Last active
July 1, 2019 23:45
-
-
Save jorgepiloto/8d572ea4bb50c9ffed93c56dfaa81160 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
from astropy import units as u | |
from poliastro.bodies import Earth | |
from poliastro.core.angles import ( | |
E_to_nu, | |
_kepler_equation, | |
_kepler_equation_prime, | |
nu_to_M, | |
) | |
from poliastro.core.elements import rv2coe | |
from poliastro.examples import iss | |
from poliastro.twobody.propagation import cowell | |
from poliastro.twobody.orbit import Orbit | |
def kepler_improved(k, r0, v0, tof): | |
""" Solves the kepler problem by a non iteraiteve method. | |
Parameters | |
---------- | |
k: float | |
Gravitational parameter | |
r0: vector 1x3 | |
Initial position vector | |
v0: vector 1x3 | |
Initial velocity vector | |
tof: float | |
Time of flight | |
Returns | |
------- | |
rf: vector 1x3 | |
Final position vector | |
vf: vector 1x3 | |
Final velocity vector | |
""" | |
# Convert to international unit system | |
k = k.to(u.m ** 3 / u.s ** 2).value | |
r0 = r0.to(u.m).value | |
v0 = v0.to(u.m / u.s).value | |
tof = tof.to(u.s).value | |
# Solve first for eccentricity and mean anomaly | |
p, ecc, inc, raan, argp, nu = rv2coe(k, r0, v0) | |
M0 = nu_to_M(nu, ecc) | |
a = p / (1 - ecc ** 2) | |
n = np.sqrt(k / a ** 3) | |
M = M0 + n * tof | |
# Range between -pi and pi | |
M = M % (2 * np.pi) | |
if M > np.pi: | |
M = -(2 * np.pi - M) | |
# ------ ALGORITHM STARTS ------- | |
# Equation (20) | |
alpha = (3 * np.pi ** 2 + 1.6 * (np.pi - np.abs(M)) / (1 + ecc)) / (np.pi ** 2 - 6) | |
# Equation (5) | |
d = 3 * (1 - ecc) + alpha * ecc | |
# Equation (9) | |
q = 2 * alpha * d * (1 - ecc) - M ** 2 | |
# Equation (10) | |
r = 3 * alpha * d * (d - 1 + ecc) * M + M ** 3 | |
# Equation (14) | |
w = (np.abs(r) + np.sqrt(q ** 3 + r ** 2)) ** (2 / 3) | |
# Equation (15) | |
E1 = (2 * r * w / (w ** 2 + w * q + q ** 2) + M) / d | |
# Equation (26) | |
f0 = _kepler_equation(E1, M, ecc) | |
f1 = _kepler_equation_prime(E1, M, ecc) | |
f2 = ecc * np.sin(E1) | |
f3 = ecc * np.cos(E1) | |
f4 = -f2 | |
# Equation (22) | |
delta3 = -f0 / (f1 - 0.5 * f0 * f2 / f1) | |
delta4 = -f0 / (f1 + 0.5 * delta3 * f2 + 1 / 6 * delta3 ** 2 * f3) | |
delta5 = -f0 / ( | |
f1 + 0.5 * delta4 * f2 + 1 / 6 * delta4 ** 2 * f3 + 1 / 24 * delta4 ** 3 * f4 | |
) | |
# Finally | |
E5 = E1 + delta5 | |
nu = E_to_nu(E5, ecc) | |
return nu * u.rad | |
def hard_orbit(): | |
""" Propagates the hard orbit. """ | |
r = [8.0e3, 1.0e3, 0.0] * u.km | |
v = [-0.5, -0.5, 0.0] * u.km / u.s | |
ss = Orbit.from_vectors(Earth, r, v) | |
print(ss.classical()) | |
a, ecc, inc, raan, argp, nu = ss.classical() | |
# Cowell propagator (integrates two-body ODE) | |
ss_cowell = ss.propagate(1 * u.h, method=cowell) | |
nu_expected = ss_cowell.nu | |
print("Nu nu_expected:", nu_expected) | |
print(ss_cowell.classical()) | |
# Kepler_improved propagator (Defined in the first script function) | |
nu = kepler_improved(ss.attractor.k, ss.r, ss.v, 1 * u.h) | |
ss_kepler_improved = Orbit.from_classical(Earth, a, ecc, inc, raan, argp, nu) | |
print("Nu obtained:", nu) | |
print(ss_kepler_improved.classical()) | |
if __name__ == '__main__': | |
hard_orbit() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment