Last active
June 15, 2018 15:20
-
-
Save johndpope/46c17fbab58a1318c6ef9ba36dc267fc to your computer and use it in GitHub Desktop.
Diamond Space python
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
import math | |
import cv2 | |
import numpy as np | |
import time | |
import sys | |
class Line(object): | |
def __init__(self, a, b, c, d): | |
self.a = float(a) | |
self.b = float(b) | |
self.c = float(c) | |
self.d = float(d) | |
class DiamondSpace: | |
def __init__(self, spaceSize, height, width, searchRange, Normalization, SubPixelRadius, margin, vp): | |
self.pSpace = np.zeros((spaceSize, spaceSize), dtype = np.uint) | |
self.spaceSize = spaceSize | |
self.Normalization = Normalization | |
self.SubPixelRadius = SubPixelRadius | |
self.height = height | |
self.width = width | |
self.searchRange = searchRange | |
self.margin = margin | |
self.vp = vp | |
def getVisSpace(self, drawMax = True, pdd = 2): | |
maxVal = np.max(self.pSpace) | |
if maxVal < 1: | |
return np.zeros((self.spaceSize, self.spaceSize), dtype = np.uint8) | |
visSpace = self.pSpace / float(maxVal) * 255 | |
if drawMax: | |
x, y = self.find_maximum() | |
x = int(round(x)) | |
y = int(round(y)) | |
visSpace = visSpace.astype(np.uint8) | |
visSpace = cv2.cvtColor(visSpace, cv2.COLOR_GRAY2BGR) | |
if self.vp == 2: | |
# draw top search region | |
cv2.rectangle(visSpace, (int(self.spaceSize/2 - self.searchRange/2), self.margin), | |
(int(self.spaceSize/2 + self.searchRange/2), self.searchRange), (0,255,0)) | |
#draw bottom search region | |
cv2.rectangle(visSpace, (int(self.spaceSize/2 - self.searchRange/2), self.spaceSize - self.searchRange), | |
(int(self.spaceSize/2 + self.searchRange/2), self.spaceSize - self.margin - 1), (0,255,0)) | |
# draw maximum point | |
cv2.rectangle(visSpace, (x-pdd, y-pdd), (x+pdd, y+pdd), (0,0,255)) | |
return visSpace | |
else: | |
return visSpace.astype(np.uint8) | |
def sgn(self, val): | |
return (0 <= val) - (val < 0) | |
def sign(self, val): | |
return (0 <= val) - (val <= 0) | |
def lines_end_points(self, lines, space_c): | |
center = int(round(space_c)) | |
endpoints = [] | |
for line in lines: | |
a = line.a | |
b = line.b | |
c = line.d | |
alpha = float(self.sgn(a*b)) | |
beta = float(self.sgn(b*c)) | |
gamma = float(self.sgn(a*c)) | |
a_x = alpha*a / (c + gamma*a) | |
b_x = -alpha*c / (c + gamma*a) | |
end1 = int(round((a_x + 1) * space_c)) | |
end0 = int(round((b_x + 1) * space_c)) | |
end3 = int(round((b / (c + beta * b) + 1) * space_c)) | |
end2 = center | |
end5 = center | |
end4 = int(round((b / (a + alpha * b) + 1) * space_c)) | |
end7 = int(round((-a_x + 1) * space_c)) | |
end6 = int(round((-b_x + 1) * space_c)) | |
endpoints.append((end0, end1, end2, end3, end4, end5, end6, end7)) | |
return endpoints | |
def lineV(self, x0, y0, x1, y1, weight): | |
slope = (x1 - x0) / float(y1 - y0) | |
x_start = float(x0) + 0.5 | |
x_iter = x_start | |
step = 1 if y0 < y1 else -1 | |
slope *= step | |
y = y0 | |
c = 1 | |
while y != y1: | |
self.pSpace[int(x_iter), y] += weight | |
x_iter = x_start + c * slope | |
y += step | |
c += 1 | |
def lineH(self, x0, y0, x1, y1, weight): | |
slope = (y1 - y0) / float(x1 - x0 - 0.00001) | |
y_start = float(y0) + 0.5 | |
y_iter = y_start | |
step = 1 if x0 < x1 else -1 | |
slope *= step | |
x = x0 | |
c = 1 | |
while x != x1: | |
self.pSpace[x, int(y_iter)] += weight | |
y_iter = y_start + c * slope | |
x += step | |
c += 1 | |
def rasterize_lines(self, lines, endpoints): | |
for line, end in zip(lines, endpoints): | |
weight = int(line.d) | |
for i in range(0,6,2): | |
if abs(end[i+3] - end[i+1]) > abs(end[i+2] - end[i]): | |
self.lineV(end[i], end[i+1], end[i+2], end[i+3], weight) | |
else: | |
self.lineH(end[i], end[i+1], end[i+2], end[i+3], weight) | |
self.pSpace[end[7],end[6]] += weight | |
def addLines(self, lines): | |
space_c = (self.spaceSize - 1.0)/2.0 | |
EndPoints = self.lines_end_points(lines, space_c) | |
self.rasterize_lines(lines, EndPoints) | |
def find_maximum(self): | |
R = self.SubPixelRadius | |
if self.vp == 1: | |
dd = 5 | |
hs = int(self.spaceSize / 2) | |
self.pSpace[(hs-dd):(hs+dd),(hs-dd):(hs+dd)] = 0 | |
y, x = np.unravel_index(self.pSpace.argmax(), self.pSpace.shape) | |
y += 1 | |
x += 1 | |
else: | |
topRegion = self.pSpace[self.margin:self.searchRange, | |
int(self.spaceSize/2 - self.searchRange/2):int(self.spaceSize/2 + self.searchRange/2)] | |
bottomRegion = self.pSpace[(self.spaceSize - self.searchRange):(self.spaceSize - self.margin), | |
(int(self.spaceSize/2 - self.searchRange/2)):(int(self.spaceSize/2 + self.searchRange/2))] | |
maxTop = np.max(topRegion) | |
maxBottom = np.max(bottomRegion) | |
if maxTop > maxBottom: | |
y, x = np.unravel_index(topRegion.argmax(), topRegion.shape) | |
y += 1 | |
else: | |
y, x = np.unravel_index(bottomRegion.argmax(), bottomRegion.shape) | |
y += (self.spaceSize - self.searchRange) + 1 | |
x += int(self.spaceSize/2 - self.searchRange/2) + 1 | |
oSize = 2 * self.SubPixelRadius + 1 | |
O = np.zeros((oSize, oSize), dtype = np.float) | |
ist = y - R | |
iend = y + R + 1 | |
jst = x - R | |
jend = x + R + 1 | |
for i in range(ist, iend): | |
for j in range(jst, jend): | |
if i > 0 and i < self.spaceSize and j > 0 and j < self.spaceSize: | |
O[i - ist, j - jst] = self.pSpace[i, j] | |
sumSR = 0.0 | |
sumSC = 0.0 | |
sumO = 0.0 | |
for i in range(-R, R+1): | |
for j in range(-R, R+1): | |
sumSR += O[i+R, j+R] * i | |
sumSC += O[i+R, j+R] * j | |
sumO += O[i+R, j+R] | |
return x + sumSC/sumO, y + sumSR/sumO | |
def normalize_PC_points(self, PC_VanP): | |
return (2 * PC_VanP[0] - (self.spaceSize + 1)) / (self.spaceSize - 1), (2 * PC_VanP[1] - (self.spaceSize + 1)) / (self.spaceSize - 1) | |
def PC_point_to_CC(self, PC_NormVP): | |
x = float(PC_NormVP[0]) | |
y = float(PC_NormVP[1]) | |
m = max(self.height, self.width) | |
v1 = y / x | |
w2 = (self.sign(y) * y + self.sign(x) * x - 1) / x | |
u3 = 1.0 | |
return (v1 / self.Normalization * (m - 1) + self.width + 1) / 2, (w2 / self.Normalization * (m - 1) + self.height + 1) / 2 | |
def calc_Vanp(self): | |
PC_VanP = self.find_maximum() | |
# print PC_VanP, "\n" | |
PC_NormVP = self.normalize_PC_points(PC_VanP) | |
# print PC_NormVP, "\n" | |
CC_VanP = self.PC_point_to_CC(PC_NormVP) | |
return CC_VanP | |
inst = DiamondSpace(1,2,3,4,5,6,7,8) | |
inst.addLines([Line(1,4,3,4)]) | |
result = inst.calc_Vanp() | |
print(result) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
so this code is from optimization repo -
looking at the code - not sure why the example code is so off. need better parameters.
def init(self, spaceSize, height, width, searchRange, Normalization, SubPixelRadius, margin, vp):
inst = DiamondSpace(1,2,3,4,5,6,7,8)