Last active
June 5, 2020 20:54
-
-
Save jorendorff/8b862caf53a583857dbacbbee22d76a3 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
-- An exercise from _Theorem Proving In Lean_. | |
-- https://leanprover.github.io/theorem_proving_in_lean/induction_and_recursion.html#exercises | |
namespace expressions | |
-- 6. Consider the following type of arithmetic expressions. The idea is that | |
-- `var n` is a variable, v_n, and `const n` is the constant whose value | |
-- is n. | |
inductive aexpr : Type | |
| const : ℕ → aexpr | |
| var : ℕ → aexpr | |
| plus : aexpr → aexpr → aexpr | |
| times : aexpr → aexpr → aexpr | |
open aexpr | |
namespace aexpr | |
-- Write a function that evaluates such an expression, evaluating each `var | |
-- n` to `v n`. | |
def aeval (env : ℕ → ℕ) : aexpr → ℕ | |
| (const n) := n | |
| (var k) := env k | |
| (plus a b) := aeval a + aeval b | |
| (times a b) := aeval a * aeval b | |
-- Implement “constant fusion,” a procedure that simplifies subterms like | |
-- 5 + 7 to 12. | |
def simp_const : aexpr → aexpr | |
| (plus (const n₁) (const n₂)) := const (n₁ + n₂) | |
| (times (const n₁) (const n₂)) := const (n₁ * n₂) | |
| e := e | |
-- Using the auxiliary function simp_const, define a function | |
-- “fuse”: to simplify a plus or a times, first simplify the arguments | |
-- recursively, and then apply simp_const to try to simplify the result. | |
def fuse : aexpr → aexpr | |
| (plus a b) := simp_const (plus (simp_const a) (simp_const b)) | |
| (times a b) := simp_const (times (simp_const a) (simp_const b)) | |
| e := e | |
-- simp_const does not affect the meaning of an expression! | |
theorem simp_const_eq (v : ℕ → ℕ) : | |
∀ e : aexpr, aeval v (simp_const e) = aeval v e | |
:= begin | |
intro e, cases e, | |
case plus : a b { | |
cases a, | |
case const : av { | |
cases b, | |
all_goals { refl } | |
}, | |
all_goals { refl } | |
}, | |
case times : a b { | |
cases a, | |
case const : av { | |
cases b, | |
all_goals { refl } | |
}, | |
all_goals { refl } | |
}, | |
all_goals { refl } | |
end | |
-- fuse does not affect the meaning of an expression! | |
theorem fuse_eq (v : ℕ → ℕ) : | |
∀ e : aexpr, aeval v (fuse e) = aeval v e | |
:= begin | |
intro e, cases e, | |
case const : v { refl }, | |
case var : v { refl }, | |
case plus : a b { | |
exact calc | |
aeval v (fuse (plus a b)) = aeval v (simp_const (plus (simp_const a) (simp_const b))) : by refl | |
... = aeval v (plus (simp_const a) (simp_const b)) : by rw simp_const_eq | |
... = aeval v (simp_const a) + aeval v (simp_const b) : by refl | |
... = aeval v a + aeval v b : by rw [simp_const_eq, simp_const_eq] | |
... = aeval v (plus a b) : by refl | |
}, | |
case times : a b { | |
exact calc | |
aeval v (fuse (times a b)) = aeval v (simp_const (times (simp_const a) (simp_const b))) : by refl | |
... = aeval v (times (simp_const a) (simp_const b)) : by rw simp_const_eq | |
... = aeval v (simp_const a) * aeval v (simp_const b) : by refl | |
... = aeval v a * aeval v b : by rw [simp_const_eq, simp_const_eq] | |
... = aeval v (times a b) : by refl | |
} | |
end | |
end aexpr | |
end expressions |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Your fuse definition would not recursively simplify into all terms. For example:
#reduce fuse $ plus (plus (plus (const 1) (const 7)) (const 2)) (times (const 3) (const 4))
should be
const 22
while your definition gives
plus (plus (plus (const 1) (const 7)) (const 2)) (const 12)