Skip to content

Instantly share code, notes, and snippets.

@johnolafenwa
Last active November 11, 2022 23:01
Show Gist options
  • Save johnolafenwa/96b3322aabb61d4d36fd870a77f02aa3 to your computer and use it in GitHub Desktop.
Save johnolafenwa/96b3322aabb61d4d36fd870a77f02aa3 to your computer and use it in GitHub Desktop.
#Import needed packages
import torch
import torch.nn as nn
from torchvision.datasets import CIFAR10
from torchvision.transforms import transforms
from torch.utils.data import DataLoader
from torch.optim import Adam
from torch.autograd import Variable
import numpy as np
class Unit(nn.Module):
def __init__(self,in_channels,out_channels):
super(Unit,self).__init__()
self.conv = nn.Conv2d(in_channels=in_channels,kernel_size=3,out_channels=out_channels,stride=1,padding=1)
self.bn = nn.BatchNorm2d(num_features=out_channels)
self.relu = nn.ReLU()
def forward(self,input):
output = self.conv(input)
output = self.bn(output)
output = self.relu(output)
return output
class SimpleNet(nn.Module):
def __init__(self,num_classes=10):
super(SimpleNet,self).__init__()
#Create 14 layers of the unit with max pooling in between
self.unit1 = Unit(in_channels=3,out_channels=32)
self.unit2 = Unit(in_channels=32, out_channels=32)
self.unit3 = Unit(in_channels=32, out_channels=32)
self.pool1 = nn.MaxPool2d(kernel_size=2)
self.unit4 = Unit(in_channels=32, out_channels=64)
self.unit5 = Unit(in_channels=64, out_channels=64)
self.unit6 = Unit(in_channels=64, out_channels=64)
self.unit7 = Unit(in_channels=64, out_channels=64)
self.pool2 = nn.MaxPool2d(kernel_size=2)
self.unit8 = Unit(in_channels=64, out_channels=128)
self.unit9 = Unit(in_channels=128, out_channels=128)
self.unit10 = Unit(in_channels=128, out_channels=128)
self.unit11 = Unit(in_channels=128, out_channels=128)
self.pool3 = nn.MaxPool2d(kernel_size=2)
self.unit12 = Unit(in_channels=128, out_channels=128)
self.unit13 = Unit(in_channels=128, out_channels=128)
self.unit14 = Unit(in_channels=128, out_channels=128)
self.avgpool = nn.AvgPool2d(kernel_size=4)
#Add all the units into the Sequential layer in exact order
self.net = nn.Sequential(self.unit1, self.unit2, self.unit3, self.pool1, self.unit4, self.unit5, self.unit6
,self.unit7, self.pool2, self.unit8, self.unit9, self.unit10, self.unit11, self.pool3,
self.unit12, self.unit13, self.unit14, self.avgpool)
self.fc = nn.Linear(in_features=128,out_features=num_classes)
def forward(self, input):
output = self.net(input)
output = output.view(-1,128)
output = self.fc(output)
return output
#Define transformations for the training set, flip the images randomly, crop out and apply mean and std normalization
train_transformations = transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.RandomCrop(32,padding=4),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
batch_size = 32
#Load the training set
train_set = CIFAR10(root="./data",train=True,transform=train_transformations,download=True)
#Create a loder for the training set
train_loader = DataLoader(train_set,batch_size=batch_size,shuffle=True,num_workers=4)
#Define transformations for the test set
test_transformations = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5))
])
#Load the test set, note that train is set to False
test_set = CIFAR10(root="./data",train=False,transform=test_transformations,download=True)
#Create a loder for the test set, note that both shuffle is set to false for the test loader
test_loader = DataLoader(test_set,batch_size=batch_size,shuffle=False,num_workers=4)
#Check if gpu support is available
cuda_avail = torch.cuda.is_available()
#Create model, optimizer and loss function
model = SimpleNet(num_classes=10)
if cuda_avail:
model.cuda()
optimizer = Adam(model.parameters(), lr=0.001,weight_decay=0.0001)
loss_fn = nn.CrossEntropyLoss()
#Create a learning rate adjustment function that divides the learning rate by 10 every 30 epochs
def adjust_learning_rate(epoch):
lr = 0.001
if epoch > 180:
lr = lr / 1000000
elif epoch > 150:
lr = lr / 100000
elif epoch > 120:
lr = lr / 10000
elif epoch > 90:
lr = lr / 1000
elif epoch > 60:
lr = lr / 100
elif epoch > 30:
lr = lr / 10
for param_group in optimizer.param_groups:
param_group["lr"] = lr
def save_models(epoch):
torch.save(model.state_dict(), "cifar10model_{}.model".format(epoch))
print("Checkpoint saved")
def test():
model.eval()
test_acc = 0.0
for i, (images, labels) in enumerate(test_loader):
if cuda_avail:
images = Variable(images.cuda())
labels = Variable(labels.cuda())
#Predict classes using images from the test set
outputs = model(images)
_,prediction = torch.max(outputs.data, 1)
prediction = prediction.cpu().numpy()
test_acc += torch.sum(prediction == labels.data)
#Compute the average acc and loss over all 10000 test images
test_acc = test_acc / 10000
return test_acc
def train(num_epochs):
best_acc = 0.0
for epoch in range(num_epochs):
model.train()
train_acc = 0.0
train_loss = 0.0
for i, (images, labels) in enumerate(train_loader):
#Move images and labels to gpu if available
if cuda_avail:
images = Variable(images.cuda())
labels = Variable(labels.cuda())
#Clear all accumulated gradients
optimizer.zero_grad()
#Predict classes using images from the test set
outputs = model(images)
#Compute the loss based on the predictions and actual labels
loss = loss_fn(outputs,labels)
#Backpropagate the loss
loss.backward()
#Adjust parameters according to the computed gradients
optimizer.step()
train_loss += loss.cpu().data[0] * images.size(0)
_, prediction = torch.max(outputs.data, 1)
train_acc += torch.sum(prediction == labels.data)
#Call the learning rate adjustment function
adjust_learning_rate(epoch)
#Compute the average acc and loss over all 50000 training images
train_acc = train_acc / 50000
train_loss = train_loss / 50000
#Evaluate on the test set
test_acc = test()
# Save the model if the test acc is greater than our current best
if test_acc > best_acc:
save_models(epoch)
best_acc = test_acc
# Print the metrics
print("Epoch {}, Train Accuracy: {} , TrainLoss: {} , Test Accuracy: {}".format(epoch, train_acc, train_loss,test_acc))
if __name__ == "__main__":
train(200)
@littleniuer
Copy link

Hello, can you help me solve my problem?

Traceback (most recent call last):
File "D:\pytorch\test.py", line 190, in
train(200)
File "D:\pytorch\test.py", line 166, in train
for i, (images, labels) in enumerate(train_loader):
File "C:\Users\Ding\AppData\Local\Programs\Python\Python39\lib\site-packages\torch\utils\data\dataloader.py", line 352, in iter
return self._get_iterator()
File "C:\Users\Ding\AppData\Local\Programs\Python\Python39\lib\site-packages\torch\utils\data\dataloader.py", line 294, in _get_iterator
return _MultiProcessingDataLoaderIter(self)
File "C:\Users\Ding\AppData\Local\Programs\Python\Python39\lib\site-packages\torch\utils\data\dataloader.py", line 801, in init
w.start()
File "C:\Users\Ding\AppData\Local\Programs\Python\Python39\lib\multiprocessing\process.py", line 121, in start
self._popen = self._Popen(self)
File "C:\Users\Ding\AppData\Local\Programs\Python\Python39\lib\multiprocessing\context.py", line 224, in _Popen
return _default_context.get_context().Process._Popen(process_obj)
File "C:\Users\Ding\AppData\Local\Programs\Python\Python39\lib\multiprocessing\context.py", line 327, in _Popen
return Popen(process_obj)
File "C:\Users\Ding\AppData\Local\Programs\Python\Python39\lib\multiprocessing\popen_spawn_win32.py", line 93, in init
reduction.dump(process_obj, to_child)
File "C:\Users\Ding\AppData\Local\Programs\Python\Python39\lib\multiprocessing\reduction.py", line 60, in dump
ForkingPickler(file, protocol).dump(obj)
OSError: [Errno 22] Invalid argument

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment