Created
November 4, 2023 01:23
-
-
Save joshsucher/192f18a2201a8144e8614331c9d2050e to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import supervision as sv | |
from supervision.draw.utils import draw_text | |
from supervision.draw.color import Color | |
import torch | |
#import cv2 | |
from ultralytics import YOLO | |
import os | |
os.environ["PYTORCH_MPS_HIGH_WATERMARK_RATIO"] = "0.0" | |
model = YOLO("yolov8n.pt") | |
model = model.to("mps") | |
tracker = sv.ByteTrack(track_buffer=100) | |
box_annotator = sv.BoundingBoxAnnotator() | |
label_annotator = sv.LabelAnnotator() | |
trace_annotator = sv.TraceAnnotator() | |
#linezone_annotator = sv.LineZoneAnnotator() | |
# dict maping class_id to class_name | |
CLASS_NAMES_DICT = model.model.names | |
# class_ids of interest - person [0], bicycle [1], car, motorcycle, bus and truck | |
car_classes = [2, 3, 5, 7] | |
# # settings - eufy | |
# LINE_START_WEST = sv.Point(1266, 864) | |
# LINE_END_WEST = sv.Point(1167, 1167) | |
# | |
# LINE_START_SOUTH = sv.Point(700, 790) | |
# LINE_END_SOUTH = sv.Point(707, 990) | |
# scaling_factor = 4/9 | |
# def scale_point(point): | |
# return sv.Point(int(point.x * scaling_factor), int(point.y * scaling_factor)) | |
LINE_START_WEST = sv.Point(825, 518) | |
LINE_END_WEST = sv.Point(9, 538) | |
LINE_START_SOUTH = sv.Point(143, 398) | |
LINE_END_SOUTH = sv.Point(311, 818) | |
VIDEO = "monday-morning-trim.mov" | |
colors = sv.ColorPalette.default() | |
video_info = sv.VideoInfo.from_video_path(VIDEO) | |
# mon eve | |
# polygons = [ | |
# np.array([ | |
# [1152, 1001],[40, 1021],[24, 205],[1892, 409],[1892, 409],[1320, 1037],[1148, 997] | |
# ]), #full map | |
# np.array([ | |
# [392, 626],[392, 462],[572, 554],[516, 670],[388, 622] | |
# ]), #westbound | |
# np.array([ | |
# [26, 593],[294, 661],[298, 833],[30, 857],[22, 585] | |
# ]), #southbound | |
# np.array([ | |
# [815, 629],[815, 509],[987, 509],[999, 649],[815, 629] | |
# ]), #turns_onto_westminster | |
# np.array([ | |
# [827, 690],[1347, 698],[1511, 810],[1351, 954],[815, 750],[827, 690] | |
# ]) #turns onto dorchester | |
# ] | |
polygons = [ | |
np.array([ | |
[284, 920],[16, 916],[16, 520],[584, 652],[696, 652],[740, 560],[1348, 480],[1356, 684],[1200, 732],[1210, 860],[1452, 908],[1432, 992],[1116, 1044],[1092, 940],[1000, 892],[936, 828],[804, 824],[760, 836],[628, 724],[412, 672],[312, 684],[288, 916] | |
]), #full map | |
np.array([ | |
[260, 684],[260, 456],[312, 516],[308, 604],[372, 624],[372, 676],[312, 684],[256, 684] | |
]), #westbound | |
np.array([ | |
[34, 889],[18, 613],[158, 713],[170, 881],[34, 885] | |
]), #southbound | |
np.array([ | |
[681, 511],[689, 695],[901, 719],[893, 507],[677, 507] | |
]), #turns_onto_westminster | |
np.array([ | |
[705, 754],[1101, 754],[1101, 906],[709, 838],[701, 754] | |
]) #turns onto dorchester | |
] | |
# To store timestamps when line_counter increments | |
previous_in_count_west = 0 | |
previous_in_count_south = 0 | |
previous_in_count_south = 0 | |
previous_in_count_lt = 0 | |
previous_in_count_rt = 0 | |
timestamps_west = [] | |
timestamps_south = [] | |
timestamps_lt = [] | |
timestamps_rt = [] | |
zone_sum_west = 0 | |
unique_tracker_ids_west = set() | |
unique_tracker_ids_south = set() | |
unique_tracker_ids_lt = set() | |
unique_tracker_ids_rt = set() | |
# line_counter_west = sv.LineZone(start=LINE_START_WEST, end=LINE_END_WEST) | |
# line_counter_south = sv.LineZone(start=LINE_START_SOUTH, end=LINE_END_SOUTH) | |
zones = [ | |
sv.PolygonZone( | |
polygon=polygon, | |
frame_resolution_wh=video_info.resolution_wh | |
) | |
for polygon | |
in polygons | |
] | |
zone_annotator_wb = sv.PolygonZoneAnnotator(zone=zones[1], color=sv.Color.white(), thickness=1, text_thickness=1, text_scale=0.5) | |
zone_annotator_sb = sv.PolygonZoneAnnotator(zone=zones[2], color=sv.Color.white(), thickness=1, text_thickness=1, text_scale=0.5) | |
zone_annotator_lt = sv.PolygonZoneAnnotator(zone=zones[3], color=sv.Color.white(), thickness=1, text_thickness=1, text_scale=0.5) | |
zone_annotator_rt = sv.PolygonZoneAnnotator(zone=zones[4], color=sv.Color.white(), thickness=1, text_thickness=1, text_scale=0.5) | |
#line_annotator = sv.LineZoneAnnotator(thickness=1, text_thickness=1, text_scale=1) | |
def callback(frame: np.ndarray, frame_num: int) -> np.ndarray: | |
results = model(frame, device="mps")[0] | |
detections = sv.Detections.from_ultralytics(results) | |
detections = detections[detections.confidence > 0.6] | |
detections = tracker.update_with_detections(detections) | |
global colors, previous_in_count_west, previous_in_count_south, previous_in_count_lt, previous_in_count_rt, timestamps_west, timestamps_south, timestamps_lt, timestamps_rt, zone_sum_west, unique_tracker_ids_west, unique_tracker_ids_south, unique_tracker_ids_lt, unique_tracker_ids_rt | |
mask = zones[0].trigger(detections=detections) | |
detections = detections[mask] | |
#annotated_frame = box_annotator.annotate(scene=frame, detections=detections, skip_label=True) | |
#annotated_frame = zone_annotator.annotate(scene=annotated_frame) | |
labels = [ | |
f"#{tracker_id} {results.names[class_id]}" | |
for class_id, tracker_id | |
in zip(detections.class_id, detections.tracker_id) | |
] | |
annotated_frame = box_annotator.annotate( | |
frame.copy(), detections=detections) | |
annotated_frame = label_annotator.annotate( | |
annotated_frame, detections=detections, labels=labels) | |
#line_counter_west.trigger(detections=detections[np.isin(detections.class_id, car_classes)]) | |
zones[1].trigger(detections=detections[np.isin(detections.class_id, car_classes)]) | |
zones[2].trigger(detections=detections[np.isin(detections.class_id, car_classes)]) | |
zones[3].trigger(detections=detections[np.isin(detections.class_id, car_classes)]) | |
zones[4].trigger(detections=detections[np.isin(detections.class_id, car_classes)]) | |
westbound_mask = zones[1].trigger(detections=detections) | |
westbound_detections = detections[westbound_mask] | |
southbound_mask = zones[2].trigger(detections=detections) | |
southbound_detections = detections[southbound_mask] | |
left_turn_mask = zones[3].trigger(detections=detections) | |
left_turn_detections = detections[left_turn_mask] | |
right_turn_mask = zones[4].trigger(detections=detections) | |
right_turn_detections = detections[right_turn_mask] | |
for class_id, tracker_id in zip(westbound_detections.class_id, westbound_detections.tracker_id): | |
if class_id in car_classes and tracker_id not in unique_tracker_ids_south: unique_tracker_ids_west.add(tracker_id) | |
for class_id, tracker_id in zip(left_turn_detections.class_id, left_turn_detections.tracker_id): | |
if class_id in car_classes and tracker_id in unique_tracker_ids_west and tracker_id not in unique_tracker_ids_rt: unique_tracker_ids_lt.add(tracker_id) | |
for class_id, tracker_id in zip(right_turn_detections.class_id, right_turn_detections.tracker_id): | |
if class_id in car_classes and tracker_id in unique_tracker_ids_south and tracker_id not in unique_tracker_ids_lt: unique_tracker_ids_rt.add(tracker_id) | |
for class_id, tracker_id in zip(southbound_detections.class_id, southbound_detections.tracker_id): | |
if class_id in car_classes and tracker_id not in (unique_tracker_ids_rt,unique_tracker_ids_west): unique_tracker_ids_south.add(tracker_id) | |
zone_sum_west = len(unique_tracker_ids_west) | |
zone_sum_south = len(unique_tracker_ids_south) | |
zone_sum_lt = len(unique_tracker_ids_lt) | |
zone_sum_rt = len(unique_tracker_ids_rt) | |
# Check for westbound cars | |
if len(unique_tracker_ids_west) > previous_in_count_west: | |
print(f"Westbound car detected at frame {frame_num}") | |
timestamps_west.append(frame_num / 30) # eufy 15fps | |
previous_in_count_west = len(unique_tracker_ids_west) | |
# Check for southbound cars | |
if len(unique_tracker_ids_south) > previous_in_count_south: | |
print(f"Southbound car detected at frame {frame_num}") | |
timestamps_south.append(frame_num / 30) # eufy 15fps | |
previous_in_count_south = len(unique_tracker_ids_south) | |
# Check for cars turning left | |
if len(unique_tracker_ids_lt) > previous_in_count_lt: | |
print(f"Car turning left detected at frame {frame_num}") | |
timestamps_lt.append(frame_num / 30) # eufy 15fps | |
previous_in_count_lt = len(unique_tracker_ids_lt) | |
# Check for cars turning right | |
if len(unique_tracker_ids_rt) > previous_in_count_rt: | |
print(f"Car turning right detected at frame {frame_num}") | |
timestamps_rt.append(frame_num / 30) # eufy 15fps | |
previous_in_count_rt = len(unique_tracker_ids_rt) | |
straight_major = max(0, zone_sum_west - zone_sum_lt) | |
straight_minor = max(0, zone_sum_south - zone_sum_rt) | |
annotated_frame = zone_annotator_wb.annotate(scene=annotated_frame, label=f"Major volume: {str(zone_sum_west)}") | |
annotated_frame = zone_annotator_sb.annotate(scene=annotated_frame, label=f"Minor volume: {str(zone_sum_south)}") | |
annotated_frame = zone_annotator_lt.annotate(scene=annotated_frame, label=f"Minor volume straight: {str(straight_minor)}, major volume left turn: {str(zone_sum_lt)}") | |
annotated_frame = zone_annotator_rt.annotate(scene=annotated_frame, label=f"Major volume straight: {str(straight_major)}, minor volume right turn: {str(zone_sum_rt)}") | |
gaps_west = [timestamps_west[i+1] - timestamps_west[i] for i in range(len(timestamps_west)-1)] | |
gaps_over_14_seconds_west = sum(1 for gap in gaps_west if gap > 14) | |
average_gap_west = sum(gaps_west) / len(gaps_west) if gaps_west else 0 | |
text_anchor = sv.Point(199, 962) | |
annotated_frame = draw_text(scene=annotated_frame, text=f"Critical gaps (14s+), wb: {gaps_over_14_seconds_west}, avg gap: {int(average_gap_west)}s", text_anchor=text_anchor, background_color=Color(r=255, g=255, b=255)) | |
#cv2.imshow('YOLO V8 Detection', annotated_frame) | |
return trace_annotator.annotate( | |
annotated_frame, detections=detections) | |
sv.process_video( | |
source_path=VIDEO, | |
target_path="result.mp4", | |
callback=callback | |
) | |
# Calculate gaps for west | |
gaps_west = [timestamps_west[i+1] - timestamps_west[i] for i in range(len(timestamps_west)-1)] | |
# Calculate gaps for south | |
gaps_south = [timestamps_south[i+1] - timestamps_south[i] for i in range(len(timestamps_south)-1)] | |
# Count the number of gaps greater than 15 seconds | |
gaps_over_14_seconds_west = sum(1 for gap in gaps_west if gap > 14) | |
gaps_over_14_seconds_south = sum(1 for gap in gaps_south if gap > 14) | |
print(f"Gaps over 14 seconds, westbound: {gaps_over_14_seconds_west}") | |
for i in range(len(timestamps_west)-1): | |
gap = timestamps_west[i+1] - timestamps_west[i] | |
print(f"Starting timestamp: {round(timestamps_west[i],2)}s, Gap: {int(gap)}s") | |
print(f"Gaps over 14 seconds, southbound: {gaps_over_14_seconds_south}") | |
for i in range(len(timestamps_south)-1): | |
gap = timestamps_south[i+1] - timestamps_south[i] | |
print(f"Starting timestamp: {round(timestamps_south[i],2)}s, Gap: {int(gap)}s") | |
#print(f"Westbound cars: {zone_sum_west}") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment