Skip to content

Instantly share code, notes, and snippets.

@jpro56
Created June 9, 2015 20:13
Show Gist options
  • Star 1 You must be signed in to star a gist
  • Fork 1 You must be signed in to fork a gist
  • Save jpro56/43a2f46bfbf86f38e62c to your computer and use it in GitHub Desktop.
Save jpro56/43a2f46bfbf86f38e62c to your computer and use it in GitHub Desktop.
My fire lamp code
/* Designed to drive an array of 8 strips of 25 WS2812b RGB LEDs with different display functions
0) Off No settings / no brightness control
1) Real fire No settings - potentiometer #2 immediately defaults to brightness control
2) Color Fire Setttings = goes through the rainbow hues to select the basic flame color
3) Rainbow Fire No settings - potentiometer #2 immediately defaults to brightness control
4) Barberpole No settings - potentiometer #2 immediately defaults to brightness control
5) Rainbow barberpole Setttings = goes through the rainbow hues to select the basic color
6) Rainbow No settings - potentiometer #2 immediately defaults to brightness control
7) Vertical rainbow No settings - potentiometer #2 immediately defaults to brightness control
8) Horizonatl Rainbow No settings - potentiometer #2 immediately defaults to brightness control
9) Heartbeat No settings - potentiometer #2 immediately defaults to brightness control
10) Color heartbeat Setttings = goes through the rainbow hues to select the basic color
11) Lighthouse No settings - potentiometer #2 immediately defaults to brightness control
12) Color lighthouse Setttings = goes through the rainbow hues to select the basic color
13) Color twinkle No settings - potentiometer #2 immediately defaults to brightness control
14) Monochrome Setttings = goes through the rainbow hues to select the basic color
15) White No settings - potentiometer #2 immediately defaults to brightness control
??) Fire flies (Singke or double spinning around)
??) Starry (Twinkles)
??) Matchlight (Fire from initial match strike to dying fire)
2 potentiometers on A0 and A1 provide control over the different display functions
A0 always provide a 'Mode' control defining the general type of animation (Fire, Rainbow, Steady etc...)
A1 provides a 'Settings' control that changes how the different 'modes' behave.
A timed approach enables 2 (more could be implemented if necessary?) different controls with the same potentiometer.
When a new mode is entered, a timer is started to enable the 'Settings' potentiometer to change a functional parameter.
When the 'Settings' potentiometer is stable for at least 5 seconds, it's function changes to and stays as a global brightness control.
*/
#include <FastLED.h>
#define NUM_STRIPS 8
#define NUM_LEDS_PER_STRIP 25
#define FRAMES_PER_SECOND 120
#define MAX_BRIGHTNESS 128
byte brightness = 32;
byte settings = 0;
int settingstimeout1 = 5000; // Allow as much as 5 seconds to change the settings before locking it in
int settingstimeout2 = 6000; // Allow as much as 5 seconds to change the settings before locking it in
unsigned long time = 0;
#define FRAMES_PER_SECOND 100
CRGB leds[NUM_STRIPS][NUM_LEDS_PER_STRIP];
CRGB darkcolor;
CRGB lightcolor;
CRGBPalette16 gPalette = RainbowColors_p;
#define STARTING_BRIGHTNESS 64
#define FADE_IN_SPEED 32
#define FADE_OUT_SPEED 16
#define DENSITY 2 // Number needs to be very small as main loop is re-entered withou any delays
enum { GETTING_DARKER = 0, GETTING_BRIGHTER = 1 };
static byte heat[NUM_STRIPS][NUM_LEDS_PER_STRIP]; // Array of temperature readings at each simulation cell
// There are two main parameters you can play with to control the look and
// feel of your fire: COOLING (used in step 1 above), and SPARKING (used
// in step 3 above).
//
// COOLING: How much does the air cool as it rises?
// Less cooling = taller flames. More cooling = shorter flames.
// Default 55, suggested range 20-100
#define COOLING 85
// SPARKING: What chance (out of 255) is there that a new spark will be lit?
// Higher chance = more roaring fire. Lower chance = more flickery fire.
// Default 120, suggested range 50-200.
byte SPARKING = 150;
// Fire2012 with programmable Color Palette
//
// This code is the same fire simulation as the original "Fire2012",
// but each heat cell's temperature is translated to color through a FastLED
// programmable color palette, instead of through the "HeatColor(...)" function.
//
// Four different static color palettes are provided here, plus one dynamic one.
//
// The three static ones are:
// 1. the FastLED built-in HeatColors_p -- this is the default, and it looks
// pretty much exactly like the original Fire2012.
//
// To use any of the other palettes below, just "uncomment" the corresponding code.
//
// 2. a gradient from black to red to yellow to white, which is
// visually similar to the HeatColors_p, and helps to illustrate
// what the 'heat colors' palette is actually doing,
// 3. a similar gradient, but in blue colors rather than red ones,
// i.e. from black to blue to aqua to white, which results in
// an "icy blue" fire effect,
// 4. a simplified three-step gradient, from black to red to white, just to show
// that these gradients need not have four components; two or
// three are possible, too, even if they don't look quite as nice for fire.
//
// The dynamic palette shows how you can change the basic 'hue' of the
// color palette every time through the loop, producing "rainbow fire".
CRGBPalette16 gPal;
#define NumberOfModes 16
int val_0 = 0;
int prevVal_0 = 128;
int mode = 0;
int val_1 = 0;
int prevVal_1 = 128;
void setup() {
FastLED.addLeds<NEOPIXEL, 11>(leds[0], NUM_LEDS_PER_STRIP);
FastLED.addLeds<NEOPIXEL, 12>(leds[1], NUM_LEDS_PER_STRIP);
FastLED.addLeds<NEOPIXEL, 13>(leds[2], NUM_LEDS_PER_STRIP);
FastLED.addLeds<NEOPIXEL, 7>(leds[3], NUM_LEDS_PER_STRIP);
FastLED.addLeds<NEOPIXEL, 8>(leds[4], NUM_LEDS_PER_STRIP);
FastLED.addLeds<NEOPIXEL, 9>(leds[5], NUM_LEDS_PER_STRIP);
FastLED.addLeds<NEOPIXEL, 10>(leds[6], NUM_LEDS_PER_STRIP);
FastLED.addLeds<NEOPIXEL, 6>(leds[7], NUM_LEDS_PER_STRIP);
FastLED.setBrightness(MAX_BRIGHTNESS);
FastLED.setDither(0);
Serial.begin(9600); // opens serial port, sets data rate to 9600 bps
// This first palette is the basic 'black body radiation' colors,
// which run from black to red to bright yellow to white.
// gPal = HeatColors_p;
// These are other ways to set up the color palette for the 'fire'.
// First, a gradient from black to red to yellow to white -- similar to HeatColors_p
// gPal = CRGBPalette16( CRGB::Black, CRGB::Red, CRGB::DarkOrange, CRGB::DarkOrange,
// CRGB::DarkOrange, CRGB::DarkOrange, CRGB::DarkOrange, CRGB::Orange,
// CRGB::Orange, CRGB::Orange, CRGB::Orange, CRGB::Yellow,
// CRGB::Yellow, CRGB::Yellow, CRGB::Yellow, CRGB::Yellow; // DimGray = 696969 Gray=808080 DarkGray=A9A9A9 LightGray=D3D3D3
// Second, this palette is like the heat colors, but blue/aqua instead of red/yellow
// gPal = CRGBPalette16( CRGB::Black, CRGB::Blue, CRGB::Aqua, CRGB::White);
// Third, here's a simpler, three-step gradient, from black to red to white
// gPal = CRGBPalette16( CRGB::Black, CRGB::Red, CRGB::White);
// This is a custom palette to display full brightnees white LEDs only
// First, a gradient from black to red to yellow to white -- similar to HeatColors_p
// gPal = CRGBPalette16( CRGB::White, CRGB::White, CRGB::White, CRGB::White);
}
void loop(){
random16_add_entropy( random()); // Add entropy to random number generator; we use a lot of it.
CheckPots();
FastLED.setBrightness(MAX_BRIGHTNESS);
switch(mode) {
case 0: // OFF mode
for( int strip = 0; strip < NUM_STRIPS; strip++) {
fill_solid(leds[strip], NUM_LEDS_PER_STRIP, CRGB(0, 0, 0) );
}
FastLED.show(); // display this frame
delay (100);
break;
case 1: // Standard fire
gPal = CRGBPalette16( CRGB::Black, CRGB::Red, CRGB::DarkOrange, CRGB::DarkOrange,
CRGB::DarkOrange, CRGB::DarkOrange, CRGB::DarkOrange, CRGB::Orange,
CRGB::Orange, CRGB::Orange, CRGB::Orange, CRGB::Yellow,
CRGB::Yellow, CRGB::Yellow, CRGB::Yellow, CRGB::Yellow); // DimGray = 696969 Gray=808080 DarkGray=A9A9A9 LightGray=D3D3D3
FastLED.setBrightness(brightness/2);
Fire2012WithPalette();
time = millis() - settingstimeout2; // Make sure we don't flash the lamp as no settings are available here !
break;
case 2: // Fire with selectable colors
darkcolor = CHSV(settings,255,brightness*3/4); // pure hue, threequarter brightness
lightcolor = CHSV(settings,128,brightness); // half 'whitened', full brightness
gPal = CRGBPalette16( CRGB::Black, darkcolor, lightcolor, CRGB(brightness,brightness,brightness));
FastLED.setBrightness(brightness/2);
Fire2012WithPalette(); // run simulation frame, using palette colors
break;
case 3: // Fire with slowly changing colors
static uint8_t hue = 0;
hue++;
darkcolor = CHSV(hue,255,brightness*3/4); // pure hue, threequarter brightness
lightcolor = CHSV(hue,128,brightness); // half 'whitened', full brightness
gPal = CRGBPalette16( CRGB::Black, darkcolor, lightcolor, CRGB(brightness,brightness,brightness));
FastLED.setBrightness(brightness/2);
Fire2012WithPalette(); // run simulation frame, using palette colors
time = millis() - settingstimeout2; // Make sure we don't flash the lamp as no settings are available here !
break;
case 4:
barberpole();
time = millis() - settingstimeout2; // Make sure we don't flash the lamp as no settings are available here !
break;
case 5:
colorbarberpole();
break;
case 6:
rainbow();
time = millis() - settingstimeout2; // Make sure we don't flash the lamp as no settings are available here !
break;
case 7:
verrainbow();
time = millis() - settingstimeout2; // Make sure we don't flash the lamp as no settings are available here !
break;
case 8:
horrainbow();
time = millis() - settingstimeout2; // Make sure we don't flash the lamp as no settings are available here !
break;
case 9:
FastLED.setBrightness(brightness/2);
heartbeat();
time = millis() - settingstimeout2; // Make sure we don't flash the lamp as no settings are available here !
break;
case 10:
FastLED.setBrightness(brightness/2);
colorheartbeat();
break;
case 11:
lighthouse();
time = millis() - settingstimeout2; // Make sure we don't flash the lamp as no settings are available here !
break;
case 12:
colorlighthouse();
break;
case 13:
FastLED.setBrightness(brightness);
colortwinkle();
time = millis() - settingstimeout2; // Make sure we don't flash the lamp as no settings are available here !
break;
case 14:
monochrome();
break;
default:
white();
time = millis() - settingstimeout2; // Make sure we don't flash the lamp as no settings are available here !
}
// Add entropy to random number generator; we use a lot of it.
// random16_add_entropy( random());
// Fourth, the most sophisticated: this one sets up a new palette every
// time through the loop, based on a hue that changes every time.
// The palette is a gradient from black, to a dark color based on the hue,
// to a light color based on the hue, to white.
//
// static uint8_t hue = 0;
// hue++;
// CRGB darkcolor = CHSV(hue,255,192); // pure hue, three-quarters brightness
// CRGB lightcolor = CHSV(hue,128,255); // half 'whitened', full brightness
// gPal = CRGBPalette16( CRGB::Black, darkcolor, lightcolor, CRGB::White);
}
// Fire2012 by Mark Kriegsman, July 2012
// as part of "Five Elements" shown here: http://youtu.be/knWiGsmgycY
//
//
// This basic one-dimensional 'fire' simulation works roughly as follows:
// There's a underlying array of 'heat' cells, that model the temperature
// at each point along the line. Every cycle through the simulation,
// four steps are performed:
// 1) All cells cool down a little bit, losing heat to the air
// 2) The heat from each cell drifts 'up' and diffuses a little
// 3) Sometimes randomly new 'sparks' of heat are added at the bottom
// 4) The heat from each cell is rendered as a color into the leds array
// The heat-to-color mapping uses a black-body radiation approximation.
//
// Temperature is in arbitrary units from 0 (cold black) to 255 (white hot).
//
// This simulation scales it self a bit depending on NUM_LEDS; it should look
// "OK" on anywhere from 20 to 100 LEDs without too much tweaking.
//
// I recommend running this simulation at anywhere from 30-100 frames per second,
// meaning an interframe delay of about 10-35 milliseconds.
//
// Looks best on a high-density LED setup (60+ pixels/meter).
//
//
void Fire2012WithPalette(){
for( int strip = 0; strip < NUM_STRIPS; strip++) {
for( int i = 0; i < NUM_LEDS_PER_STRIP; i++) { // Step 1. Cool down every cell a little
heat[strip][i] = qsub8( heat[strip][i], random8(0, ((COOLING * 10) / NUM_LEDS_PER_STRIP) + 2));
}
for( int k= NUM_LEDS_PER_STRIP - 1; k >= 1; k--) { // Step 2. Heat from each cell drifts 'up' and diffuses a little
heat[strip][k] = (heat[strip][k-1] + heat[strip][k-2] + heat[strip][k-2] ) / 3;
}
if( random8() < SPARKING ) { // Step 3. Randomly ignite new 'sparks' of heat near the bottom
int y = random8(7);
heat[strip][y] = qadd8( heat[strip][y], random8(200,255) );
}
for( int j = 0; j < NUM_LEDS_PER_STRIP; j++) { // Step 4. Map from heat cells to LED colors
byte colorindex = scale8( heat[strip][j], 240); // Scale the heat value from 0-255 down to 0-240 for best results with color palettes.
leds[strip][j] = ColorFromPalette( gPal, colorindex);
}
}
FastLED.show(); // display this frame
delay(1000 / FRAMES_PER_SECOND);
}
void barberpole(){
for (int rotate = 0; rotate < NUM_STRIPS; rotate++){
for( int i = 0; i < NUM_LEDS_PER_STRIP; i++) {
for( int strip = 0; strip < NUM_STRIPS; strip++) {
int diag = strip+i+rotate;
diag = diag % 8;
switch(strip){
case 0:
leds[diag][i] = CRGB(brightness,0,0);
break;
case 1:
leds[diag][i] = CRGB(brightness,0,0);
break;
case 2:
leds[diag][i] = CRGB(brightness,brightness,brightness);
break;
case 3:
leds[diag][i] = CRGB(brightness,brightness,brightness);
break;
case 4:
leds[diag][i] = CRGB(0,0,brightness);
break;
case 5:
leds[diag][i] = CRGB(0,0,brightness);
break;
case 6:
leds[diag][i] = CRGB(brightness,brightness,brightness);
break;
case 7:
leds[diag][i] = CRGB(brightness,brightness,brightness);
break;
}
}
}
FastLED.show(); // display this frame
delay (200);
CheckPots(); // Added to prevent brightness setting lag.
}
}
void colorbarberpole(){
for (int rotate = 0; rotate < NUM_STRIPS; rotate++){
for( int i = 0; i < NUM_LEDS_PER_STRIP; i++) {
for( int strip = 0; strip < NUM_STRIPS; strip++) {
byte settings2 = settings + 85;
byte settings3 = settings + 170;
int diag = strip+i+rotate;
diag = diag % 8;
switch(strip){
case 0:
leds[diag][i] = CHSV(settings2,255,brightness);
break;
case 1:
leds[diag][i] = CHSV(settings2,255,brightness);
break;
case 2:
leds[diag][i] = CHSV(settings,255,brightness);
break;
case 3:
leds[diag][i] = CHSV(settings,255,brightness);
break;
case 4:
leds[diag][i] = CHSV(settings3,255,brightness);
break;
case 5:
leds[diag][i] = CHSV(settings3,255,brightness);
break;
case 6:
leds[diag][i] = CHSV(settings,255,brightness);
break;
case 7:
leds[diag][i] = CHSV(settings,255,brightness);
break;
}
}
}
FastLED.show(); // display this frame
delay (200);
CheckPots(); // Added to prevent brightness setting lag.
}
}
void rainbow(){
static byte rainbow_color = 0;
byte rainbow_brightness = constrain(brightness,96,255);
for( int strip = 0; strip < NUM_STRIPS; strip++) {
for( int i = 0; i < NUM_LEDS_PER_STRIP; i++) {
leds[strip][i] = CHSV(rainbow_color, 255, rainbow_brightness);
}
}
FastLED.show();
FastLED.delay(10);
rainbow_color++;
}
void verrainbow(){
static byte rainbow_start = 0;
static byte rainbow_color = 0;
byte rainbow_brightness = constrain(brightness,96,255);
for( int i = 0; i < NUM_LEDS_PER_STRIP; i++) {
for( int strip = 0; strip < NUM_STRIPS; strip++) {
leds[strip][i] = CHSV(rainbow_color, 255, rainbow_brightness);
}
rainbow_color+=10;
}
FastLED.show();
FastLED.delay(3);
rainbow_color = rainbow_start++;
}
void horrainbow(){
static byte rainbow_start = 0;
static byte rainbow_color = 0;
byte rainbow_brightness = constrain(brightness,96,255);
for( int strip = 0; strip < NUM_STRIPS; strip++) {
for( int i = 0; i < NUM_LEDS_PER_STRIP; i++) {
leds[strip][i] = CHSV(rainbow_color, 255, rainbow_brightness);
}
rainbow_color+=32;
}
FastLED.show();
FastLED.delay(10);
rainbow_color = rainbow_start++;
}
void heartbeat(){
for( int k = 0; k < NUM_LEDS_PER_STRIP; k++) {
for( int strip = 0; strip < NUM_STRIPS; strip++) {
fill_solid(leds[strip], NUM_LEDS_PER_STRIP, CRGB(0, 0, 0) );
}
for( int i = k; i >=0; i--) {
int j = i-k;
int result = quadwave8(map(j,0,NUM_LEDS_PER_STRIP,0,255));
for( int strip = 0; strip < NUM_STRIPS; strip++) {
leds[strip][i] = CRGB(result,result,result);
}
}
FastLED.show();
delay(30);
}
for( int k = 0; k < NUM_LEDS_PER_STRIP; k++) {
for( int strip = 0; strip < NUM_STRIPS; strip++) {
fill_solid(leds[strip], NUM_LEDS_PER_STRIP, CRGB(0, 0, 0) );
}
for( int i = NUM_LEDS_PER_STRIP-1; i >= k; i--) {
int j = i-k;
int result = quadwave8(map(j,0,NUM_LEDS_PER_STRIP,0,255));
for( int strip = 0; strip < NUM_STRIPS; strip++) {
leds[strip][i] = CRGB(result,result,result);
}
}
FastLED.show();
delay(30);
}
delay(1000);
}
void colorheartbeat(){
for( int k = 0; k < NUM_LEDS_PER_STRIP; k++) {
for( int strip = 0; strip < NUM_STRIPS; strip++) {
fill_solid(leds[strip], NUM_LEDS_PER_STRIP, CRGB(0, 0, 0) );
}
for( int i = k; i >=0; i--) {
int j = i-k;
int result = quadwave8(map(j,0,NUM_LEDS_PER_STRIP,0,255));
for( int strip = 0; strip < NUM_STRIPS; strip++) {
leds[strip][i] = CHSV(settings,255,result);
}
}
FastLED.show();
delay(30);
}
for( int k = 0; k < NUM_LEDS_PER_STRIP; k++) {
for( int strip = 0; strip < NUM_STRIPS; strip++) {
fill_solid(leds[strip], NUM_LEDS_PER_STRIP, CRGB(0, 0, 0) );
}
for( int i = NUM_LEDS_PER_STRIP-1; i >= k; i--) {
int j = i-k;
int result = quadwave8(map(j,0,NUM_LEDS_PER_STRIP,0,255));
for( int strip = 0; strip < NUM_STRIPS; strip++) {
leds[strip][i] = CHSV(settings,255,result);
}
}
FastLED.show();
delay(30);
}
delay(1000);
}
void lighthouse(){
static int pos = 0; // position of the "fraction-based bar"
static byte hue = 0; // color for Fractional Bar
int width = 2; // width of each light bar, in whole pixels
int InterframeDelay = 20; // ms
for( int strip = 0; strip < NUM_STRIPS; strip++) { // clear the pixel buffer
fill_solid(leds[strip], NUM_LEDS_PER_STRIP, CRGB(0, 0, 0) );
}
int pixel = pos / 16; // convert from pos to raw pixel number
uint8_t frac = pos & 0x0F; // extract the 'factional' part of the position
uint8_t bright;
for( int n = 0; n <= width; n++) {
if( n == 0) bright = brightness - brightness*frac/16; // first pixel in the bar
else if( n == width ) bright = brightness*frac/16; // last pixel in the bar
else bright = brightness; // middle pixels... if any...
for( int j = 0; j < NUM_LEDS_PER_STRIP; j++) {
leds[pixel][j] += CRGB(bright,bright,bright);
}
pixel++;
if( pixel == NUM_STRIPS){
pixel = 0; // wrap around
}
}
FastLED.show();
FastLED.delay(InterframeDelay);
pos++; // Update by 1/16th pixel every loop
if( pos >= (NUM_STRIPS * 16)) pos -= (NUM_STRIPS * 16); // wrap around if past the end
}
void colorlighthouse(){
static int pos = 0; // position of the "fraction-based bar"
static byte hue = 0; // color for Fractional Bar
int width = 2; // width of each light bar, in whole pixels
int InterframeDelay = 10; // ms
for( int strip = 0; strip < NUM_STRIPS; strip++) { // clear the pixel buffer
fill_solid(leds[strip], NUM_LEDS_PER_STRIP, CRGB(0, 0, 0) );
}
int pixel = pos / 16; // convert from pos to raw pixel number
uint8_t frac = pos & 0x0F; // extract the 'factional' part of the position
uint8_t bright;
for( int n = 0; n <= width; n++) {
if( n == 0) bright = brightness - brightness*frac/16; // first pixel in the bar
else if( n == width ) bright = brightness*frac/16; // last pixel in the bar
else bright = brightness; // middle pixels... if any...
for( int j = 0; j < NUM_LEDS_PER_STRIP; j++) {
leds[pixel][j] += CHSV( settings, 255, bright);
}
pixel++;
if( pixel == NUM_STRIPS){
pixel = 0; // wrap around
}
}
FastLED.show();
FastLED.delay(InterframeDelay);
pos++; // Update by 1/16th pixel every loop
if( pos >= (NUM_STRIPS * 16)) pos -= (NUM_STRIPS * 16); // wrap around if past the end
}
void monochrome(){
for( int strip = 0; strip < NUM_STRIPS; strip++) {
for( int i = 0; i < NUM_LEDS_PER_STRIP; i++) {
leds[strip][i] = CHSV(settings, 255, brightness);
}
}
FastLED.show(); // display this frame
delay (100);
}
void colortwinkle(){
brightenOrDarkenEachPixel( FADE_IN_SPEED, FADE_OUT_SPEED);
for( int strip = 0; strip < NUM_STRIPS; strip++) {
for( int i = 0; i < NUM_LEDS_PER_STRIP; i++) {
if( random8() < DENSITY ) {
if( !leds[strip][i]) {
leds[strip][i] = ColorFromPalette( gPalette, random8(), STARTING_BRIGHTNESS, NOBLEND);
setPixelDirection(i, strip, GETTING_BRIGHTER);
}
}
}
}
FastLED.show();
FastLED.delay(20);
}
void brightenOrDarkenEachPixel( fract8 fadeUpAmount, fract8 fadeDownAmount)
{
for( int strip = 0; strip < NUM_STRIPS; strip++) {
for( int i = 0; i < NUM_LEDS_PER_STRIP; i++) {
if( getPixelDirection(i,strip) == GETTING_DARKER) {
leds[strip][i] = leds[strip][i].nscale8(255 - fadeDownAmount);
}
else {
CRGB incrementalColor = leds[strip][i];
leds[strip][i] = leds[strip][i] + incrementalColor.nscale8(fadeUpAmount);
if( leds[strip][i].r == 255 || leds[strip][i].g == 255 || leds[strip][i].b == 255) {
setPixelDirection(i, strip, GETTING_DARKER);
}
}
}
}
}
uint8_t directionFlags[NUM_LEDS_PER_STRIP];
bool getPixelDirection( uint8_t i, uint8_t strip) {
uint8_t index = i;
uint8_t bitNum = strip;
return bitRead( directionFlags[index], bitNum);
}
void setPixelDirection( uint8_t i, uint8_t strip, bool dir) {
uint8_t index = i;
uint8_t bitNum = strip;
bitWrite( directionFlags[index], bitNum, dir);
}
void white(){
for( int strip = 0; strip < NUM_STRIPS; strip++) {
for( int i = 0; i < NUM_LEDS_PER_STRIP; i++) {
leds[strip][i] = CRGB(brightness,brightness,brightness);
}
}
FastLED.show(); // display this frame
delay (100);
}
void CheckPots(){
val_0 = analogRead(0);
val_1 = analogRead(1);
if (abs(val_0-prevVal_0) >= 8){ // If potentiometer is tweaked sufficiently to change settings
// pot_status();
if (millis() > (time + 5000)){ // Give as much as 5 seconds to change settings before locking it in.
brightness = map(val_0, 0, 1024, 0, 256);
prevVal_0 = val_0;
}
else {
time = millis(); // RE-start timer each time we enter to change settings
settings = map(val_0, 0, 1024, 0, 256);
brightness = 128; // Temporarily set brightness to 50%
prevVal_0 = val_0;
}
}
if (abs(val_1-prevVal_1) >= 8){ // If potentiometer is tweaked sufficiently to change modes
// pot_status();
time = millis(); // Start timer
mode = map(val_1, 0, 1024, 0, NumberOfModes);
prevVal_1 = val_1;
}
if (millis() > (time + settingstimeout1) && millis() < (time + settingstimeout2)){ // If we just got out of the settings period...
for( int strip = 0; strip < NUM_STRIPS; strip++) {
fill_solid(leds[strip], NUM_LEDS_PER_STRIP, CRGB(0, 0, 0));
}
FastLED.show(); // Indicate it by flashing off the lamp 1/4 second
delay (250);
for( int strip = 0; strip < NUM_STRIPS; strip++) {
fill_solid(leds[strip], NUM_LEDS_PER_STRIP, CRGB(brightness, brightness, brightness));
}
FastLED.show(); // Indicate it by flashing on the lamp 1/4 second
delay (250);
time = millis() - settingstimeout2; // Make sure we don't flash again !
}
}
void pot_status(){
Serial.print("Value of pot 0 is: ");
Serial.print(val_0);
Serial.print(" Value of pot 1 is: ");
Serial.print(val_1);
Serial.print(" Value of mode is: ");
Serial.print(mode);
Serial.print(" Value of settings is: ");
Serial.print(settings);
Serial.print(" Value of brightness is: ");
Serial.println(brightness);
}
@Yousefff1
Copy link

Yousefff1 commented Apr 12, 2021

Hi!
Thank you for sharing, is it possible to adapt this for shorter strips? say 10 or 12 LEDs?

I've changed the number of LEDs to 12, but the result doesn't seem as natural in the flame effect.

@jpro56
Copy link
Author

jpro56 commented Apr 12, 2021

Hi, I'm surprised to see your comment !

I have posted this code a number of years ago and I do not have the hardware on hand to really help you.

I would suggest trying different values for SPARKING and COOLING in the function.... void Fire2012WithPalette()

Maybe also try modifying the color palettes.

@Yousefff1
Copy link

There are only a few good examples like this one, and I have to say, this is exactly what I am looking for.
Thank you for the tip, I'll play with those values.

I've purchased some of those fire lamps from china, and they are impressive, and you know when you are a tinkerer, you like to add it to your home automation and have more control. So it made sense to make my own fire lamps from the strips I have.

@jpro56
Copy link
Author

jpro56 commented Apr 13, 2021

I would have liked to help you more with this but I gave the lamps I made to my son as a gift and I do not have any RGB led strips on hand to play with at the moment.

Your motivation to build your own is exactly as mine was. Please notice that I am not the original designer of that fire simulation code but I did use a copy and modified it to come up with my own flavor of it. I am convinced that it could be further refined and made a lot more realistic given a better understanding of the behavior of real flames and how to translate this behavior into a program that drives RGB LEDs

If you could send a short video of your current implementation I would really appreciate it and then may be able to help you more.

Regards, JP Roy

@jpro56
Copy link
Author

jpro56 commented Apr 13, 2021

If you have not seen this... here's a Youtube video of the actual lamp I built...

https://www.youtube.com/watch?v=ylFPllQoKhk

@Yousefff1
Copy link

Yes I understand, I've seen the original code floating around, but I liked your implementation the most since it assumes the strips are vertical not horizontal, so you can get away with fewer strips and achieve a narrower fire source (three could be enough).

That video looks really great! I am unable to achieve a realistic effect like you have there, but I'll keep trying.

One thing I've noticed in the product I've purchased from china, is how cleaver and simple it is, they basically have two flame versions, and a total of 12 led lines (strips), they've paired each two with the same flame effect, but they've offset them by one led, this gave the result a realistic touch.

One thing I'm also trying to achieve (building on your code) is to get a couple of LEDs to be remain solid, and randomly fade in and out.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment