down_block.motion_modules
for param in motion_modules.parameters():
param.requires_grad = True
for up_block in self.up_blocks:
motion_modules = up_block.motion_modules
for param in motion_modules.parameters():
param.requires_grad = True
if hasattr(self.mid_block, "motion_modules"):
motion_modules = self.mid_block.motion_modules
for param in motion_modules.parameters():
param.requires_grad = True
def load_motion_modules(self, motion_adapter: Optional[MotionAdapter]) -> None:
for i, down_block in enumerate(motion_adapter.down_blocks):
self.down_blocks[i].motion_modules.load_state_dict(down_block.motion_modules.state_dict())
for i, up_block in enumerate(motion_adapter.up_blocks):
self.up_blocks[i].motion_modules.load_state_dict(up_block.motion_modules.state_dict())
# to support older motion modules that don't have a mid_block
if hasattr(self.mid_block, "motion_modules"):
self.mid_block.motion_modules.load_state_dict(motion_adapter.mid_block.motion_modules.state_dict())
def save_motion_modules(
self,
save_directory: str,
is_main_process: bool = True,
safe_serialization: bool = True,
variant: Optional[str] = None,
push_to_hub: bool = False,
**kwargs,
) -> None:
state_dict = self.state_dict()
# Extract all motion modules
motion_state_dict = {}
for k, v in state_dict.items():
if "motion_modules" in k:
motion_state_dict[k] = v
adapter = MotionAdapter(
block_out_channels=self.config["block_out_channels"],
motion_layers_per_block=self.config["layers_per_block"],
motion_norm_num_groups=self.config["norm_num_groups"],
motion_num_attention_heads=self.config["motion_num_attention_heads"],
motion_max_seq_length=self.config["motion_max_seq_length"],
use_motion_mid_block=self.config["use_motion_mid_block"],
)
adapter.load_state_dict(motion_state_dict)
adapter.save_pretrained(
save_directory=save_directory,
is_main_process=is_main_process,
safe_serialization=safe_serialization,
variant=variant,
push_to_hub=push_to_hub,
**kwargs,
)
@property
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
def attn_processors(self) -> Dict[str, AttentionProcessor]:
r"""
Returns:
`dict` of attention processors: A dictionary containing all attention processors used in the model with
indexed by its weight name.
"""
# set recursively
processors = {}
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
if hasattr(module, "get_processor"):
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
for sub_name, child in module.named_children():
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
return processors
for name, module in self.named_children():
fn_recursive_add_processors(name, module, processors)
return processors
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
r"""
Sets the attention processor to use to compute attention.
Parameters:
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
The instantiated processor class or a dictionary of processor classes that will be set as the processor
for **all** `Attention` layers.
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
processor. This is strongly recommended when setting trainable attention processors.
"""
count = len(self.attn_processors.keys())
if isinstance(processor, dict) and len(processor) != count:
raise ValueError(
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
)
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
if hasattr(module, "set_processor"):
if not isinstance(processor, dict):
module.set_processor(processor)
else:
module.set_processor(processor.pop(f"{name}.processor"))
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
for name, module in self.named_children():
fn_recursive_attn_processor(name, module, processor)
# Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.enable_forward_chunking
def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None:
"""
Sets the attention processor to use [feed forward
chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers).
Parameters:
chunk_size (`int`, *optional*):
The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually
over each tensor of dim=`dim`.
dim (`int`, *optional*, defaults to `0`):
The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch)
or dim=1 (sequence length).
"""
if dim not in [0, 1]:
raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}")
# By default chunk size is 1
chunk_size = chunk_size or 1
def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int):
if hasattr(module, "set_chunk_feed_forward"):
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)
for child in module.children():
fn_recursive_feed_forward(child, chunk_size, dim)
for module in self.children():
fn_recursive_feed_forward(module, chunk_size, dim)
# Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.disable_forward_chunking
def disable_forward_chunking(self) -> None:
def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int):
if hasattr(module, "set_chunk_feed_forward"):
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)
for child in module.children():
fn_recursive_feed_forward(child, chunk_size, dim)
for module in self.children():
fn_recursive_feed_forward(module, None, 0)
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
def set_default_attn_processor(self) -> None:
"""
Disables custom attention processors and sets the default attention implementation.
"""
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
processor = AttnAddedKVProcessor()
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
processor = AttnProcessor()
else:
raise ValueError(
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
)
self.set_attn_processor(processor)
def _set_gradient_checkpointing(self, module, value: bool = False) -> None:
if isinstance(module, (CrossAttnDownBlockMotion, DownBlockMotion, CrossAttnUpBlockMotion, UpBlockMotion)):
module.gradient_checkpointing = value
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.enable_freeu
def enable_freeu(self, s1: float, s2: float, b1: float, b2: float) -> None:
r"""Enables the FreeU mechanism from https://arxiv.org/abs/2309.11497.
The suffixes after the scaling factors represent the stage blocks where they are being applied.
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of values that
are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
Args:
s1 (`float`):
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
mitigate the "oversmoothing effect" in the enhanced denoising process.
s2 (`float`):
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
mitigate the "oversmoothing effect" in the enhanced denoising process.
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
"""
for i, upsample_block in enumerate(self.up_blocks):
setattr(upsample_block, "s1", s1)
setattr(upsample_block, "s2", s2)
setattr(upsample_block, "b1", b1)
setattr(upsample_block, "b2", b2)
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.disable_freeu
def disable_freeu(self) -> None:
"""Disables the FreeU mechanism."""
freeu_keys = {"s1", "s2", "b1", "b2"}
for i, upsample_block in enumerate(self.up_blocks):
for k in freeu_keys:
if hasattr(upsample_block, k) or getattr(upsample_block, k, None) is not None:
setattr(upsample_block, k, None)
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections
def fuse_qkv_projections(self):
"""
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query,
key, value) are fused. For cross-attention modules, key and value projection matrices are fused.
<Tip warning={true}>
This API is 🧪 experimental.
</Tip>
"""
self.original_attn_processors = None
for _, attn_processor in self.attn_processors.items():
if "Added" in str(attn_processor.__class__.__name__):
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
self.original_attn_processors = self.attn_processors
for module in self.modules():
if isinstance(module, Attention):
module.fuse_projections(fuse=True)
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
def unfuse_qkv_projections(self):
"""Disables the fused QKV projection if enabled.
<Tip warning={true}>
This API is 🧪 experimental.
</Tip>
"""
if self.original_attn_processors is not None:
self.set_attn_processor(self.original_attn_processors)
def forward(
self,
sample: torch.FloatTensor,
timestep: Union[torch.Tensor, float, int],
encoder_hidden_states: torch.Tensor,
timestep_cond: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
mid_block_additional_residual: Optional[torch.Tensor] = None,
return_dict: bool = True,
) -> Union[UNet3DConditionOutput, Tuple[torch.Tensor]]:
r"""
The [`UNetMotionModel`] forward method.
Args:
sample (`torch.FloatTensor`):
The noisy input tensor with the following shape `(batch, num_frames, channel, height, width`.
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
encoder_hidden_states (`torch.FloatTensor`):
The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
timestep_cond: (`torch.Tensor`, *optional*, defaults to `None`):
Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed
through the `self.time_embedding` layer to obtain the timestep embeddings.
attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
negative values to the attention scores corresponding to "discard" tokens.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*):
A tuple of tensors that if specified are added to the residuals of down unet blocks.
mid_block_additional_residual: (`torch.Tensor`, *optional*):
A tensor that if specified is added to the residual of the middle unet block.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.unet_3d_condition.UNet3DConditionOutput`] instead of a plain
tuple.
Returns:
[`~models.unet_3d_condition.UNet3DConditionOutput`] or `tuple`:
If `return_dict` is True, an [`~models.unet_3d_condition.UNet3DConditionOutput`] is returned, otherwise
a `tuple` is returned where the first element is the sample tensor.
"""
# By default samples have to be AT least a multiple of the overall upsampling factor.
# The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
# However, the upsampling interpolation output size can be forced to fit any upsampling size
# on the fly if necessary.
default_overall_up_factor = 2**self.num_upsamplers
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
forward_upsample_size = False
upsample_size = None
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
logger.info("Forward upsample size to force interpolation output size.")
forward_upsample_size = True
# prepare attention_mask
if attention_mask is not None:
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
attention_mask = attention_mask.unsqueeze(1)
# 1. time
timesteps = timestep
if not torch.is_tensor(timesteps):
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
# This would be a good case for the `match` statement (Python 3.10+)
is_mps = sample.device.type == "mps"
if isinstance(timestep, float):
dtype = torch.float32 if is_mps else torch.float64
else:
dtype = torch.int32 if is_mps else torch.int64
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
elif len(timesteps.shape) == 0:
timesteps = timesteps[None].to(sample.device)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
num_frames = sample.shape[2]
timesteps = timesteps.expand(sample.shape[0])
t_emb = self.time_proj(timesteps)
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might actually be running in fp16. so we need to cast here.
# there might be better ways to encapsulate this.
t_emb = t_emb.to(dtype=self.dtype)
emb = self.time_embedding(t_emb, timestep_cond)
emb = emb.repeat_interleave(repeats=num_frames, dim=0)
encoder_hidden_states = encoder_hidden_states.repeat_interleave(repeats=num_frames, dim=0)
if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "ip_image_proj":
if "image_embeds" not in added_cond_kwargs:
raise ValueError(
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'ip_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
)
image_embeds = added_cond_kwargs.get("image_embeds")
image_embeds = self.encoder_hid_proj(image_embeds)
image_embeds = [image_embed.repeat_interleave(repeats=num_frames, dim=0) for image_embed in image_embeds]
encoder_hidden_states = (encoder_hidden_states, image_embeds)
# 2. pre-process
sample = sample.permute(0, 2, 1, 3, 4).reshape((sample.shape[0] * num_frames, -1) + sample.shape[3:])
sample = self.conv_in(sample)
# 3. down
down_block_res_samples = (sample,)
for downsample_block in self.down_blocks:
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
sample, res_samples = downsample_block(
hidden_states=sample,
temb=emb,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
num_frames=num_frames,
cross_attention_kwargs=cross_attention_kwargs,
)
else:
sample, res_samples = downsample_block(hidden_states=sample, temb=emb, num_frames=num_frames)
down_block_res_samples += res_samples
if down_block_additional_residuals is not None:
new_down_block_res_samples = ()
for down_block_res_sample, down_block_additional_residual in zip(
down_block_res_samples, down_block_additional_residuals
):
down_block_res_sample = down_block_res_sample + down_block_additional_residual
new_down_block_res_samples += (down_block_res_sample,)
down_block_res_samples = new_down_block_res_samples
# 4. mid
if self.mid_block is not None:
# To support older versions of motion modules that don't have a mid_block
if hasattr(self.mid_block, "motion_modules"):
sample = self.mid_block(
sample,
emb,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
num_frames=num_frames,
cross_attention_kwargs=cross_attention_kwargs,
)
else:
sample = self.mid_block(
sample,
emb,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
cross_attention_kwargs=cross_attention_kwargs,
)
if mid_block_additional_residual is not None:
sample = sample + mid_block_additional_residual
# 5. up
for i, upsample_block in enumerate(self.up_blocks):
is_final_block = i == len(self.up_blocks) - 1
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
# if we have not reached the final block and need to forward the
# upsample size, we do it here
if not is_final_block and forward_upsample_size:
upsample_size = down_block_res_samples[-1].shape[2:]
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
sample = upsample_block(
hidden_states=sample,
temb=emb,
res_hidden_states_tuple=res_samples,
encoder_hidden_states=encoder_hidden_states,
upsample_size=upsample_size,
attention_mask=attention_mask,
num_frames=num_frames,
cross_attention_kwargs=cross_attention_kwargs,
)
else:
sample = upsample_block(
hidden_states=sample,
temb=emb,
res_hidden_states_tuple=res_samples,
upsample_size=upsample_size,
num_frames=num_frames,
)
# 6. post-process
if self.conv_norm_out:
sample = self.conv_norm_out(sample)
sample = self.conv_act(sample)
sample = self.conv_out(sample)
# reshape to (batch, channel, framerate, width, height)
sample = sample[None, :].reshape((-1, num_frames) + sample.shape[1:]).permute(0, 2, 1, 3, 4)
if not return_dict:
return (sample,)
return UNet3DConditionOutput(sample=sample)
import math
from typing import Optional, Tuple, Union
import torch
import torch.nn.functional as F
from torch import nn
from ..activations import get_activation
from ..resnet import Downsample1D, ResidualTemporalBlock1D, Upsample1D, rearrange_dims
class DownResnetBlock1D(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: Optional[int] = None,
num_layers: int = 1,
conv_shortcut: bool = False,
temb_channels: int = 32,
groups: int = 32,
groups_out: Optional[int] = None,
non_linearity: Optional[str] = None,
time_embedding_norm: str = "default",
output_scale_factor: float = 1.0,
add_downsample: bool = True,
):
super().__init__()
self.in_channels = in_channels
out_channels = in_channels if out_channels is None else out_channels
self.out_channels = out_channels
self.use_conv_shortcut = conv_shortcut
self.time_embedding_norm = time_embedding_norm
self.add_downsample = add_downsample
self.output_scale_factor = output_scale_factor
if groups_out is None:
groups_out = groups
# there will always be at least one resnet
resnets = [ResidualTemporalBlock1D(in_channels, out_channels, embed_dim=temb_channels)]
for _ in range(num_layers):
resnets.append(ResidualTemporalBlock1D(out_channels, out_channels, embed_dim=temb_channels))
self.resnets = nn.ModuleList(resnets)
if non_linearity is None:
self.nonlinearity = None
else:
self.nonlinearity = get_activation(non_linearity)
self.downsample = None
if add_downsample:
self.downsample = Downsample1D(out_channels, use_conv=True, padding=1)
def forward(self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None) -> torch.FloatTensor:
output_states = ()
hidden_states = self.resnets[0](hidden_states, temb)
for resnet in self.resnets[1:]:
hidden_states = resnet(hidden_states, temb)
output_states += (hidden_states,)
if self.nonlinearity is not None:
hidden_states = self.nonlinearity(hidden_states)
if self.downsample is not None:
hidden_states = self.downsample(hidden_states)
return hidden_states, output_states
class UpResnetBlock1D(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: Optional[int] = None,
num_layers: int = 1,
temb_channels: int = 32,
groups: int = 32,
groups_out: Optional[int] = None,
non_linearity: Optional[str] = None,
time_embedding_norm: str = "default",
output_scale_factor: float = 1.0,
add_upsample: bool = True,
):
super().__init__()
self.in_channels = in_channels
out_channels = in_channels if out_channels is None else out_channels
self.out_channels = out_channels
self.time_embedding_norm = time_embedding_norm
self.add_upsample = add_upsample
self.output_scale_factor = output_scale_factor
if groups_out is None:
groups_out = groups
# there will always be at least one resnet
resnets = [ResidualTemporalBlock1D(2 * in_channels, out_channels, embed_dim=temb_channels)]
for _ in range(num_layers):
resnets.append(ResidualTemporalBlock1D(out_channels, out_channels, embed_dim=temb_channels))
self.resnets = nn.ModuleList(resnets)
if non_linearity is None:
self.nonlinearity = None
else:
self.nonlinearity = get_activation(non_linearity)
self.upsample = None
if add_upsample:
self.upsample = Upsample1D(out_channels, use_conv_transpose=True)
def forward(
self,
hidden_states: torch.FloatTensor,
res_hidden_states_tuple: Optional[Tuple[torch.FloatTensor, ...]] = None,
temb: Optional[torch.FloatTensor] = None,
) -> torch.FloatTensor:
if res_hidden_states_tuple is not None:
res_hidden_states = res_hidden_states_tuple[-1]
hidden_states = torch.cat((hidden_states, res_hidden_states), dim=1)
hidden_states = self.resnets[0](hidden_states, temb)
for resnet in self.resnets[1:]:
hidden_states = resnet(hidden_states, temb)
if self.nonlinearity is not None:
hidden_states = self.nonlinearity(hidden_states)
if self.upsample is not None:
hidden_states = self.upsample(hidden_states)
return hidden_states
class ValueFunctionMidBlock1D(nn.Module):
def __init__(self, in_channels: int, out_channels: int, embed_dim: int):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.embed_dim = embed_dim
self.res1 = ResidualTemporalBlock1D(in_channels, in_channels // 2, embed_dim=embed_dim)
self.down1 = Downsample1D(out_channels // 2, use_conv=True)
self.res2 = ResidualTemporalBlock1D(in_channels // 2, in_channels // 4, embed_dim=embed_dim)
self.down2 = Downsample1D(out_channels // 4, use_conv=True)
def forward(self, x: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None) -> torch.FloatTensor:
x = self.res1(x, temb)
x = self.down1(x)
x = self.res2(x, temb)
x = self.down2(x)
return x
class MidResTemporalBlock1D(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
embed_dim: int,
num_layers: int = 1,
add_downsample: bool = False,
add_upsample: bool = False,
non_linearity: Optional[str] = None,
):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.add_downsample = add_downsample
# there will always be at least one resnet
resnets = [ResidualTemporalBlock1D(in_channels, out_channels, embed_dim=embed_dim)]
for _ in range(num_layers):
resnets.append(ResidualTemporalBlock1D(out_channels, out_channels, embed_dim=embed_dim))
self.resnets = nn.ModuleList(resnets)
if non_linearity is None:
self.nonlinearity = None
else:
self.nonlinearity = get_activation(non_linearity)
self.upsample = None
if add_upsample:
self.upsample = Downsample1D(out_channels, use_conv=True)
self.downsample = None
if add_downsample:
self.downsample = Downsample1D(out_channels, use_conv=True)
if self.upsample and self.downsample:
raise ValueError("Block cannot downsample and upsample")
def forward(self, hidden_states: torch.FloatTensor, temb: torch.FloatTensor) -> torch.FloatTensor:
hidden_states = self.resnets[0](hidden_states, temb)
for resnet in self.resnets[1:]:
hidden_states = resnet(hidden_states, temb)
if self.upsample:
hidden_states = self.upsample(hidden_states)
if self.downsample:
self.downsample = self.downsample(hidden_states)
return hidden_states
class OutConv1DBlock(nn.Module):
def __init__(self, num_groups_out: int, out_channels: int, embed_dim: int, act_fn: str):
super().__init__()
self.final_conv1d_1 = nn.Conv1d(embed_dim, embed_dim, 5, padding=2)
self.final_conv1d_gn = nn.GroupNorm(num_groups_out, embed_dim)
self.final_conv1d_act = get_activation(act_fn)
self.final_conv1d_2 = nn.Conv1d(embed_dim, out_channels, 1)
def forward(self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None) -> torch.FloatTensor:
hidden_states = self.final_conv1d_1(hidden_states)
hidden_states = rearrange_dims(hidden_states)
hidden_states = self.final_conv1d_gn(hidden_states)
hidden_states = rearrange_dims(hidden_states)
hidden_states = self.final_conv1d_act(hidden_states)
hidden_states = self.final_conv1d_2(hidden_states)
return hidden_states
class OutValueFunctionBlock(nn.Module):
def __init__(self, fc_dim: int, embed_dim: int, act_fn: str = "mish"):
super().__init__()
self.final_block = nn.ModuleList(
[
nn.Linear(fc_dim + embed_dim, fc_dim // 2),
get_activation(act_fn),
nn.Linear(fc_dim // 2, 1),
]
)
def forward(self, hidden_states: torch.FloatTensor, temb: torch.FloatTensor) -> torch.FloatTensor:
hidden_states = hidden_states.view(hidden_states.shape[0], -1)
hidden_states = torch.cat((hidden_states, temb), dim=-1)
for layer in self.final_block:
hidden_states = layer(hidden_states)
return hidden_states
_kernels = {
"linear": [1 / 8, 3 / 8, 3 / 8, 1 / 8],
"cubic": [-0.01171875, -0.03515625, 0.11328125, 0.43359375, 0.43359375, 0.11328125, -0.03515625, -0.01171875],
"lanczos3": [
0.003689131001010537,
0.015056144446134567,
-0.03399861603975296,
-0.066637322306633,
0.13550527393817902,
0.44638532400131226,
0.44638532400131226,
0.13550527393817902,
-0.066637322306633,
-0.03399861603975296,
0.015056144446134567,
0.003689131001010537,
],
}
class Downsample1d(nn.Module):
def __init__(self, kernel: str = "linear", pad_mode: str = "reflect"):
super().__init__()
self.pad_mode = pad_mode
kernel_1d = torch.tensor(_kernels[kernel])
self.pad = kernel_1d.shape[0] // 2 - 1
self.register_buffer("kernel", kernel_1d)
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
hidden_states = F.pad(hidden_states, (self.pad,) * 2, self.pad_mode)
weight = hidden_states.new_zeros([hidden_states.shape[1], hidden_states.shape[1], self.kernel.shape[0]])
indices = torch.arange(hidden_states.shape[1], device=hidden_states.device)
kernel = self.kernel.to(weight)[None, :].expand(hidden_states.shape[1], -1)
weight[indices, indices] = kernel
return F.conv1d(hidden_states, weight, stride=2)
class Upsample1d(nn.Module):
def __init__(self, kernel: str = "linear", pad_mode: str = "reflect"):
super().__init__()
self.pad_mode = pad_mode
kernel_1d = torch.tensor(_kernels[kernel]) * 2
self.pad = kernel_1d.shape[0] // 2 - 1
self.register_buffer("kernel", kernel_1d)
def forward(self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None) -> torch.FloatTensor:
hidden_states = F.pad(hidden_states, ((self.pad + 1) // 2,) * 2, self.pad_mode)
weight = hidden_states.new_zeros([hidden_states.shape[1], hidden_states.shape[1], self.kernel.shape[0]])
indices = torch.arange(hidden_states.shape[1], device=hidden_states.device)
kernel = self.kernel.to(weight)[None, :].expand(hidden_states.shape[1], -1)
weight[indices, indices] = kernel
return F.conv_transpose1d(hidden_states, weight, stride=2, padding=self.pad * 2 + 1)
class SelfAttention1d(nn.Module):
def __init__(self, in_channels: int, n_head: int = 1, dropout_rate: float = 0.0):
super().__init__()
self.channels = in_channels
self.group_norm = nn.GroupNorm(1, num_channels=in_channels)
self.num_heads = n_head
self.query = nn.Linear(self.channels, self.channels)
self.key = nn.Linear(self.channels, self.channels)
self.value = nn.Linear(self.channels, self.channels)
self.proj_attn = nn.Linear(self.channels, self.channels, bias=True)
self.dropout = nn.Dropout(dropout_rate, inplace=True)
def transpose_for_scores(self, projection: torch.Tensor) -> torch.Tensor:
new_projection_shape = projection.size()[:-1] + (self.num_heads, -1)
# move heads to 2nd position (B, T, H * D) -> (B, T, H, D) -> (B, H, T, D)
new_projection = projection.view(new_projection_shape).permute(0, 2, 1, 3)
return new_projection
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
residual = hidden_states
batch, channel_dim, seq = hidden_states.shape
hidden_states = self.group_norm(hidden_states)
hidden_states = hidden_states.transpose(1, 2)
query_proj = self.query(hidden_states)
key_proj = self.key(hidden_states)
value_proj = self.value(hidden_states)
query_states = self.transpose_for_scores(query_proj)
key_states = self.transpose_for_scores(key_proj)
value_states = self.transpose_for_scores(value_proj)
scale = 1 / math.sqrt(math.sqrt(key_states.shape[-1]))
attention_scores = torch.matmul(query_states * scale, key_states.transpose(-1, -2) * scale)
attention_probs = torch.softmax(attention_scores, dim=-1)
# compute attention output
hidden_states = torch.matmul(attention_probs, value_states)
hidden_states = hidden_states.permute(0, 2, 1, 3).contiguous()
new_hidden_states_shape = hidden_states.size()[:-2] + (self.channels,)
hidden_states = hidden_states.view(new_hidden_states_shape)
# compute next hidden_states
hidden_states = self.proj_attn(hidden_states)
hidden_states = hidden_states.transpose(1, 2)
hidden_states = self.dropout(hidden_states)
output = hidden_states + residual
return output
class ResConvBlock(nn.Module):
def __init__(self, in_channels: int, mid_channels: int, out_channels: int, is_last: bool = False):
super().__init__()
self.is_last = is_last
self.has_conv_skip = in_channels != out_channels
if self.has_conv_skip:
self.conv_skip = nn.Conv1d(in_channels, out_channels, 1, bias=False)
self.conv_1 = nn.Conv1d(in_channels, mid_channels, 5, padding=2)
self.group_norm_1 = nn.GroupNorm(1, mid_channels)
self.gelu_1 = nn.GELU()
self.conv_2 = nn.Conv1d(mid_channels, out_channels, 5, padding=2)
if not self.is_last:
self.group_norm_2 = nn.GroupNorm(1, out_channels)
self.gelu_2 = nn.GELU()
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
residual = self.conv_skip(hidden_states) if self.has_conv_skip else hidden_states
hidden_states = self.conv_1(hidden_states)
hidden_states = self.group_norm_1(hidden_states)
hidden_states = self.gelu_1(hidden_states)
hidden_states = self.conv_2(hidden_states)
if not self.is_last:
hidden_states = self.group_norm_2(hidden_states)
hidden_states = self.gelu_2(hidden_states)
output = hidden_states + residual
return output
class UNetMidBlock1D(nn.Module):
def __init__(self, mid_channels: int, in_channels: int, out_channels: Optional[int] = None):
super().__init__()
out_channels = in_channels if out_channels is None else out_channels
# there is always at least one resnet
self.down = Downsample1d("cubic")
resnets = [
ResConvBlock(in_channels, mid_channels, mid_channels),
ResConvBlock(mid_channels, mid_channels, mid_channels),
ResConvBlock(mid_channels, mid_channels, mid_channels),
ResConvBlock(mid_channels, mid_channels, mid_channels),
ResConvBlock(mid_channels, mid_channels, mid_channels),
ResConvBlock(mid_channels, mid_channels, out_channels),
]
attentions = [
SelfAttention1d(mid_channels, mid_channels // 32),
SelfAttention1d(mid_channels, mid_channels // 32),
SelfAttention1d(mid_channels, mid_channels // 32),
SelfAttention1d(mid_channels, mid_channels // 32),
SelfAttention1d(mid_channels, mid_channels // 32),
SelfAttention1d(out_channels, out_channels // 32),
]
self.up = Upsample1d(kernel="cubic")
self.attentions = nn.ModuleList(attentions)
self.resnets = nn.ModuleList(resnets)
def forward(self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None) -> torch.FloatTensor:
hidden_states = self.down(hidden_states)
for attn, resnet in zip(self.attentions, self.resnets):
hidden_states = resnet(hidden_states)
hidden_states = attn(hidden_states)
hidden_states = self.up(hidden_states)
return hidden_states
class AttnDownBlock1D(nn.Module):
def __init__(self, out_channels: int, in_channels: int, mid_channels: Optional[int] = None):
super().__init__()
mid_channels = out_channels if mid_channels is None else mid_channels
self.down = Downsample1d("cubic")
resnets = [
ResConvBlock(in_channels, mid_channels, mid_channels),
ResConvBlock(mid_channels, mid_channels, mid_channels),
ResConvBlock(mid_channels, mid_channels, out_channels),
]
attentions = [
SelfAttention1d(mid_channels, mid_channels // 32),
SelfAttention1d(mid_channels, mid_channels // 32),
SelfAttention1d(out_channels, out_channels // 32),
]
self.attentions = nn.ModuleList(attentions)
self.resnets = nn.ModuleList(resnets)
def forward(self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None) -> torch.FloatTensor:
hidden_states = self.down(hidden_states)
for resnet, attn in zip(self.resnets, self.attentions):
hidden_states = resnet(hidden_states)
hidden_states = attn(hidden_states)
return hidden_states, (hidden_states,)
class DownBlock1D(nn.Module):
def __init__(self, out_channels: int, in_channels: int, mid_channels: Optional[int] = None):
super().__init__()
mid_channels = out_channels if mid_channels is None else mid_channels
self.down = Downsample1d("cubic")
resnets = [
ResConvBlock(in_channels, mid_channels, mid_channels),
ResConvBlock(mid_channels, mid_channels, mid_channels),
ResConvBlock(mid_channels, mid_channels, out_channels),
]
self.resnets = nn.ModuleList(resnets)
def forward(self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None) -> torch.FloatTensor:
hidden_states = self.down(hidden_states)
for resnet in self.resnets:
hidden_states = resnet(hidden_states)
return hidden_states, (hidden_states,)
class DownBlock1DNoSkip(nn.Module):
def __init__(self, out_channels: int, in_channels: int, mid_channels: Optional[int] = None):
super().__init__()
mid_channels = out_channels if mid_channels is None else mid_channels
resnets = [
ResConvBlock(in_channels, mid_channels, mid_channels),
ResConvBlock(mid_channels, mid_channels, mid_channels),
ResConvBlock(mid_channels, mid_channels, out_channels),
]
self.resnets = nn.ModuleList(resnets)
def forward(self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None) -> torch.FloatTensor:
hidden_states = torch.cat([hidden_states, temb], dim=1)
for resnet in self.resnets:
hidden_states = resnet(hidden_states)
return hidden_states, (hidden_states,)
class AttnUpBlock1D(nn.Module):
def __init__(self, in_channels: int, out_channels: int, mid_channels: Optional[int] = None):
super().__init__()
mid_channels = out_channels if mid_channels is None else mid_channels
resnets = [
ResConvBlock(2 * in_channels, mid_channels, mid_channels),
ResConvBlock(mid_channels, mid_channels, mid_channels),
ResConvBlock(mid_channels, mid_channels, out_channels),
]
attentions = [
SelfAttention1d(mid_channels, mid_channels // 32),
SelfAttention1d(mid_channels, mid_channels // 32),
SelfAttention1d(out_channels, out_channels // 32),
]
self.attentions = nn.ModuleList(attentions)
self.resnets = nn.ModuleList(resnets)
self.up = Upsample1d(kernel="cubic")
def forward(
self,
hidden_states: torch.FloatTensor,
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
temb: Optional[torch.FloatTensor] = None,
) -> torch.FloatTensor:
res_hidden_states = res_hidden_states_tuple[-1]
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
for resnet, attn in zip(self.resnets, self.attentions):
hidden_states = resnet(hidden_states)
hidden_states = attn(hidden_states)
hidden_states = self.up(hidden_states)
return hidden_states
class UpBlock1D(nn.Module):
def __init__(self, in_channels: int, out_channels: int, mid_channels: Optional[int] = None):
super().__init__()
mid_channels = in_channels if mid_channels is None else mid_channels
resnets = [
ResConvBlock(2 * in_channels, mid_channels, mid_channels),
ResConvBlock(mid_channels, mid_channels, mid_channels),
ResConvBlock(mid_channels, mid_channels, out_channels),
]
self.resnets = nn.ModuleList(resnets)
self.up = Upsample1d(kernel="cubic")
def forward(
self,
hidden_states: torch.FloatTensor,
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
temb: Optional[torch.FloatTensor] = None,
) -> torch.FloatTensor:
res_hidden_states = res_hidden_states_tuple[-1]
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
for resnet in self.resnets:
hidden_states = resnet(hidden_states)
hidden_states = self.up(hidden_states)
return hidden_states
class UpBlock1DNoSkip(nn.Module):
def __init__(self, in_channels: int, out_channels: int, mid_channels: Optional[int] = None):
super().__init__()
mid_channels = in_channels if mid_channels is None else mid_channels
resnets = [
ResConvBlock(2 * in_channels, mid_channels, mid_channels),
ResConvBlock(mid_channels, mid_channels, mid_channels),
ResConvBlock(mid_channels, mid_channels, out_channels, is_last=True),
]
self.resnets = nn.ModuleList(resnets)
def forward(
self,
hidden_states: torch.FloatTensor,
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
temb: Optional[torch.FloatTensor] = None,
) -> torch.FloatTensor:
res_hidden_states = res_hidden_states_tuple[-1]
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
for resnet in self.resnets:
hidden_states = resnet(hidden_states)
return hidden_states
DownBlockType = Union[DownResnetBlock1D, DownBlock1D, AttnDownBlock1D, DownBlock1DNoSkip]
MidBlockType = Union[MidResTemporalBlock1D, ValueFunctionMidBlock1D, UNetMidBlock1D]
OutBlockType = Union[OutConv1DBlock, OutValueFunctionBlock]
UpBlockType = Union[UpResnetBlock1D, UpBlock1D, AttnUpBlock1D, UpBlock1DNoSkip]
def get_down_block(
down_block_type: str,
num_layers: int,
in_channels: int,
out_channels: int,
temb_channels: int,
add_downsample: bool,
) -> DownBlockType:
if down_block_type == "DownResnetBlock1D":
return DownResnetBlock1D(
in_channels=in_channels,
num_layers=num_layers,
out_channels=out_channels,
temb_channels=temb_channels,
add_downsample=add_downsample,
)
elif down_block_type == "DownBlock1D":
return DownBlock1D(out_channels=out_channels, in_channels=in_channels)
elif down_block_type == "AttnDownBlock1D":
return AttnDownBlock1D(out_channels=out_channels, in_channels=in_channels)
elif down_block_type == "DownBlock1DNoSkip":
return DownBlock1DNoSkip(out_channels=out_channels, in_channels=in_channels)
raise ValueError(f"{down_block_type} does not exist.")
def get_up_block(
up_block_type: str, num_layers: int, in_channels: int, out_channels: int, temb_channels: int, add_upsample: bool
) -> UpBlockType:
if up_block_type == "UpResnetBlock1D":
return UpResnetBlock1D(
in_channels=in_channels,
num_layers=num_layers,
out_channels=out_channels,
temb_channels=temb_channels,
add_upsample=add_upsample,
)
elif up_block_type == "UpBlock1D":
return UpBlock1D(in_channels=in_channels, out_channels=out_channels)
elif up_block_type == "AttnUpBlock1D":
return AttnUpBlock1D(in_channels=in_channels, out_channels=out_channels)
elif up_block_type == "UpBlock1DNoSkip":
return UpBlock1DNoSkip(in_channels=in_channels, out_channels=out_channels)
raise ValueError(f"{up_block_type} does not exist.")
def get_mid_block(
mid_block_type: str,
num_layers: int,
in_channels: int,
mid_channels: int,
out_channels: int,
embed_dim: int,
add_downsample: bool,
) -> MidBlockType:
if mid_block_type == "MidResTemporalBlock1D":
return MidResTemporalBlock1D(
num_layers=num_layers,
in_channels=in_channels,
out_channels=out_channels,
embed_dim=embed_dim,
add_downsample=add_downsample,
)
elif mid_block_type == "ValueFunctionMidBlock1D":
return ValueFunctionMidBlock1D(in_channels=in_channels, out_channels=out_channels, embed_dim=embed_dim)
elif mid_block_type == "UNetMidBlock1D":
return UNetMidBlock1D(in_channels=in_channels, mid_channels=mid_channels, out_channels=out_channels)
raise ValueError(f"{mid_block_type} does not exist.")
def get_out_block(
*, out_block_type: str, num_groups_out: int, embed_dim: int, out_channels: int, act_fn: str, fc_dim: int
) -> Optional[OutBlockType]:
if out_block_type == "OutConv1DBlock":
return OutConv1DBlock(num_groups_out, out_channels, embed_dim, act_fn)
elif out_block_type == "ValueFunction":
return OutValueFunctionBlock(fc_dim, embed_dim, act_fn)
return None
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, Union
import torch
import torch.nn.functional as F
from torch import nn
from torch.utils.checkpoint import checkpoint
from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import PeftAdapterMixin
from ..attention import BasicTransformerBlock, SkipFFTransformerBlock
from ..attention_processor import (
ADDED_KV_ATTENTION_PROCESSORS,
CROSS_ATTENTION_PROCESSORS,
AttentionProcessor,
AttnAddedKVProcessor,
AttnProcessor,
)
from ..embeddings import TimestepEmbedding, get_timestep_embedding
from ..modeling_utils import ModelMixin
from ..normalization import GlobalResponseNorm, RMSNorm
from ..resnet import Downsample2D, Upsample2D
class UVit2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
# global config
hidden_size: int = 1024,
use_bias: bool = False,
hidden_dropout: float = 0.0,
# conditioning dimensions
cond_embed_dim: int = 768,
micro_cond_encode_dim: int = 256,
micro_cond_embed_dim: int = 1280,
encoder_hidden_size: int = 768,
# num tokens
vocab_size: int = 8256, # codebook_size + 1 (for the mask token) rounded
codebook_size: int = 8192,
# `UVit2DConvEmbed`
in_channels: int = 768,
block_out_channels: int = 768,
num_res_blocks: int = 3,
downsample: bool = False,
upsample: bool = False,
block_num_heads: int = 12,
# `TransformerLayer`
num_hidden_layers: int = 22,
num_attention_heads: int = 16,
# `Attention`
attention_dropout: float = 0.0,
# `FeedForward`
intermediate_size: int = 2816,
# `Norm`
layer_norm_eps: float = 1e-6,
ln_elementwise_affine: bool = True,
sample_size: int = 64,
):
super().__init__()
self.encoder_proj = nn.Linear(encoder_hidden_size, hidden_size, bias=use_bias)
self.encoder_proj_layer_norm = RMSNorm(hidden_size, layer_norm_eps, ln_elementwise_affine)
self.embed = UVit2DConvEmbed(
in_channels, block_out_channels, vocab_size, ln_elementwise_affine, layer_norm_eps, use_bias
)
self.cond_embed = TimestepEmbedding(
micro_cond_embed_dim + cond_embed_dim, hidden_size, sample_proj_bias=use_bias
)
self.down_block = UVitBlock(
block_out_channels,
num_res_blocks,
hidden_size,
hidden_dropout,
ln_elementwise_affine,
layer_norm_eps,
use_bias,
block_num_heads,
attention_dropout,
downsample,
False,
)
self.project_to_hidden_norm = RMSNorm(block_out_channels, layer_norm_eps, ln_elementwise_affine)
self.project_to_hidden = nn.Linear(block_out_channels, hidden_size, bias=use_bias)
self.transformer_layers = nn.ModuleList(
[
BasicTransformerBlock(
dim=hidden_size,
num_attention_heads=num_attention_heads,
attention_head_dim=hidden_size // num_attention_heads,
dropout=hidden_dropout,
cross_attention_dim=hidden_size,
attention_bias=use_bias,
norm_type="ada_norm_continuous",
ada_norm_continous_conditioning_embedding_dim=hidden_size,
norm_elementwise_affine=ln_elementwise_affine,
norm_eps=layer_norm_eps,
ada_norm_bias=use_bias,
ff_inner_dim=intermediate_size,
ff_bias=use_bias,
attention_out_bias=use_bias,
)
for _ in range(num_hidden_layers)
]
)
self.project_from_hidden_norm = RMSNorm(hidden_size, layer_norm_eps, ln_elementwise_affine)
self.project_from_hidden = nn.Linear(hidden_size, block_out_channels, bias=use_bias)
self.up_block = UVitBlock(
block_out_channels,
num_res_blocks,
hidden_size,
hidden_dropout,
ln_elementwise_affine,
layer_norm_eps,
use_bias,
block_num_heads,
attention_dropout,
downsample=False,
upsample=upsample,
)
self.mlm_layer = ConvMlmLayer(
block_out_channels, in_channels, use_bias, ln_elementwise_affine, layer_norm_eps, codebook_size
)
self.gradient_checkpointing = False
def _set_gradient_checkpointing(self, module, value: bool = False) -> None:
pass
def forward(self, input_ids, encoder_hidden_states, pooled_text_emb, micro_conds, cross_attention_kwargs=None):
encoder_hidden_states = self.encoder_proj(encoder_hidden_states)
encoder_hidden_states = self.encoder_proj_layer_norm(encoder_hidden_states)
micro_cond_embeds = get_timestep_embedding(
micro_conds.flatten(), self.config.micro_cond_encode_dim, flip_sin_to_cos=True, downscale_freq_shift=0
)
micro_cond_embeds = micro_cond_embeds.reshape((input_ids.shape[0], -1))
pooled_text_emb = torch.cat([pooled_text_emb, micro_cond_embeds], dim=1)
pooled_text_emb = pooled_text_emb.to(dtype=self.dtype)
pooled_text_emb = self.cond_embed(pooled_text_emb).to(encoder_hidden_states.dtype)
hidden_states = self.embed(input_ids)
hidden_states = self.down_block(
hidden_states,
pooled_text_emb=pooled_text_emb,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
)
batch_size, channels, height, width = hidden_states.shape
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch_size, height * width, channels)
hidden_states = self.project_to_hidden_norm(hidden_states)
hidden_states = self.project_to_hidden(hidden_states)
for layer in self.transformer_layers:
if self.training and self.gradient_checkpointing:
def layer_(*args):
return checkpoint(layer, *args)
else:
layer_ = layer
hidden_states = layer_(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
added_cond_kwargs={"pooled_text_emb": pooled_text_emb},
)
hidden_states = self.project_from_hidden_norm(hidden_states)
hidden_states = self.project_from_hidden(hidden_states)
hidden_states = hidden_states.reshape(batch_size, height, width, channels).permute(0, 3, 1, 2)
hidden_states = self.up_block(
hidden_states,
pooled_text_emb=pooled_text_emb,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
)
logits = self.mlm_layer(hidden_states)
return logits
@property
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
def attn_processors(self) -> Dict[str, AttentionProcessor]:
r"""
Returns:
`dict` of attention processors: A dictionary containing all attention processors used in the model with
indexed by its weight name.
"""
# set recursively
processors = {}
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
if hasattr(module, "get_processor"):
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
for sub_name, child in module.named_children():
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
return processors
for name, module in self.named_children():
fn_recursive_add_processors(name, module, processors)
return processors
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
r"""
Sets the attention processor to use to compute attention.
Parameters:
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
The instantiated processor class or a dictionary of processor classes that will be set as the processor
for **all** `Attention` layers.
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
processor. This is strongly recommended when setting trainable attention processors.
"""
count = len(self.attn_processors.keys())
if isinstance(processor, dict) and len(processor) != count:
raise ValueError(
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
)
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
if hasattr(module, "set_processor"):
if not isinstance(processor, dict):
module.set_processor(processor)
else:
module.set_processor(processor.pop(f"{name}.processor"))
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
for name, module in self.named_children():
fn_recursive_attn_processor(name, module, processor)
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
def set_default_attn_processor(self):
"""
Disables custom attention processors and sets the default attention implementation.
"""
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
processor = AttnAddedKVProcessor()
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
processor = AttnProcessor()
else:
raise ValueError(
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
)
self.set_attn_processor(processor)
class UVit2DConvEmbed(nn.Module):
def __init__(self, in_channels, block_out_channels, vocab_size, elementwise_affine, eps, bias):
super().__init__()
self.embeddings = nn.Embedding(vocab_size, in_channels)
self.layer_norm = RMSNorm(in_channels, eps, elementwise_affine)
self.conv = nn.Conv2d(in_channels, block_out_channels, kernel_size=1, bias=bias)
def forward(self, input_ids):
embeddings = self.embeddings(input_ids)
embeddings = self.layer_norm(embeddings)
embeddings = embeddings.permute(0, 3, 1, 2)
embeddings = self.conv(embeddings)
return embeddings
class UVitBlock(nn.Module):
def __init__(
self,
channels,
num_res_blocks: int,
hidden_size,
hidden_dropout,
ln_elementwise_affine,
layer_norm_eps,
use_bias,
block_num_heads,
attention_dropout,
downsample: bool,
upsample: bool,
):
super().__init__()
if downsample:
self.downsample = Downsample2D(
channels,
use_conv=True,
padding=0,
name="Conv2d_0",
kernel_size=2,
norm_type="rms_norm",
eps=layer_norm_eps,
elementwise_affine=ln_elementwise_affine,
bias=use_bias,
)
else:
self.downsample = None
self.res_blocks = nn.ModuleList(
[
ConvNextBlock(
channels,
layer_norm_eps,
ln_elementwise_affine,
use_bias,
hidden_dropout,
hidden_size,
)
for i in range(num_res_blocks)
]
)
self.attention_blocks = nn.ModuleList(
[
SkipFFTransformerBlock(
channels,
block_num_heads,
channels // block_num_heads,
hidden_size,
use_bias,
attention_dropout,
channels,
attention_bias=use_bias,
attention_out_bias=use_bias,
)
for _ in range(num_res_blocks)
]
)
if upsample:
self.upsample = Upsample2D(
channels,
use_conv_transpose=True,
kernel_size=2,
padding=0,
name="conv",
norm_type="rms_norm",
eps=layer_norm_eps,
elementwise_affine=ln_elementwise_affine,
bias=use_bias,
interpolate=False,
)
else:
self.upsample = None
def forward(self, x, pooled_text_emb, encoder_hidden_states, cross_attention_kwargs):
if self.downsample is not None:
x = self.downsample(x)
for res_block, attention_block in zip(self.res_blocks, self.attention_blocks):
x = res_block(x, pooled_text_emb)
batch_size, channels, height, width = x.shape
x = x.view(batch_size, channels, height * width).permute(0, 2, 1)
x = attention_block(
x, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs
)
x = x.permute(0, 2, 1).view(batch_size, channels, height, width)
if self.upsample is not None:
x = self.upsample(x)
return x
class ConvNextBlock(nn.Module):
def __init__(
self, channels, layer_norm_eps, ln_elementwise_affine, use_bias, hidden_dropout, hidden_size, res_ffn_factor=4
):
super().__init__()
self.depthwise = nn.Conv2d(
channels,
channels,
kernel_size=3,
padding=1,
groups=channels,
bias=use_bias,
)
self.norm = RMSNorm(channels, layer_norm_eps, ln_elementwise_affine)
self.channelwise_linear_1 = nn.Linear(channels, int(channels * res_ffn_factor), bias=use_bias)
self.channelwise_act = nn.GELU()
self.channelwise_norm = GlobalResponseNorm(int(channels * res_ffn_factor))
self.channelwise_linear_2 = nn.Linear(int(channels * res_ffn_factor), channels, bias=use_bias)
self.channelwise_dropout = nn.Dropout(hidden_dropout)
self.cond_embeds_mapper = nn.Linear(hidden_size, channels * 2, use_bias)
def forward(self, x, cond_embeds):
x_res = x
x = self.depthwise(x)
x = x.permute(0, 2, 3, 1)
x = self.norm(x)
x = self.channelwise_linear_1(x)
x = self.channelwise_act(x)
x = self.channelwise_norm(x)
x = self.channelwise_linear_2(x)
x = self.channelwise_dropout(x)
x = x.permute(0, 3, 1, 2)
x = x + x_res
scale, shift = self.cond_embeds_mapper(F.silu(cond_embeds)).chunk(2, dim=1)
x = x * (1 + scale[:, :, None, None]) + shift[:, :, None, None]
return x
class ConvMlmLayer(nn.Module):
def __init__(
self,
block_out_channels: int,
in_channels: int,
use_bias: bool,
ln_elementwise_affine: bool,
layer_norm_eps: float,
codebook_size: int,
):
super().__init__()
self.conv1 = nn.Conv2d(block_out_channels, in_channels, kernel_size=1, bias=use_bias)
self.layer_norm = RMSNorm(in_channels, layer_norm_eps, ln_elementwise_affine)
self.conv2 = nn.Conv2d(in_channels, codebook_size, kernel_size=1, bias=use_bias)
def forward(self, hidden_states):
hidden_states = self.conv1(hidden_states)
hidden_states = self.layer_norm(hidden_states.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
logits = self.conv2(hidden_states)
return logits
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...utils import BaseOutput
from ..embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps
from ..modeling_utils import ModelMixin
from .unet_1d_blocks import get_down_block, get_mid_block, get_out_block, get_up_block
@dataclass
class UNet1DOutput(BaseOutput):
"""
The output of [`UNet1DModel`].
Args:
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, sample_size)`):
The hidden states output from the last layer of the model.
"""
sample: torch.FloatTensor
class UNet1DModel(ModelMixin, ConfigMixin):
r"""
A 1D UNet model that takes a noisy sample and a timestep and returns a sample shaped output.
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
for all models (such as downloading or saving).
Parameters:
sample_size (`int`, *optional*): Default length of sample. Should be adaptable at runtime.
in_channels (`int`, *optional*, defaults to 2): Number of channels in the input sample.
out_channels (`int`, *optional*, defaults to 2): Number of channels in the output.
extra_in_channels (`int`, *optional*, defaults to 0):
Number of additional channels to be added to the input of the first down block. Useful for cases where the
input data has more channels than what the model was initially designed for.
time_embedding_type (`str`, *optional*, defaults to `"fourier"`): Type of time embedding to use.
freq_shift (`float`, *optional*, defaults to 0.0): Frequency shift for Fourier time embedding.
flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
Whether to flip sin to cos for Fourier time embedding.
down_block_types (`Tuple[str]`, *optional*, defaults to `("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D")`):
Tuple of downsample block types.
up_block_types (`Tuple[str]`, *optional*, defaults to `("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip")`):
Tuple of upsample block types.
block_out_channels (`Tuple[int]`, *optional*, defaults to `(32, 32, 64)`):
Tuple of block output channels.
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock1D"`): Block type for middle of UNet.
out_block_type (`str`, *optional*, defaults to `None`): Optional output processing block of UNet.
act_fn (`str`, *optional*, defaults to `None`): Optional activation function in UNet blocks.
norm_num_groups (`int`, *optional*, defaults to 8): The number of groups for normalization.
layers_per_block (`int`, *optional*, defaults to 1): The number of layers per block.
downsample_each_block (`int`, *optional*, defaults to `False`):
Experimental feature for using a UNet without upsampling.
"""
@register_to_config
def __init__(
self,
sample_size: int = 65536,
sample_rate: Optional[int] = None,
in_channels: int = 2,
out_channels: int = 2,
extra_in_channels: int = 0,
time_embedding_type: str = "fourier",
flip_sin_to_cos: bool = True,
use_timestep_embedding: bool = False,
freq_shift: float = 0.0,
down_block_types: Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D"),
up_block_types: Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip"),
mid_block_type: Tuple[str] = "UNetMidBlock1D",
out_block_type: str = None,
block_out_channels: Tuple[int] = (32, 32, 64),
act_fn: str = None,
norm_num_groups: int = 8,
layers_per_block: int = 1,
downsample_each_block: bool = False,
):
super().__init__()
self.sample_size = sample_size
# time
if time_embedding_type == "fourier":
self.time_proj = GaussianFourierProjection(
embedding_size=8, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
)
timestep_input_dim = 2 * block_out_channels[0]
elif time_embedding_type == "positional":
self.time_proj = Timesteps(
block_out_channels[0], flip_sin_to_cos=flip_sin_to_cos, downscale_freq_shift=freq_shift
)
timestep_input_dim = block_out_channels[0]
if use_timestep_embedding:
time_embed_dim = block_out_channels[0] * 4
self.time_mlp = TimestepEmbedding(
in_channels=timestep_input_dim,
time_embed_dim=time_embed_dim,
act_fn=act_fn,
out_dim=block_out_channels[0],
)
self.down_blocks = nn.ModuleList([])
self.mid_block = None
self.up_blocks = nn.ModuleList([])
self.out_block = None
# down
output_channel = in_channels
for i, down_block_type in enumerate(down_block_types):
input_channel = output_channel
output_channel = block_out_channels[i]
if i == 0:
input_channel += extra_in_channels
is_final_block = i == len(block_out_channels) - 1
down_block = get_down_block(
down_block_type,
num_layers=layers_per_block,
in_channels=input_channel,
out_channels=output_channel,
temb_channels=block_out_channels[0],
add_downsample=not is_final_block or downsample_each_block,
)
self.down_blocks.append(down_block)
# mid
self.mid_block = get_mid_block(
mid_block_type,
in_channels=block_out_channels[-1],
mid_channels=block_out_channels[-1],
out_channels=block_out_channels[-1],
embed_dim=block_out_channels[0],
num_layers=layers_per_block,
add_downsample=downsample_each_block,
)
# up
reversed_block_out_channels = list(reversed(block_out_channels))
output_channel = reversed_block_out_channels[0]
if out_block_type is None:
final_upsample_channels = out_channels
else:
final_upsample_channels = block_out_channels[0]
for i, up_block_type in enumerate(up_block_types):
prev_output_channel = output_channel
output_channel = (
reversed_block_out_channels[i + 1] if i < len(up_block_types) - 1 else final_upsample_channels
)
is_final_block = i == len(block_out_channels) - 1
up_block = get_up_block(
up_block_type,
num_layers=layers_per_block,
in_channels=prev_output_channel,
out_channels=output_channel,
temb_channels=block_out_channels[0],
add_upsample=not is_final_block,
)
self.up_blocks.append(up_block)
prev_output_channel = output_channel
# out
num_groups_out = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4, 32)
self.out_block = get_out_block(
out_block_type=out_block_type,
num_groups_out=num_groups_out,
embed_dim=block_out_channels[0],
out_channels=out_channels,
act_fn=act_fn,
fc_dim=block_out_channels[-1] // 4,
)
def forward(
self,
sample: torch.FloatTensor,
timestep: Union[torch.Tensor, float, int],
return_dict: bool = True,
) -> Union[UNet1DOutput, Tuple]:
r"""
The [`UNet1DModel`] forward method.
Args:
sample (`torch.FloatTensor`):
The noisy input tensor with the following shape `(batch_size, num_channels, sample_size)`.
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.unet_1d.UNet1DOutput`] instead of a plain tuple.
Returns:
[`~models.unet_1d.UNet1DOutput`] or `tuple`:
If `return_dict` is True, an [`~models.unet_1d.UNet1DOutput`] is returned, otherwise a `tuple` is
returned where the first element is the sample tensor.
"""
# 1. time
timesteps = timestep
if not torch.is_tensor(timesteps):
timesteps = torch.tensor([timesteps], dtype=torch.long, device=sample.device)
elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0:
timesteps = timesteps[None].to(sample.device)
timestep_embed = self.time_proj(timesteps)
if self.config.use_timestep_embedding:
timestep_embed = self.time_mlp(timestep_embed)
else:
timestep_embed = timestep_embed[..., None]
timestep_embed = timestep_embed.repeat([1, 1, sample.shape[2]]).to(sample.dtype)
timestep_embed = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]))
# 2. down
down_block_res_samples = ()
for downsample_block in self.down_blocks:
sample, res_samples = downsample_block(hidden_states=sample, temb=timestep_embed)
down_block_res_samples += res_samples
# 3. mid
if self.mid_block:
sample = self.mid_block(sample, timestep_embed)
# 4. up
for i, upsample_block in enumerate(self.up_blocks):
res_samples = down_block_res_samples[-1:]
down_block_res_samples = down_block_res_samples[:-1]
sample = upsample_block(sample, res_hidden_states_tuple=res_samples, temb=timestep_embed)
# 5. post-process
if self.out_block:
sample = self.out_block(sample, timestep_embed)
if not return_dict:
return (sample,)
return UNet1DOutput(sample=sample)
from typing import Dict, Optional, Tuple, Union
import flax
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict
from ...configuration_utils import ConfigMixin, flax_register_to_config
from ...utils import BaseOutput
from ..embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps
from ..modeling_flax_utils import FlaxModelMixin
from .unet_2d_blocks_flax import (
FlaxCrossAttnDownBlock2D,
FlaxCrossAttnUpBlock2D,
FlaxDownBlock2D,
FlaxUNetMidBlock2DCrossAttn,
FlaxUpBlock2D,
)
@flax.struct.dataclass
class FlaxUNet2DConditionOutput(BaseOutput):
"""
The output of [`FlaxUNet2DConditionModel`].
Args:
sample (`jnp.ndarray` of shape `(batch_size, num_channels, height, width)`):
The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
"""
sample: jnp.ndarray
@flax_register_to_config
class FlaxUNet2DConditionModel(nn.Module, FlaxModelMixin, ConfigMixin):
r"""
A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
shaped output.
This model inherits from [`FlaxModelMixin`]. Check the superclass documentation for it's generic methods
implemented for all models (such as downloading or saving).
This model is also a Flax Linen [flax.linen.Module](https://flax.readthedocs.io/en/latest/flax.linen.html#module)
subclass. Use it as a regular Flax Linen module and refer to the Flax documentation for all matters related to its
general usage and behavior.
Inherent JAX features such as the following are supported:
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
Parameters:
sample_size (`int`, *optional*):
The size of the input sample.
in_channels (`int`, *optional*, defaults to 4):
The number of channels in the input sample.
out_channels (`int`, *optional*, defaults to 4):
The number of channels in the output.
down_block_types (`Tuple[str]`, *optional*, defaults to `("FlaxCrossAttnDownBlock2D", "FlaxCrossAttnDownBlock2D", "FlaxCrossAttnDownBlock2D", "FlaxDownBlock2D")`):
The tuple of downsample blocks to use.
up_block_types (`Tuple[str]`, *optional*, defaults to `("FlaxUpBlock2D", "FlaxCrossAttnUpBlock2D", "FlaxCrossAttnUpBlock2D", "FlaxCrossAttnUpBlock2D")`):
The tuple of upsample blocks to use.
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
Block type for middle of UNet, it can be one of `UNetMidBlock2DCrossAttn`. If `None`, the mid block layer is skipped.
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
The tuple of output channels for each block.
layers_per_block (`int`, *optional*, defaults to 2):
The number of layers per block.
attention_head_dim (`int` or `Tuple[int]`, *optional*, defaults to 8):
The dimension of the attention heads.
num_attention_heads (`int` or `Tuple[int]`, *optional*):
The number of attention heads.
cross_attention_dim (`int`, *optional*, defaults to 768):
The dimension of the cross attention features.
dropout (`float`, *optional*, defaults to 0):
Dropout probability for down, up and bottleneck blocks.
flip_sin_to_cos (`bool`, *optional*, defaults to `True`):
Whether to flip the sin to cos in the time embedding.
freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
use_memory_efficient_attention (`bool`, *optional*, defaults to `False`):
Enable memory efficient attention as described [here](https://arxiv.org/abs/2112.05682).
split_head_dim (`bool`, *optional*, defaults to `False`):
Whether to split the head dimension into a new axis for the self-attention computation. In most cases,
enabling this flag should speed up the computation for Stable Diffusion 2.x and Stable Diffusion XL.
"""
sample_size: int = 32
in_channels: int = 4
out_channels: int = 4
down_block_types: Tuple[str, ...] = (
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"DownBlock2D",
)
up_block_types: Tuple[str, ...] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn"
only_cross_attention: Union[bool, Tuple[bool]] = False
block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280)
layers_per_block: int = 2
attention_head_dim: Union[int, Tuple[int, ...]] = 8
num_attention_heads: Optional[Union[int, Tuple[int, ...]]] = None
cross_attention_dim: int = 1280
dropout: float = 0.0
use_linear_projection: bool = False
dtype: jnp.dtype = jnp.float32
flip_sin_to_cos: bool = True
freq_shift: int = 0
use_memory_efficient_attention: bool = False
split_head_dim: bool = False
transformer_layers_per_block: Union[int, Tuple[int, ...]] = 1
addition_embed_type: Optional[str] = None
addition_time_embed_dim: Optional[int] = None
addition_embed_type_num_heads: int = 64
projection_class_embeddings_input_dim: Optional[int] = None
def init_weights(self, rng: jax.Array) -> FrozenDict:
# init input tensors
sample_shape = (1, self.in_channels, self.sample_size, self.sample_size)
sample = jnp.zeros(sample_shape, dtype=jnp.float32)
timesteps = jnp.ones((1,), dtype=jnp.int32)
encoder_hidden_states = jnp.zeros((1, 1, self.cross_attention_dim), dtype=jnp.float32)
params_rng, dropout_rng = jax.random.split(rng)
rngs = {"params": params_rng, "dropout": dropout_rng}
added_cond_kwargs = None
if self.addition_embed_type == "text_time":
# we retrieve the expected `text_embeds_dim` by first checking if the architecture is a refiner
# or non-refiner architecture and then by "reverse-computing" from `projection_class_embeddings_input_dim`
is_refiner = (
5 * self.config.addition_time_embed_dim + self.config.cross_attention_dim
== self.config.projection_class_embeddings_input_dim
)
num_micro_conditions = 5 if is_refiner else 6
text_embeds_dim = self.config.projection_class_embeddings_input_dim - (
num_micro_conditions * self.config.addition_time_embed_dim
)
time_ids_channels = self.projection_class_embeddings_input_dim - text_embeds_dim
time_ids_dims = time_ids_channels // self.addition_time_embed_dim
added_cond_kwargs = {
"text_embeds": jnp.zeros((1, text_embeds_dim), dtype=jnp.float32),
"time_ids": jnp.zeros((1, time_ids_dims), dtype=jnp.float32),
}
return self.init(rngs, sample, timesteps, encoder_hidden_states, added_cond_kwargs)["params"]
def setup(self) -> None:
block_out_channels = self.block_out_channels
time_embed_dim = block_out_channels[0] * 4
if self.num_attention_heads is not None:
raise ValueError(
"At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
)
# If `num_attention_heads` is not defined (which is the case for most models)
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
# The reason for this behavior is to correct for incorrectly named variables that were introduced
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
# which is why we correct for the naming here.
num_attention_heads = self.num_attention_heads or self.attention_head_dim
# input
self.conv_in = nn.Conv(
block_out_channels[0],
kernel_size=(3, 3),
strides=(1, 1),
padding=((1, 1), (1, 1)),
dtype=self.dtype,
)
# time
self.time_proj = FlaxTimesteps(
block_out_channels[0], flip_sin_to_cos=self.flip_sin_to_cos, freq_shift=self.config.freq_shift
)
self.time_embedding = FlaxTimestepEmbedding(time_embed_dim, dtype=self.dtype)
only_cross_attention = self.only_cross_attention
if isinstance(only_cross_attention, bool):
only_cross_attention = (only_cross_attention,) * len(self.down_block_types)
if isinstance(num_attention_heads, int):
num_attention_heads = (num_attention_heads,) * len(self.down_block_types)
# transformer layers per block
transformer_layers_per_block = self.transformer_layers_per_block
if isinstance(transformer_layers_per_block, int):
transformer_layers_per_block = [transformer_layers_per_block] * len(self.down_block_types)
# addition embed types
if self.addition_embed_type is None:
self.add_embedding = None
elif self.addition_embed_type == "text_time":
if self.addition_time_embed_dim is None:
raise ValueError(
f"addition_embed_type {self.addition_embed_type} requires `addition_time_embed_dim` to not be None"
)
self.add_time_proj = FlaxTimesteps(self.addition_time_embed_dim, self.flip_sin_to_cos, self.freq_shift)
self.add_embedding = FlaxTimestepEmbedding(time_embed_dim, dtype=self.dtype)
else:
raise ValueError(f"addition_embed_type: {self.addition_embed_type} must be None or `text_time`.")
# down
down_blocks = []
output_channel = block_out_channels[0]
for i, down_block_type in enumerate(self.down_block_types):
input_channel = output_channel
output_channel = block_out_channels[i]
is_final_block = i == len(block_out_channels) - 1
if down_block_type == "CrossAttnDownBlock2D":
down_block = FlaxCrossAttnDownBlock2D(
in_channels=input_channel,
out_channels=output_channel,
dropout=self.dropout,
num_layers=self.layers_per_block,
transformer_layers_per_block=transformer_layers_per_block[i],
num_attention_heads=num_attention_heads[i],
add_downsample=not is_final_block,
use_linear_projection=self.use_linear_projection,
only_cross_attention=only_cross_attention[i],
use_memory_efficient_attention=self.use_memory_efficient_attention,
split_head_dim=self.split_head_dim,
dtype=self.dtype,
)
else:
down_block = FlaxDownBlock2D(
in_channels=input_channel,
out_channels=output_channel,
dropout=self.dropout,
num_layers=self.layers_per_block,
add_downsample=not is_final_block,
dtype=self.dtype,
)
down_blocks.append(down_block)
self.down_blocks = down_blocks
# mid
if self.config.mid_block_type == "UNetMidBlock2DCrossAttn":
self.mid_block = FlaxUNetMidBlock2DCrossAttn(
in_channels=block_out_channels[-1],
dropout=self.dropout,
num_attention_heads=num_attention_heads[-1],
transformer_layers_per_block=transformer_layers_per_block[-1],
use_linear_projection=self.use_linear_projection,
use_memory_efficient_attention=self.use_memory_efficient_attention,
split_head_dim=self.split_head_dim,
dtype=self.dtype,
)
elif self.config.mid_block_type is None:
self.mid_block = None
else:
raise ValueError(f"Unexpected mid_block_type {self.config.mid_block_type}")
# up
up_blocks = []
reversed_block_out_channels = list(reversed(block_out_channels))
reversed_num_attention_heads = list(reversed(num_attention_heads))
only_cross_attention = list(reversed(only_cross_attention))
output_channel = reversed_block_out_channels[0]
reversed_transformer_layers_per_block = list(reversed(transformer_layers_per_block))
for i, up_block_type in enumerate(self.up_block_types):
prev_output_channel = output_channel
output_channel = reversed_block_out_channels[i]
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
is_final_block = i == len(block_out_channels) - 1
if up_block_type == "CrossAttnUpBlock2D":
up_block = FlaxCrossAttnUpBlock2D(
in_channels=input_channel,
out_channels=output_channel,
prev_output_channel=prev_output_channel,
num_layers=self.layers_per_block + 1,
transformer_layers_per_block=reversed_transformer_layers_per_block[i],
View raw

(Sorry about that, but we can’t show files that are this big right now.)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment