Created
August 31, 2016 22:48
-
-
Save jon-barker/127947d8a961bfbe2d0d403dd9bed2aa to your computer and use it in GitHub Desktop.
SpaceNet DIGITS examples
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
name: "DetectNet" | |
layer { | |
name: "train_data" | |
type: "Data" | |
top: "data" | |
include { | |
phase: TRAIN | |
} | |
data_param { | |
batch_size: 2 | |
backend: LMDB | |
} | |
} | |
layer { | |
name: "train_label" | |
type: "Data" | |
top: "label" | |
include { | |
phase: TRAIN | |
} | |
data_param { | |
batch_size: 2 | |
backend: LMDB | |
} | |
} | |
layer { | |
name: "val_data" | |
type: "Data" | |
top: "data" | |
include { | |
phase: TEST | |
stage: "val" | |
} | |
data_param { | |
batch_size: 2 | |
backend: LMDB | |
} | |
} | |
layer { | |
name: "val_label" | |
type: "Data" | |
top: "label" | |
include { | |
phase: TEST | |
stage: "val" | |
} | |
data_param { | |
batch_size: 2 | |
backend: LMDB | |
} | |
} | |
layer { | |
name: "deploy_data" | |
type: "Input" | |
top: "data" | |
include { | |
phase: TEST | |
not_stage: "val" | |
} | |
input_param { | |
shape { | |
dim: 1 | |
dim: 3 | |
dim: 1280 | |
dim: 1280 | |
} | |
} | |
} | |
layer { | |
name: "train_transform" | |
type: "DetectNetTransformation" | |
bottom: "data" | |
bottom: "label" | |
top: "transformed_data" | |
top: "transformed_label" | |
include { | |
phase: TRAIN | |
} | |
transform_param { | |
mean_value: 127.0 | |
} | |
detectnet_groundtruth_param { | |
stride: 16 | |
scale_cvg: 0.4 | |
gridbox_type: GRIDBOX_MIN | |
min_cvg_len: 20 | |
coverage_type: RECTANGULAR | |
image_size_x: 512 | |
image_size_y: 512 | |
obj_norm: true | |
crop_bboxes: false | |
} | |
detectnet_augmentation_param { | |
crop_prob: 1.0 | |
shift_x: 32 | |
shift_y: 32 | |
scale_prob: 0.4 | |
scale_min: 0.8 | |
scale_max: 1.2 | |
flip_prob: 0.5 | |
rotation_prob: 0.0 | |
max_rotate_degree: 5.0 | |
hue_rotation_prob: 0.8 | |
hue_rotation: 30.0 | |
desaturation_prob: 0.8 | |
desaturation_max: 0.8 | |
} | |
} | |
layer { | |
name: "val_transform" | |
type: "DetectNetTransformation" | |
bottom: "data" | |
bottom: "label" | |
top: "transformed_data" | |
top: "transformed_label" | |
include { | |
phase: TEST | |
stage: "val" | |
} | |
transform_param { | |
mean_value: 127.0 | |
} | |
detectnet_groundtruth_param { | |
stride: 16 | |
scale_cvg: 0.4 | |
gridbox_type: GRIDBOX_MIN | |
min_cvg_len: 20 | |
coverage_type: RECTANGULAR | |
image_size_x: 1280 | |
image_size_y: 1280 | |
obj_norm: true | |
crop_bboxes: false | |
} | |
} | |
layer { | |
name: "deploy_transform" | |
type: "Power" | |
bottom: "data" | |
top: "transformed_data" | |
include { | |
phase: TEST | |
not_stage: "val" | |
} | |
power_param { | |
shift: -127.0 | |
} | |
} | |
layer { | |
name: "slice-label" | |
type: "Slice" | |
bottom: "transformed_label" | |
top: "foreground-label" | |
top: "bbox-label" | |
top: "size-label" | |
top: "obj-label" | |
top: "coverage-label" | |
include { | |
phase: TRAIN | |
} | |
include { | |
phase: TEST | |
stage: "val" | |
} | |
slice_param { | |
slice_dim: 1 | |
slice_point: 1 | |
slice_point: 5 | |
slice_point: 7 | |
slice_point: 8 | |
} | |
} | |
layer { | |
name: "coverage-block" | |
type: "Concat" | |
bottom: "foreground-label" | |
bottom: "foreground-label" | |
bottom: "foreground-label" | |
bottom: "foreground-label" | |
top: "coverage-block" | |
include { | |
phase: TRAIN | |
} | |
include { | |
phase: TEST | |
stage: "val" | |
} | |
concat_param { | |
concat_dim: 1 | |
} | |
} | |
layer { | |
name: "size-block" | |
type: "Concat" | |
bottom: "size-label" | |
bottom: "size-label" | |
top: "size-block" | |
include { | |
phase: TRAIN | |
} | |
include { | |
phase: TEST | |
stage: "val" | |
} | |
concat_param { | |
concat_dim: 1 | |
} | |
} | |
layer { | |
name: "obj-block" | |
type: "Concat" | |
bottom: "obj-label" | |
bottom: "obj-label" | |
bottom: "obj-label" | |
bottom: "obj-label" | |
top: "obj-block" | |
include { | |
phase: TRAIN | |
} | |
include { | |
phase: TEST | |
stage: "val" | |
} | |
concat_param { | |
concat_dim: 1 | |
} | |
} | |
layer { | |
name: "bb-label-norm" | |
type: "Eltwise" | |
bottom: "bbox-label" | |
bottom: "size-block" | |
top: "bbox-label-norm" | |
include { | |
phase: TRAIN | |
} | |
include { | |
phase: TEST | |
stage: "val" | |
} | |
eltwise_param { | |
operation: PROD | |
} | |
} | |
layer { | |
name: "bb-obj-norm" | |
type: "Eltwise" | |
bottom: "bbox-label-norm" | |
bottom: "obj-block" | |
top: "bbox-obj-label-norm" | |
include { | |
phase: TRAIN | |
} | |
include { | |
phase: TEST | |
stage: "val" | |
} | |
eltwise_param { | |
operation: PROD | |
} | |
} | |
layer { | |
name: "conv1/7x7_s2" | |
type: "Convolution" | |
bottom: "transformed_data" | |
top: "conv1/7x7_s2" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 64 | |
pad: 3 | |
kernel_size: 7 | |
stride: 2 | |
weight_filler { | |
type: "xavier" | |
std: 0.1 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "conv1/relu_7x7" | |
type: "ReLU" | |
bottom: "conv1/7x7_s2" | |
top: "conv1/7x7_s2" | |
} | |
layer { | |
name: "pool1/3x3_s2" | |
type: "Pooling" | |
bottom: "conv1/7x7_s2" | |
top: "pool1/3x3_s2" | |
pooling_param { | |
pool: MAX | |
kernel_size: 3 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "pool1/norm1" | |
type: "LRN" | |
bottom: "pool1/3x3_s2" | |
top: "pool1/norm1" | |
lrn_param { | |
local_size: 5 | |
alpha: 0.0001 | |
beta: 0.75 | |
} | |
} | |
layer { | |
name: "conv2/3x3_reduce" | |
type: "Convolution" | |
bottom: "pool1/norm1" | |
top: "conv2/3x3_reduce" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 64 | |
kernel_size: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.1 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "conv2/relu_3x3_reduce" | |
type: "ReLU" | |
bottom: "conv2/3x3_reduce" | |
top: "conv2/3x3_reduce" | |
} | |
layer { | |
name: "conv2/3x3" | |
type: "Convolution" | |
bottom: "conv2/3x3_reduce" | |
top: "conv2/3x3" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 192 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "xavier" | |
std: 0.03 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "conv2/relu_3x3" | |
type: "ReLU" | |
bottom: "conv2/3x3" | |
top: "conv2/3x3" | |
} | |
layer { | |
name: "conv2/norm2" | |
type: "LRN" | |
bottom: "conv2/3x3" | |
top: "conv2/norm2" | |
lrn_param { | |
local_size: 5 | |
alpha: 0.0001 | |
beta: 0.75 | |
} | |
} | |
layer { | |
name: "pool2/3x3_s2" | |
type: "Pooling" | |
bottom: "conv2/norm2" | |
top: "pool2/3x3_s2" | |
pooling_param { | |
pool: MAX | |
kernel_size: 3 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "inception_3a/1x1" | |
type: "Convolution" | |
bottom: "pool2/3x3_s2" | |
top: "inception_3a/1x1" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 64 | |
kernel_size: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.03 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "inception_3a/relu_1x1" | |
type: "ReLU" | |
bottom: "inception_3a/1x1" | |
top: "inception_3a/1x1" | |
} | |
layer { | |
name: "inception_3a/3x3_reduce" | |
type: "Convolution" | |
bottom: "pool2/3x3_s2" | |
top: "inception_3a/3x3_reduce" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 96 | |
kernel_size: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.09 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "inception_3a/relu_3x3_reduce" | |
type: "ReLU" | |
bottom: "inception_3a/3x3_reduce" | |
top: "inception_3a/3x3_reduce" | |
} | |
layer { | |
name: "inception_3a/3x3" | |
type: "Convolution" | |
bottom: "inception_3a/3x3_reduce" | |
top: "inception_3a/3x3" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "xavier" | |
std: 0.03 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "inception_3a/relu_3x3" | |
type: "ReLU" | |
bottom: "inception_3a/3x3" | |
top: "inception_3a/3x3" | |
} | |
layer { | |
name: "inception_3a/5x5_reduce" | |
type: "Convolution" | |
bottom: "pool2/3x3_s2" | |
top: "inception_3a/5x5_reduce" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 16 | |
kernel_size: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.2 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "inception_3a/relu_5x5_reduce" | |
type: "ReLU" | |
bottom: "inception_3a/5x5_reduce" | |
top: "inception_3a/5x5_reduce" | |
} | |
layer { | |
name: "inception_3a/5x5" | |
type: "Convolution" | |
bottom: "inception_3a/5x5_reduce" | |
top: "inception_3a/5x5" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 32 | |
pad: 2 | |
kernel_size: 5 | |
weight_filler { | |
type: "xavier" | |
std: 0.03 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "inception_3a/relu_5x5" | |
type: "ReLU" | |
bottom: "inception_3a/5x5" | |
top: "inception_3a/5x5" | |
} | |
layer { | |
name: "inception_3a/pool" | |
type: "Pooling" | |
bottom: "pool2/3x3_s2" | |
top: "inception_3a/pool" | |
pooling_param { | |
pool: MAX | |
kernel_size: 3 | |
stride: 1 | |
pad: 1 | |
} | |
} | |
layer { | |
name: "inception_3a/pool_proj" | |
type: "Convolution" | |
bottom: "inception_3a/pool" | |
top: "inception_3a/pool_proj" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 32 | |
kernel_size: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.1 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "inception_3a/relu_pool_proj" | |
type: "ReLU" | |
bottom: "inception_3a/pool_proj" | |
top: "inception_3a/pool_proj" | |
} | |
layer { | |
name: "inception_3a/output" | |
type: "Concat" | |
bottom: "inception_3a/1x1" | |
bottom: "inception_3a/3x3" | |
bottom: "inception_3a/5x5" | |
bottom: "inception_3a/pool_proj" | |
top: "inception_3a/output" | |
} | |
layer { | |
name: "inception_3b/1x1" | |
type: "Convolution" | |
bottom: "inception_3a/output" | |
top: "inception_3b/1x1" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 128 | |
kernel_size: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.03 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "inception_3b/relu_1x1" | |
type: "ReLU" | |
bottom: "inception_3b/1x1" | |
top: "inception_3b/1x1" | |
} | |
layer { | |
name: "inception_3b/3x3_reduce" | |
type: "Convolution" | |
bottom: "inception_3a/output" | |
top: "inception_3b/3x3_reduce" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 128 | |
kernel_size: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.09 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "inception_3b/relu_3x3_reduce" | |
type: "ReLU" | |
bottom: "inception_3b/3x3_reduce" | |
top: "inception_3b/3x3_reduce" | |
} | |
layer { | |
name: "inception_3b/3x3" | |
type: "Convolution" | |
bottom: "inception_3b/3x3_reduce" | |
top: "inception_3b/3x3" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 192 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "xavier" | |
std: 0.03 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "inception_3b/relu_3x3" | |
type: "ReLU" | |
bottom: "inception_3b/3x3" | |
top: "inception_3b/3x3" | |
} | |
layer { | |
name: "inception_3b/5x5_reduce" | |
type: "Convolution" | |
bottom: "inception_3a/output" | |
top: "inception_3b/5x5_reduce" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 32 | |
kernel_size: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.2 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "inception_3b/relu_5x5_reduce" | |
type: "ReLU" | |
bottom: "inception_3b/5x5_reduce" | |
top: "inception_3b/5x5_reduce" | |
} | |
layer { | |
name: "inception_3b/5x5" | |
type: "Convolution" | |
bottom: "inception_3b/5x5_reduce" | |
top: "inception_3b/5x5" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 96 | |
pad: 2 | |
kernel_size: 5 | |
weight_filler { | |
type: "xavier" | |
std: 0.03 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "inception_3b/relu_5x5" | |
type: "ReLU" | |
bottom: "inception_3b/5x5" | |
top: "inception_3b/5x5" | |
} | |
layer { | |
name: "inception_3b/pool" | |
type: "Pooling" | |
bottom: "inception_3a/output" | |
top: "inception_3b/pool" | |
pooling_param { | |
pool: MAX | |
kernel_size: 3 | |
stride: 1 | |
pad: 1 | |
} | |
} | |
layer { | |
name: "inception_3b/pool_proj" | |
type: "Convolution" | |
bottom: "inception_3b/pool" | |
top: "inception_3b/pool_proj" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 64 | |
kernel_size: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.1 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "inception_3b/relu_pool_proj" | |
type: "ReLU" | |
bottom: "inception_3b/pool_proj" | |
top: "inception_3b/pool_proj" | |
} | |
layer { | |
name: "inception_3b/output" | |
type: "Concat" | |
bottom: "inception_3b/1x1" | |
bottom: "inception_3b/3x3" | |
bottom: "inception_3b/5x5" | |
bottom: "inception_3b/pool_proj" | |
top: "inception_3b/output" | |
} | |
layer { | |
name: "pool3/3x3_s2" | |
type: "Pooling" | |
bottom: "inception_3b/output" | |
top: "pool3/3x3_s2" | |
pooling_param { | |
pool: MAX | |
kernel_size: 3 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "inception_4a/1x1" | |
type: "Convolution" | |
bottom: "pool3/3x3_s2" | |
top: "inception_4a/1x1" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 192 | |
kernel_size: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.03 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "inception_4a/relu_1x1" | |
type: "ReLU" | |
bottom: "inception_4a/1x1" | |
top: "inception_4a/1x1" | |
} | |
layer { | |
name: "inception_4a/3x3_reduce" | |
type: "Convolution" | |
bottom: "pool3/3x3_s2" | |
top: "inception_4a/3x3_reduce" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 96 | |
kernel_size: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.09 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "inception_4a/relu_3x3_reduce" | |
type: "ReLU" | |
bottom: "inception_4a/3x3_reduce" | |
top: "inception_4a/3x3_reduce" | |
} | |
layer { | |
name: "inception_4a/3x3" | |
type: "Convolution" | |
bottom: "inception_4a/3x3_reduce" | |
top: "inception_4a/3x3" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 208 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "xavier" | |
std: 0.03 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "inception_4a/relu_3x3" | |
type: "ReLU" | |
bottom: "inception_4a/3x3" | |
top: "inception_4a/3x3" | |
} | |
layer { | |
name: "inception_4a/5x5_reduce" | |
type: "Convolution" | |
bottom: "pool3/3x3_s2" | |
top: "inception_4a/5x5_reduce" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 16 | |
kernel_size: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.2 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "inception_4a/relu_5x5_reduce" | |
type: "ReLU" | |
bottom: "inception_4a/5x5_reduce" | |
top: "inception_4a/5x5_reduce" | |
} | |
layer { | |
name: "inception_4a/5x5" | |
type: "Convolution" | |
bottom: "inception_4a/5x5_reduce" | |
top: "inception_4a/5x5" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 48 | |
pad: 2 | |
kernel_size: 5 | |
weight_filler { | |
type: "xavier" | |
std: 0.03 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "inception_4a/relu_5x5" | |
type: "ReLU" | |
bottom: "inception_4a/5x5" | |
top: "inception_4a/5x5" | |
} | |
layer { | |
name: "inception_4a/pool" | |
type: "Pooling" | |
bottom: "pool3/3x3_s2" | |
top: "inception_4a/pool" | |
pooling_param { | |
pool: MAX | |
kernel_size: 3 | |
stride: 1 | |
pad: 1 | |
} | |
} | |
layer { | |
name: "inception_4a/pool_proj" | |
type: "Convolution" | |
bottom: "inception_4a/pool" | |
top: "inception_4a/pool_proj" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 64 | |
kernel_size: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.1 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "inception_4a/relu_pool_proj" | |
type: "ReLU" | |
bottom: "inception_4a/pool_proj" | |
top: "inception_4a/pool_proj" | |
} | |
layer { | |
name: "inception_4a/output" | |
type: "Concat" | |
bottom: "inception_4a/1x1" | |
bottom: "inception_4a/3x3" | |
bottom: "inception_4a/5x5" | |
bottom: "inception_4a/pool_proj" | |
top: "inception_4a/output" | |
} | |
layer { | |
name: "inception_4b/1x1" | |
type: "Convolution" | |
bottom: "inception_4a/output" | |
top: "inception_4b/1x1" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 160 | |
kernel_size: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.03 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "inception_4b/relu_1x1" | |
type: "ReLU" | |
bottom: "inception_4b/1x1" | |
top: "inception_4b/1x1" | |
} | |
layer { | |
name: "inception_4b/3x3_reduce" | |
type: "Convolution" | |
bottom: "inception_4a/output" | |
top: "inception_4b/3x3_reduce" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 112 | |
kernel_size: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.09 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "inception_4b/relu_3x3_reduce" | |
type: "ReLU" | |
bottom: "inception_4b/3x3_reduce" | |
top: "inception_4b/3x3_reduce" | |
} | |
layer { | |
name: "inception_4b/3x3" | |
type: "Convolution" | |
bottom: "inception_4b/3x3_reduce" | |
top: "inception_4b/3x3" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 224 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "xavier" | |
std: 0.03 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "inception_4b/relu_3x3" | |
type: "ReLU" | |
bottom: "inception_4b/3x3" | |
top: "inception_4b/3x3" | |
} | |
layer { | |
name: "inception_4b/5x5_reduce" | |
type: "Convolution" | |
bottom: "inception_4a/output" | |
top: "inception_4b/5x5_reduce" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 24 | |
kernel_size: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.2 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "inception_4b/relu_5x5_reduce" | |
type: "ReLU" | |
bottom: "inception_4b/5x5_reduce" | |
top: "inception_4b/5x5_reduce" | |
} | |
layer { | |
name: "inception_4b/5x5" | |
type: "Convolution" | |
bottom: "inception_4b/5x5_reduce" | |
top: "inception_4b/5x5" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 64 | |
pad: 2 | |
kernel_size: 5 | |
weight_filler { | |
type: "xavier" | |
std: 0.03 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "inception_4b/relu_5x5" | |
type: "ReLU" | |
bottom: "inception_4b/5x5" | |
top: "inception_4b/5x5" | |
} | |
layer { | |
name: "inception_4b/pool" | |
type: "Pooling" | |
bottom: "inception_4a/output" | |
top: "inception_4b/pool" | |
pooling_param { | |
pool: MAX | |
kernel_size: 3 | |
stride: 1 | |
pad: 1 | |
} | |
} | |
layer { | |
name: "inception_4b/pool_proj" | |
type: "Convolution" | |
bottom: "inception_4b/pool" | |
top: "inception_4b/pool_proj" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 64 | |
kernel_size: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.1 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "inception_4b/relu_pool_proj" | |
type: "ReLU" | |
bottom: "inception_4b/pool_proj" | |
top: "inception_4b/pool_proj" | |
} | |
layer { | |
name: "inception_4b/output" | |
type: "Concat" | |
bottom: "inception_4b/1x1" | |
bottom: "inception_4b/3x3" | |
bottom: "inception_4b/5x5" | |
bottom: "inception_4b/pool_proj" | |
top: "inception_4b/output" | |
} | |
layer { | |
name: "inception_4c/1x1" | |
type: "Convolution" | |
bottom: "inception_4b/output" | |
top: "inception_4c/1x1" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 128 | |
kernel_size: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.03 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "inception_4c/relu_1x1" | |
type: "ReLU" | |
bottom: "inception_4c/1x1" | |
top: "inception_4c/1x1" | |
} | |
layer { | |
name: "inception_4c/3x3_reduce" | |
type: "Convolution" | |
bottom: "inception_4b/output" | |
top: "inception_4c/3x3_reduce" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 128 | |
kernel_size: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.09 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "inception_4c/relu_3x3_reduce" | |
type: "ReLU" | |
bottom: "inception_4c/3x3_reduce" | |
top: "inception_4c/3x3_reduce" | |
} | |
layer { | |
name: "inception_4c/3x3" | |
type: "Convolution" | |
bottom: "inception_4c/3x3_reduce" | |
top: "inception_4c/3x3" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 256 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "xavier" | |
std: 0.03 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "inception_4c/relu_3x3" | |
type: "ReLU" | |
bottom: "inception_4c/3x3" | |
top: "inception_4c/3x3" | |
} | |
layer { | |
name: "inception_4c/5x5_reduce" | |
type: "Convolution" | |
bottom: "inception_4b/output" | |
top: "inception_4c/5x5_reduce" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 24 | |
kernel_size: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.2 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "inception_4c/relu_5x5_reduce" | |
type: "ReLU" | |
bottom: "inception_4c/5x5_reduce" | |
top: "inception_4c/5x5_reduce" | |
} | |
layer { | |
name: "inception_4c/5x5" | |
type: "Convolution" | |
bottom: "inception_4c/5x5_reduce" | |
top: "inception_4c/5x5" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 64 | |
pad: 2 | |
kernel_size: 5 | |
weight_filler { | |
type: "xavier" | |
std: 0.03 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "inception_4c/relu_5x5" | |
type: "ReLU" | |
bottom: "inception_4c/5x5" | |
top: "inception_4c/5x5" | |
} | |
layer { | |
name: "inception_4c/pool" | |
type: "Pooling" | |
bottom: "inception_4b/output" | |
top: "inception_4c/pool" | |
pooling_param { | |
pool: MAX | |
kernel_size: 3 | |
stride: 1 | |
pad: 1 | |
} | |
} | |
layer { | |
name: "inception_4c/pool_proj" | |
type: "Convolution" | |
bottom: "inception_4c/pool" | |
top: "inception_4c/pool_proj" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 64 | |
kernel_size: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.1 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "inception_4c/relu_pool_proj" | |
type: "ReLU" | |
bottom: "inception_4c/pool_proj" | |
top: "inception_4c/pool_proj" | |
} | |
layer { | |
name: "inception_4c/output" | |
type: "Concat" | |
bottom: "inception_4c/1x1" | |
bottom: "inception_4c/3x3" | |
bottom: "inception_4c/5x5" | |
bottom: "inception_4c/pool_proj" | |
top: "inception_4c/output" | |
} | |
layer { | |
name: "inception_4d/1x1" | |
type: "Convolution" | |
bottom: "inception_4c/output" | |
top: "inception_4d/1x1" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 112 | |
kernel_size: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.1 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "inception_4d/relu_1x1" | |
type: "ReLU" | |
bottom: "inception_4d/1x1" | |
top: "inception_4d/1x1" | |
} | |
layer { | |
name: "inception_4d/3x3_reduce" | |
type: "Convolution" | |
bottom: "inception_4c/output" | |
top: "inception_4d/3x3_reduce" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 144 | |
kernel_size: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.1 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "inception_4d/relu_3x3_reduce" | |
type: "ReLU" | |
bottom: "inception_4d/3x3_reduce" | |
top: "inception_4d/3x3_reduce" | |
} | |
layer { | |
name: "inception_4d/3x3" | |
type: "Convolution" | |
bottom: "inception_4d/3x3_reduce" | |
top: "inception_4d/3x3" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 288 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "xavier" | |
std: 0.1 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "inception_4d/relu_3x3" | |
type: "ReLU" | |
bottom: "inception_4d/3x3" | |
top: "inception_4d/3x3" | |
} | |
layer { | |
name: "inception_4d/5x5_reduce" | |
type: "Convolution" | |
bottom: "inception_4c/output" | |
top: "inception_4d/5x5_reduce" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 32 | |
kernel_size: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.1 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "inception_4d/relu_5x5_reduce" | |
type: "ReLU" | |
bottom: "inception_4d/5x5_reduce" | |
top: "inception_4d/5x5_reduce" | |
} | |
layer { | |
name: "inception_4d/5x5" | |
type: "Convolution" | |
bottom: "inception_4d/5x5_reduce" | |
top: "inception_4d/5x5" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 64 | |
pad: 2 | |
kernel_size: 5 | |
weight_filler { | |
type: "xavier" | |
std: 0.1 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "inception_4d/relu_5x5" | |
type: "ReLU" | |
bottom: "inception_4d/5x5" | |
top: "inception_4d/5x5" | |
} | |
layer { | |
name: "inception_4d/pool" | |
type: "Pooling" | |
bottom: "inception_4c/output" | |
top: "inception_4d/pool" | |
pooling_param { | |
pool: MAX | |
kernel_size: 3 | |
stride: 1 | |
pad: 1 | |
} | |
} | |
layer { | |
name: "inception_4d/pool_proj" | |
type: "Convolution" | |
bottom: "inception_4d/pool" | |
top: "inception_4d/pool_proj" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 64 | |
kernel_size: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.1 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "inception_4d/relu_pool_proj" | |
type: "ReLU" | |
bottom: "inception_4d/pool_proj" | |
top: "inception_4d/pool_proj" | |
} | |
layer { | |
name: "inception_4d/output" | |
type: "Concat" | |
bottom: "inception_4d/1x1" | |
bottom: "inception_4d/3x3" | |
bottom: "inception_4d/5x5" | |
bottom: "inception_4d/pool_proj" | |
top: "inception_4d/output" | |
} | |
layer { | |
name: "inception_4e/1x1" | |
type: "Convolution" | |
bottom: "inception_4d/output" | |
top: "inception_4e/1x1" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 256 | |
kernel_size: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.03 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "inception_4e/relu_1x1" | |
type: "ReLU" | |
bottom: "inception_4e/1x1" | |
top: "inception_4e/1x1" | |
} | |
layer { | |
name: "inception_4e/3x3_reduce" | |
type: "Convolution" | |
bottom: "inception_4d/output" | |
top: "inception_4e/3x3_reduce" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 160 | |
kernel_size: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.09 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "inception_4e/relu_3x3_reduce" | |
type: "ReLU" | |
bottom: "inception_4e/3x3_reduce" | |
top: "inception_4e/3x3_reduce" | |
} | |
layer { | |
name: "inception_4e/3x3" | |
type: "Convolution" | |
bottom: "inception_4e/3x3_reduce" | |
top: "inception_4e/3x3" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 320 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "xavier" | |
std: 0.03 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "inception_4e/relu_3x3" | |
type: "ReLU" | |
bottom: "inception_4e/3x3" | |
top: "inception_4e/3x3" | |
} | |
layer { | |
name: "inception_4e/5x5_reduce" | |
type: "Convolution" | |
bottom: "inception_4d/output" | |
top: "inception_4e/5x5_reduce" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 32 | |
kernel_size: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.2 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "inception_4e/relu_5x5_reduce" | |
type: "ReLU" | |
bottom: "inception_4e/5x5_reduce" | |
top: "inception_4e/5x5_reduce" | |
} | |
layer { | |
name: "inception_4e/5x5" | |
type: "Convolution" | |
bottom: "inception_4e/5x5_reduce" | |
top: "inception_4e/5x5" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 2 | |
kernel_size: 5 | |
weight_filler { | |
type: "xavier" | |
std: 0.03 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "inception_4e/relu_5x5" | |
type: "ReLU" | |
bottom: "inception_4e/5x5" | |
top: "inception_4e/5x5" | |
} | |
layer { | |
name: "inception_4e/pool" | |
type: "Pooling" | |
bottom: "inception_4d/output" | |
top: "inception_4e/pool" | |
pooling_param { | |
pool: MAX | |
kernel_size: 3 | |
stride: 1 | |
pad: 1 | |
} | |
} | |
layer { | |
name: "inception_4e/pool_proj" | |
type: "Convolution" | |
bottom: "inception_4e/pool" | |
top: "inception_4e/pool_proj" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 128 | |
kernel_size: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.1 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "inception_4e/relu_pool_proj" | |
type: "ReLU" | |
bottom: "inception_4e/pool_proj" | |
top: "inception_4e/pool_proj" | |
} | |
layer { | |
name: "inception_4e/output" | |
type: "Concat" | |
bottom: "inception_4e/1x1" | |
bottom: "inception_4e/3x3" | |
bottom: "inception_4e/5x5" | |
bottom: "inception_4e/pool_proj" | |
top: "inception_4e/output" | |
} | |
layer { | |
name: "inception_5a/1x1" | |
type: "Convolution" | |
bottom: "inception_4e/output" | |
top: "inception_5a/1x1" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 256 | |
kernel_size: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.03 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "inception_5a/relu_1x1" | |
type: "ReLU" | |
bottom: "inception_5a/1x1" | |
top: "inception_5a/1x1" | |
} | |
layer { | |
name: "inception_5a/3x3_reduce" | |
type: "Convolution" | |
bottom: "inception_4e/output" | |
top: "inception_5a/3x3_reduce" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 160 | |
kernel_size: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.09 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "inception_5a/relu_3x3_reduce" | |
type: "ReLU" | |
bottom: "inception_5a/3x3_reduce" | |
top: "inception_5a/3x3_reduce" | |
} | |
layer { | |
name: "inception_5a/3x3" | |
type: "Convolution" | |
bottom: "inception_5a/3x3_reduce" | |
top: "inception_5a/3x3" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 320 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "xavier" | |
std: 0.03 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "inception_5a/relu_3x3" | |
type: "ReLU" | |
bottom: "inception_5a/3x3" | |
top: "inception_5a/3x3" | |
} | |
layer { | |
name: "inception_5a/5x5_reduce" | |
type: "Convolution" | |
bottom: "inception_4e/output" | |
top: "inception_5a/5x5_reduce" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 32 | |
kernel_size: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.2 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "inception_5a/relu_5x5_reduce" | |
type: "ReLU" | |
bottom: "inception_5a/5x5_reduce" | |
top: "inception_5a/5x5_reduce" | |
} | |
layer { | |
name: "inception_5a/5x5" | |
type: "Convolution" | |
bottom: "inception_5a/5x5_reduce" | |
top: "inception_5a/5x5" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 2 | |
kernel_size: 5 | |
weight_filler { | |
type: "xavier" | |
std: 0.03 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "inception_5a/relu_5x5" | |
type: "ReLU" | |
bottom: "inception_5a/5x5" | |
top: "inception_5a/5x5" | |
} | |
layer { | |
name: "inception_5a/pool" | |
type: "Pooling" | |
bottom: "inception_4e/output" | |
top: "inception_5a/pool" | |
pooling_param { | |
pool: MAX | |
kernel_size: 3 | |
stride: 1 | |
pad: 1 | |
} | |
} | |
layer { | |
name: "inception_5a/pool_proj" | |
type: "Convolution" | |
bottom: "inception_5a/pool" | |
top: "inception_5a/pool_proj" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 128 | |
kernel_size: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.1 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "inception_5a/relu_pool_proj" | |
type: "ReLU" | |
bottom: "inception_5a/pool_proj" | |
top: "inception_5a/pool_proj" | |
} | |
layer { | |
name: "inception_5a/output" | |
type: "Concat" | |
bottom: "inception_5a/1x1" | |
bottom: "inception_5a/3x3" | |
bottom: "inception_5a/5x5" | |
bottom: "inception_5a/pool_proj" | |
top: "inception_5a/output" | |
} | |
layer { | |
name: "inception_5b/1x1" | |
type: "Convolution" | |
bottom: "inception_5a/output" | |
top: "inception_5b/1x1" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 384 | |
kernel_size: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.1 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "inception_5b/relu_1x1" | |
type: "ReLU" | |
bottom: "inception_5b/1x1" | |
top: "inception_5b/1x1" | |
} | |
layer { | |
name: "inception_5b/3x3_reduce" | |
type: "Convolution" | |
bottom: "inception_5a/output" | |
top: "inception_5b/3x3_reduce" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 1.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 192 | |
kernel_size: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.1 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "inception_5b/relu_3x3_reduce" | |
type: "ReLU" | |
bottom: "inception_5b/3x3_reduce" | |
top: "inception_5b/3x3_reduce" | |
} | |
layer { | |
name: "inception_5b/3x3" | |
type: "Convolution" | |
bottom: "inception_5b/3x3_reduce" | |
top: "inception_5b/3x3" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 384 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "xavier" | |
std: 0.1 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "inception_5b/relu_3x3" | |
type: "ReLU" | |
bottom: "inception_5b/3x3" | |
top: "inception_5b/3x3" | |
} | |
layer { | |
name: "inception_5b/5x5_reduce" | |
type: "Convolution" | |
bottom: "inception_5a/output" | |
top: "inception_5b/5x5_reduce" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 48 | |
kernel_size: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.1 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "inception_5b/relu_5x5_reduce" | |
type: "ReLU" | |
bottom: "inception_5b/5x5_reduce" | |
top: "inception_5b/5x5_reduce" | |
} | |
layer { | |
name: "inception_5b/5x5" | |
type: "Convolution" | |
bottom: "inception_5b/5x5_reduce" | |
top: "inception_5b/5x5" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 2 | |
kernel_size: 5 | |
weight_filler { | |
type: "xavier" | |
std: 0.1 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "inception_5b/relu_5x5" | |
type: "ReLU" | |
bottom: "inception_5b/5x5" | |
top: "inception_5b/5x5" | |
} | |
layer { | |
name: "inception_5b/pool" | |
type: "Pooling" | |
bottom: "inception_5a/output" | |
top: "inception_5b/pool" | |
pooling_param { | |
pool: MAX | |
kernel_size: 3 | |
stride: 1 | |
pad: 1 | |
} | |
} | |
layer { | |
name: "inception_5b/pool_proj" | |
type: "Convolution" | |
bottom: "inception_5b/pool" | |
top: "inception_5b/pool_proj" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 128 | |
kernel_size: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.1 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "inception_5b/relu_pool_proj" | |
type: "ReLU" | |
bottom: "inception_5b/pool_proj" | |
top: "inception_5b/pool_proj" | |
} | |
layer { | |
name: "inception_5b/output" | |
type: "Concat" | |
bottom: "inception_5b/1x1" | |
bottom: "inception_5b/3x3" | |
bottom: "inception_5b/5x5" | |
bottom: "inception_5b/pool_proj" | |
top: "inception_5b/output" | |
} | |
layer { | |
name: "pool5/drop_s1" | |
type: "Dropout" | |
bottom: "inception_5b/output" | |
top: "pool5/drop_s1" | |
dropout_param { | |
dropout_ratio: 0.4 | |
} | |
} | |
layer { | |
name: "cvg/classifier" | |
type: "Convolution" | |
bottom: "pool5/drop_s1" | |
top: "cvg/classifier" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 1 | |
kernel_size: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.03 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "coverage/sig" | |
type: "Sigmoid" | |
bottom: "cvg/classifier" | |
top: "coverage" | |
} | |
layer { | |
name: "bbox/regressor" | |
type: "Convolution" | |
bottom: "pool5/drop_s1" | |
top: "bboxes" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 4 | |
kernel_size: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.03 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "bbox_mask" | |
type: "Eltwise" | |
bottom: "bboxes" | |
bottom: "coverage-block" | |
top: "bboxes-masked" | |
include { | |
phase: TRAIN | |
} | |
include { | |
phase: TEST | |
stage: "val" | |
} | |
eltwise_param { | |
operation: PROD | |
} | |
} | |
layer { | |
name: "bbox-norm" | |
type: "Eltwise" | |
bottom: "bboxes-masked" | |
bottom: "size-block" | |
top: "bboxes-masked-norm" | |
include { | |
phase: TRAIN | |
} | |
include { | |
phase: TEST | |
stage: "val" | |
} | |
eltwise_param { | |
operation: PROD | |
} | |
} | |
layer { | |
name: "bbox-obj-norm" | |
type: "Eltwise" | |
bottom: "bboxes-masked-norm" | |
bottom: "obj-block" | |
top: "bboxes-obj-masked-norm" | |
include { | |
phase: TRAIN | |
} | |
include { | |
phase: TEST | |
stage: "val" | |
} | |
eltwise_param { | |
operation: PROD | |
} | |
} | |
layer { | |
name: "bbox_loss" | |
type: "L1Loss" | |
bottom: "bboxes-obj-masked-norm" | |
bottom: "bbox-obj-label-norm" | |
top: "loss_bbox" | |
loss_weight: 2.0 | |
include { | |
phase: TRAIN | |
} | |
include { | |
phase: TEST | |
stage: "val" | |
} | |
} | |
layer { | |
name: "coverage_loss" | |
type: "EuclideanLoss" | |
bottom: "coverage" | |
bottom: "coverage-label" | |
top: "loss_coverage" | |
include { | |
phase: TRAIN | |
} | |
include { | |
phase: TEST | |
stage: "val" | |
} | |
} | |
layer { | |
name: "cluster" | |
type: "Python" | |
bottom: "coverage" | |
bottom: "bboxes" | |
top: "bbox-list" | |
include { | |
phase: TEST | |
} | |
python_param { | |
module: "caffe.layers.detectnet.clustering" | |
layer: "ClusterDetections" | |
param_str: "1280, 1280, 16, 0.06, 3, 0.02, 10,1" | |
} | |
} | |
layer { | |
name: "cluster_gt" | |
type: "Python" | |
bottom: "coverage-label" | |
bottom: "bbox-label" | |
top: "bbox-list-label" | |
include { | |
phase: TEST | |
stage: "val" | |
} | |
python_param { | |
module: "caffe.layers.detectnet.clustering" | |
layer: "ClusterGroundtruth" | |
param_str: "1280, 1280, 16" | |
} | |
} | |
layer { | |
name: "score" | |
type: "Python" | |
bottom: "bbox-list-label" | |
bottom: "bbox-list" | |
top: "bbox-list-scored" | |
include { | |
phase: TEST | |
stage: "val" | |
} | |
python_param { | |
module: "caffe.layers.detectnet.mean_ap" | |
layer: "ScoreDetections" | |
} | |
} | |
layer { | |
name: "mAP" | |
type: "Python" | |
bottom: "bbox-list-scored" | |
top: "mAP" | |
top: "precision" | |
top: "recall" | |
include { | |
phase: TEST | |
stage: "val" | |
} | |
python_param { | |
module: "caffe.layers.detectnet.mean_ap" | |
layer: "mAP" | |
param_str: "1280, 1280, 16" | |
} | |
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
layer { | |
name: "data" | |
type: "Data" | |
top: "data" | |
include { | |
phase: TRAIN | |
} | |
data_param { | |
batch_size: 17 | |
backend: LMDB | |
} | |
} | |
layer { | |
name: "label" | |
type: "Data" | |
top: "label" | |
include { | |
phase: TRAIN | |
} | |
data_param { | |
batch_size: 17 | |
backend: LMDB | |
} | |
} | |
layer { | |
name: "data" | |
type: "Data" | |
top: "data" | |
include { | |
phase: TEST | |
} | |
data_param { | |
batch_size: 1 | |
backend: LMDB | |
} | |
} | |
layer { | |
name: "label" | |
type: "Data" | |
top: "label" | |
include { | |
phase: TEST | |
} | |
data_param { | |
batch_size: 1 | |
backend: LMDB | |
} | |
} | |
layer { | |
name: "bn0" | |
type: "BatchNorm" | |
bottom: "data" | |
top: "bn0" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 0.0 | |
decay_mult: 0.0 | |
} | |
param { | |
lr_mult: 0.0 | |
decay_mult: 0.0 | |
} | |
batch_norm_param { | |
use_global_stats: false | |
moving_average_fraction: 0.98 | |
eps: 0.0001 | |
scale_filler { | |
type: "constant" | |
value: 1.0 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "conv1" | |
type: "Convolution" | |
bottom: "bn0" | |
top: "conv1" | |
convolution_param { | |
num_output: 50 | |
kernel_size: 5 | |
weight_filler { | |
type: "xavier" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "relu1" | |
type: "ReLU" | |
bottom: "conv1" | |
top: "conv1" | |
} | |
layer { | |
name: "pool1" | |
type: "Pooling" | |
bottom: "conv1" | |
top: "pool1" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "bn1" | |
type: "BatchNorm" | |
bottom: "pool1" | |
top: "bn1" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 0.0 | |
decay_mult: 0.0 | |
} | |
param { | |
lr_mult: 0.0 | |
decay_mult: 0.0 | |
} | |
batch_norm_param { | |
use_global_stats: false | |
moving_average_fraction: 0.98 | |
eps: 0.0001 | |
scale_filler { | |
type: "constant" | |
value: 1.0 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "conv2" | |
type: "Convolution" | |
bottom: "bn1" | |
top: "conv2" | |
convolution_param { | |
num_output: 70 | |
kernel_size: 5 | |
weight_filler { | |
type: "xavier" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "relu2" | |
type: "ReLU" | |
bottom: "conv2" | |
top: "conv2" | |
} | |
layer { | |
name: "pool2" | |
type: "Pooling" | |
bottom: "conv2" | |
top: "pool2" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "bn2" | |
type: "BatchNorm" | |
bottom: "pool2" | |
top: "bn2" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 0.0 | |
decay_mult: 0.0 | |
} | |
param { | |
lr_mult: 0.0 | |
decay_mult: 0.0 | |
} | |
batch_norm_param { | |
use_global_stats: false | |
moving_average_fraction: 0.98 | |
eps: 0.0001 | |
scale_filler { | |
type: "constant" | |
value: 1.0 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "conv3" | |
type: "Convolution" | |
bottom: "bn2" | |
top: "conv3" | |
convolution_param { | |
num_output: 100 | |
kernel_size: 3 | |
weight_filler { | |
type: "xavier" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "relu3" | |
type: "ReLU" | |
bottom: "conv3" | |
top: "conv3" | |
} | |
layer { | |
name: "pool3" | |
type: "Pooling" | |
bottom: "conv3" | |
top: "pool3" | |
pooling_param { | |
pool: MAX | |
kernel_size: 3 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "bn3" | |
type: "BatchNorm" | |
bottom: "pool3" | |
top: "bn3" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 0.0 | |
decay_mult: 0.0 | |
} | |
param { | |
lr_mult: 0.0 | |
decay_mult: 0.0 | |
} | |
batch_norm_param { | |
use_global_stats: false | |
moving_average_fraction: 0.98 | |
eps: 0.0001 | |
scale_filler { | |
type: "constant" | |
value: 1.0 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "conv4" | |
type: "Convolution" | |
bottom: "bn3" | |
top: "conv4" | |
convolution_param { | |
num_output: 150 | |
kernel_size: 3 | |
weight_filler { | |
type: "xavier" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "relu4" | |
type: "ReLU" | |
bottom: "conv4" | |
top: "conv4" | |
} | |
layer { | |
name: " |