Created
December 17, 2024 14:41
-
-
Save johtani/a68b0d63b2bc6aec9c1ee32577206f3e to your computer and use it in GitHub Desktop.
MS COCOのデータをWeaviateで検索する画面をStreamlitで構成
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from weaviate_connection import WeaviateConnection | |
import streamlit as st | |
def main(): | |
collection_name = "MultiModalKagome" | |
properties_kagome = ["caption_ja"] | |
properties_gse = ["caption_ja_gse"] | |
limit = 20 | |
st.title("Multi Modal/Language CLIP Hybrid Search") | |
# create connection with Weaviate | |
conn = st.connection( | |
"weaviate", type=WeaviateConnection, host="host.docker.internal" | |
) | |
if conn.client().is_ready(): | |
print("Connected Weaviate server!") | |
else: | |
st.caption("接続に問題がありそうです") | |
if conn.exists(collection_name=collection_name) is False: | |
st.caption("コレクションの準備ができいないようです") | |
st.write( | |
f":red[{conn.total_count(collection_name=collection_name)}] images you can search" | |
) | |
search_type = st.radio( | |
label="検索タイプ", | |
options=[ | |
"**bm25-gse**", | |
"**bm25-kagome**", | |
"**vector**", | |
"**hybrid**", | |
"**vector+filter by kagome**", | |
"**vector+rerank by kagome**", | |
], | |
horizontal=True, | |
label_visibility="collapsed", | |
) | |
# setup search box | |
query_text = st.text_input("Put your words what what you want?", "", key="query") | |
filter_text = st.text_input( | |
"Filter word?", | |
"", | |
key="filter", | |
) | |
rerank_text = st.text_input( | |
"Rerank word?", | |
"", | |
key="rerank", | |
) | |
result = st.container() | |
if query_text: | |
result = st.container() | |
# perform search | |
if search_type == "**bm25-gse**": | |
hits = conn.query( | |
collection_name=collection_name, | |
query=query_text, | |
query_properties=properties_gse, | |
limit=limit, | |
) | |
elif search_type == "**bm25-kagome**": | |
hits = conn.query( | |
collection_name=collection_name, | |
query=query_text, | |
query_properties=properties_kagome, | |
limit=limit, | |
) | |
elif search_type == "**vector**": | |
hits = conn.near_query( | |
collection_name=collection_name, | |
query=query_text, | |
query_properties=properties_kagome, | |
limit=limit, | |
) | |
elif search_type == "**vector+filter by kagome**": | |
hits = conn.near_query( | |
collection_name=collection_name, | |
query=query_text, | |
query_properties=properties_kagome, | |
limit=limit, | |
filter=filter_text, | |
) | |
elif search_type == "**vector+rerank by kagome**": | |
hits = conn.near_query( | |
collection_name=collection_name, | |
query=query_text, | |
query_properties=properties_kagome, | |
limit=limit, | |
rerank=rerank_text, | |
) | |
else: | |
hits = conn.hybrid_query( | |
collection_name=collection_name, | |
query=query_text, | |
query_properties=properties_kagome, | |
limit=limit, | |
) | |
if len(hits) > 0: | |
result.divider() | |
for hit in hits: | |
result.image(f"../../images/{hit.properties["filename"]}") | |
result.write(f"Flickr : {hit.properties["flickr_url"]}") | |
if search_type.startswith("**vector"): | |
result.write(f"Score is {hit.metadata.distance:.3f}") | |
else: | |
result.write(f"Score is {hit.metadata.score:.3f}") | |
result.table(hit.properties["caption_ja"]) | |
result.divider() | |
else: | |
result.write("No results...") | |
if __name__ == "__main__": | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment