Skip to content

Instantly share code, notes, and snippets.

@jthomasmock
Created September 13, 2023 01:36
Show Gist options
  • Save jthomasmock/197d385dfefbeef61ec5ef6cce0d0ecc to your computer and use it in GitHub Desktop.
Save jthomasmock/197d385dfefbeef61ec5ef6cce0d0ecc to your computer and use it in GitHub Desktop.
Guess the Keyword of the day with R!
library(tidyverse)
library(jsonlite)
library(shiny)
# get_json_data(date)
# score_letters(letters)
# read_keywords() on mac
# split_char(word) into words
# limit_words(words, str_length) to specific length and lower case
# top_words(word, words_in, top_n = 50) - combo of split_char, limit_words
# letters_from_blank(word_in, top_words) - generates possible_letters
# possible_letters <- purrr::map(word_miss, ~letters_from_blank(.x, top_words(.x, words_in)))
# possible_words(generated_words, words_in)) -
### possible_keywords <- possible_words(generated_words, words_in)
guess_keyword <- function(date = Sys.Date(), return=FALSE) {
# browser()
# split words into letters
split_char <- function(word) {
stringr::str_split(word, "") |> unlist()
}
# score letters internal fn - thanks CoolButUseless!
score_letters <- function(letters) {
letter_freqs <- strsplit("etaoinshrdlcumwfgypbvkjxqz", "")[[1]]
letter_scores <- setNames(1:26, letter_freqs)
sum(letter_scores[tolower(letters)])
}
# get local keywords - thanks CoolButUseless!
read_keywords <- function() {
words_in <- readLines("/usr/share/dict/words")
# words_in <- words_vec
words_in[stringr::str_length(words_in) <= 6] |> tolower()
}
# limit the words to matching length and to lower case
limit_words <- function(words, str_length) {
words_in[stringr::str_length(words) == str_length] |> tolower()
}
# create a regex from a word w/ missing letters
regex_from_word <- function(word) {
word |>
stringr::str_replace_all("_", "[a-z]") |>
stringr::regex()
}
# given a list of multiple vectors of letters,
# return a list of all possible combinations of letters
cross_words <- function(possible_letters) {
suppressWarnings(
purrr::cross(possible_letters) |>
purrr::map_chr(paste0, collapse = "")
)
}
# limit the words to the top 50 best based on scoring
top_words <- function(word, words_in, top_n = 50) {
matched_words <- str_subset(limit_words(words_in, str_length(word)), regex_from_word(word))
matched_words |>
lapply(split_char) |>
sapply(score_letters) |>
setNames(matched_words, nm = _) |>
sort() |>
unique() |>
head(top_n)
}
# letters from blank extracted
letters_from_blank <- function(word_in, top_words) {
# position of _ in the string
pos <- stringr::str_locate(word_in, "_")[[1]]
stringr::str_sub(top_words, pos, pos)
}
# given a vector of words in generated_words, vector subset it
# with words_in that are 6 characters long and match or are in the generated words
possible_words <- function(generated_words, words_in) {
limited_words <- generated_words[generated_words %in% limit_words(words_in, 6)]
limited_words |>
lapply(split_char) |>
sapply(score_letters) |>
setNames(limited_words, nm = _) |>
sort() |>
unique() |>
head(20)
}
# read the keywords in from local
words_in <- read_keywords()
# get json data from their web interface at Washington Post
get_json_data <- function(date = date) {
date_clean <- stringr::str_replace_all(date, "-", "/")
url <- glue::glue("https://keyword-client-prod.red.aws.wapo.pub/levels/{date_clean}.json")
# url <- gl
json_in <- url |> fromJSON(simplifyVector = FALSE)
return(json_in)
}
# browser()
# get the missing words from json
raw_json <- get_json_data(date = date)
word_miss <- raw_json |>
pluck("words") |>
as.character()
# return the possible letters
possible_letters <- purrr::map(word_miss, ~ letters_from_blank(.x, top_words(.x, words_in)))
# given a list of multiple vectors of letters,
# return a list of all possible combinations of letters
generated_words <- cross_words(possible_letters)
# given a vector of words in generated_words, vector subset it with words_in that are 6 characters long and match or are in the generated words
possible_keywords <- possible_words(generated_words, words_in)
stopifnot("Word isn't in data banks!" = raw_json$answer %in% possible_keywords)
# now using those keywords
# replace the _ in the words with the letters from the keywords
possible_ver_words <- possible_keywords |>
lapply(split_char) |>
# now paste those letters into the words with missing letters
purrr::map(~ stringr::str_replace(word_miss, "_", glue::glue("[{.x}]")))
cat(
c(
" The keyword is one of the following:\n",
paste(possible_keywords, collapse = ", "),
"\n\n",
"The played words are some of the following:\n",
# paste(possible_ver_words, collapse = ", "),
paste0(
purrr::map_chr(possible_ver_words, paste0, collapse = ", "),
collapse = "\n "
),
"\n\n"
)
)
if(return) return(possible_ver_words)
}
@zamora
Copy link

zamora commented Nov 20, 2024

It looks like you have several versions of Keyword solvers. I made one of my own, if you are interested. https://gist.github.com/zamora/3e385e0387a5d43047f3110d6c9dcd1a

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment