-
-
Save jonahgeorge/16e7d667b937fd130630 to your computer and use it in GitHub Desktop.
Optimal assignment of GTAs to Courses via ILP
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
__pycache__ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
STUDENTS_PER_TEACHING_ASSISTANT = 30 | |
FTE_PER_SECTION = 0.25 | |
COURSES = [ | |
{ "id": 0, "name": "Computers: Applications And Implications" }, | |
{ "id": 1, "name": "Computer Science Orientation" }, | |
{ "id": 2, "name": "Website Design" }, | |
{ "id": 3, "name": "Introduction To Databases" } | |
] | |
SECTIONS = [ | |
{ "id": 0, "course_id": 0, "current_enrollment": 15 }, | |
{ "id": 1, "course_id": 0, "current_enrollment": 30 }, | |
{ "id": 2, "course_id": 1, "current_enrollment": 61 }, | |
{ "id": 3, "course_id": 2, "current_enrollment": 30 }, | |
{ "id": 4, "course_id": 3, "current_enrollment": 35 } | |
] | |
STUDENTS = [ | |
{ "id": 0, "name": "Jonah", "fte": 0.25 }, | |
{ "id": 1, "name": "Zane", "fte": 0.25 }, | |
{ "id": 2, "name": "Ty", "fte": 0.25 }, | |
{ "id": 3, "name": "Katie", "fte": 0.50 }, | |
{ "id": 4, "name": "Ben", "fte": 0.25 } | |
] | |
STUDENT_PREFERENCES = [ | |
{ "id": 0, "student_id": 0, "section_id": 0, "value": 3 }, | |
{ "id": 1, "student_id": 0, "section_id": 1, "value": 3 }, | |
{ "id": 2, "student_id": 1, "section_id": 1, "value": 3 }, | |
{ "id": 3, "student_id": 1, "section_id": 2, "value": 3 }, | |
{ "id": 4, "student_id": 2, "section_id": 2, "value": 3 }, | |
{ "id": 5, "student_id": 2, "section_id": 3, "value": 3 }, | |
{ "id": 6, "student_id": 3, "section_id": 0, "value": 3 }, | |
{ "id": 7, "student_id": 3, "section_id": 1, "value": 3 }, | |
{ "id": 8, "student_id": 4, "section_id": 2, "value": 3 }, | |
{ "id": 9, "student_id": 4, "section_id": 3, "value": 3 } | |
] | |
INSTRUCTORS = [ | |
{ "id": 0, "name": "Eric Walkingshaw" }, | |
{ "id": 1, "name": "Stephen Ramsey" }, | |
{ "id": 2, "name": "Jennifer Parham Mocello" }, | |
{ "id": 3, "name": "Glencora Borradaile" }, | |
{ "id": 4, "name": "Carlos Jensen" } | |
] | |
INSTRUCTOR_PREFERENCES = [ | |
{ "id": 0, "instructor_id": 0, "student_id": 0, "section_id": 0, "value": 3 }, | |
{ "id": 1, "instructor_id": 0, "student_id": 0, "section_id": 1, "value": 3 }, | |
{ "id": 2, "instructor_id": 1, "student_id": 1, "section_id": 1, "value": 3 }, | |
{ "id": 3, "instructor_id": 1, "student_id": 1, "section_id": 2, "value": 3 }, | |
{ "id": 4, "instructor_id": 2, "student_id": 2, "section_id": 2, "value": 3 }, | |
{ "id": 5, "instructor_id": 2, "student_id": 2, "section_id": 3, "value": 3 }, | |
{ "id": 6, "instructor_id": 3, "student_id": 3, "section_id": 0, "value": 3 }, | |
{ "id": 7, "instructor_id": 3, "student_id": 3, "section_id": 1, "value": 3 }, | |
{ "id": 8, "instructor_id": 4, "student_id": 4, "section_id": 2, "value": 3 }, | |
{ "id": 9, "instructor_id": 4, "student_id": 4, "section_id": 3, "value": 3 } | |
] | |
def find_student_preference_by(student_id, section_id): | |
preferences = list(filter(lambda s: s["student_id"] == student_id and s["section_id"] == section_id, STUDENT_PREFERENCES)) | |
try: | |
return preferences[0]["value"] | |
except: | |
return 1 | |
def find_course_by(course_id): | |
course = list(filter(lambda c: c["id"] == course_id, COURSES)) | |
return course[0] | |
def find_instructor_preference_by(student_id, section_id): | |
''' | |
Since Instructor will only be able to set preferences for sections that they "own", | |
we don't actually need to query INSTRUCTOR_PREFERENCES by `instructor_id`. | |
Instead, we can just iterate by `student_id` and `section_id` pulling the value, or | |
the default value of 1 | |
''' | |
preferences = list(filter(lambda s: s["student_id"] == student_id and s["section_id"] == section_id, INSTRUCTOR_PREFERENCES)) | |
try: | |
return preferences[0]["value"] | |
except: | |
return 1 | |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from constants import * | |
import pulp | |
import collections | |
class GtaAssignmentProblem: | |
def __init__(self): | |
''' | |
Construct the ILP, adds the objective function, and adds constraints | |
''' | |
self.problem = pulp.LpProblem('GtaAssignment', pulp.LpMaximize) | |
self.variables = self._create_variables() | |
self.problem += self._objective_function() | |
self._courses_per_student_constraint() | |
self._students_per_course_constraint() | |
def _objective_function(self): | |
''' | |
Construct objective function from STUDENT_PREFERENCES | |
''' | |
obj = None | |
for student in STUDENTS: | |
for section in SECTIONS: | |
student_score = find_student_preference_by(student["id"], section["id"]) | |
instructor_score = find_instructor_preference_by(student["id"], section["id"]) | |
# FIXME: Research more sound way to handle this equation | |
obj += student_score * self.variables[student["id"]][section["id"]] | |
obj += instructor_score * self.variables[student["id"]][section["id"]] | |
print(obj) | |
exit() | |
return obj | |
def _create_variables(self): | |
''' | |
Create matrix (students * courses) of binary linear program values | |
''' | |
ids = (list(map(lambda s: s["id"], STUDENTS)), | |
list(map(lambda s: s["id"], SECTIONS))) | |
return pulp.LpVariable.dicts('VAR', ids, 0, 1, 'Binary') | |
def _courses_per_student_constraint(self): | |
''' | |
This constraint restricting the number of courses per student. | |
It uses the FTE of the student to determine how many courses | |
can be assigned to them. | |
''' | |
for student in STUDENTS: | |
c = None | |
for section in SECTIONS: | |
c += self.variables[student["id"]][section["id"]] | |
self.problem += (c <= (student["fte"] // FTE_PER_SECTION)) | |
def _students_per_course_constraint(self): | |
''' | |
This constraint restricts the number of TAs per course. | |
It uses the current_enrollment numbers of the section to determine | |
the number of TAs to assign. | |
''' | |
for section in SECTIONS: | |
c = None | |
for student in STUDENTS: | |
c += self.variables[student["id"]][section["id"]] | |
self.problem += (c <= (section["current_enrollment"] // STUDENTS_PER_TEACHING_ASSISTANT)) | |
def solve(self): | |
self.problem.solve() | |
def results(self): | |
''' | |
Print the results of the ILP to STDOUT in pretty-format | |
''' | |
for student in STUDENTS: | |
print(student["name"], "( FTE:", student["fte"], ")") | |
for section in SECTIONS: | |
if bool(self.variables[student["id"]][section["id"]].value()): | |
print("\t", find_course_by(section["course_id"])["name"]) | |
print("") | |
prob = GtaAssignmentProblem() | |
prob.solve() | |
prob.results() |
New naming for SECTION
:
- segment
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
SECTIONS
fixtureSTUDENT_PREFERENCES
withSECTIONS
SECTIONS
withCOURSES
INSTRUCTORS
fixtureINSTRUCTOR_PREFERENCES
fixtureINSTRUCTOR_PREFERENCES
withSECTIONS
andSTUDENTS