This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import pandas as pd | |
from ipydatagrid import DataGrid,TextRenderer | |
import ipydatagrid as grid | |
print(grid.__version__) | |
df = pd.DataFrame( | |
data={ | |
"Col1HasAVeryLongName": ['qwerwqerqweddg d dgggfgfg dg dg drwqerwqer','qwer wer qwerdg wqer','asdf asdfasdasdfsadf'], | |
"Col2MediumName": [4, 5, 6], |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import ipyvuetify as vue | |
from ipywidgets import Output | |
from IPython.display import Javascript | |
b1 = vue.Btn(class_='mx-2 light-blue darken-1', color='primary',children=['open lemonde']) | |
b2 = vue.Btn(class_='mx-2 light-blue darken-1', color='primary',children=['open nyt']) | |
b3 = vue.Btn(class_='mx-2 light-blue darken-1', color='primary',children=['open all']) | |
out=Output() | |
def open_lemonde(widget, event, data): |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# THE DATA | |
# L is a list of dicts (all have the same keys) | |
L=[{'name':'e'+str(i), | |
'explanation':'objection1', | |
'law':(), | |
'CS':('barcelona','Vigo')} for i in range(1000000)] | |
# option 1: generator | |
next(item for item in L if item["name"] == myvalue) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
L=[{'name':'e'+str(i), | |
'explanation':'objection1', | |
'law':(), | |
'CS':('barcelona','Vigo')} for i in range(1000000)] | |
#%%timeit | |
next(item for item in L if item["name"] == "e300000") | |
# 22.3 ms ± 2.58 ms per loop (mean ± std. dev. of 7 runs, 10 loops each) | |
#%%timeit |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# 100000 elements list | |
L=[{'name':'e'+str(i), 'explanation':'objection1','law':(),'CS':('..claim','..notclear')} for i in range(100000)] | |
next(item for item in L if item["name"] == "e3") | |
# 716 ns ± 62.5 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each) | |
[d for d in L if d['name']=='e3'][0] | |
# 6.66 ms ± 520 µs per loop (mean ± std. dev. of 7 runs, 100 loops each) | |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
df = pd.DataFrame(L).set_index('name') | |
df.loc[['e4']].reset_index().to_dict('records') | |
#1.09 ms ± 13.7 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each) | |
df.loc[['e9']].reset_index().to_dict('records') | |
#1.1 ms ± 22.2 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
# list of 1000 | |
L=[{'name':'e'+str(i), | |
'explanation':'objection1', | |
'law':(), | |
'CS':('Barcelona','Vigo')} for i in range(1000)] | |
#%%timeit | |
next(item for item in L if item["name"] == "e500") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# list of 1000 dictionaries | |
L=[{'name':'e'+str(i), | |
'explanation':'objection1', | |
'law':(), | |
'CS':('Barcelona','Vigo')} for i in range(1000)] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
rail_lines = [{'id': 'line1', 'source': 'BER', 'target': 'MUN', 'speed': '200km/h'}, | |
{'id': 'line2', 'source': 'MUN', 'target': 'FRA', 'speed': '200km/h'}, | |
{'id': 'line3', 'source': 'FRA', 'target': 'BER', 'speed': '250km/h'}, | |
{'id': 'line4', 'source': 'BER', 'target': 'HAM', 'speed': '300km/h'}, | |
{'id': 'line5', 'source': 'BER', 'target': 'LEP', 'speed': '300km/h'}, | |
{'id': 'line6', 'source': 'NUR', 'target': 'LEP', 'speed': '150km/h'}, | |
{'id': 'line7', 'source': 'NUR', 'target': 'FRA', 'speed': '150km/h'}, | |
{'id': 'line8', 'source': 'BER', 'target': 'PAR', 'speed': '400km/h'}, | |
{'id': 'line9', 'source': 'PAR', 'target': 'LYO', 'speed': '400km/h'}, | |
{'id': 'line10', 'source': 'LYO', 'target': 'BAR', 'speed': '400km/h'}, |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
rails_df['speed_int']=rails_df['speed'].str.replace('km/h','').astype('int') | |
min_speed = rails_df['speed_int'].min() | |
max_speed = rails_df['speed_int'].max() | |
span_speed = max_speed-min_speed | |
rails_df['score'] = rails_df['speed_int'].apply(lambda x: (x-min_speed)/span_speed) | |
rails_df['width'] = rails_df['score'] *7 +5 | |
G=transform_into_ipycytoscape(stations_df,rails_df) | |
display(G) |
NewerOlder