This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(gt) | |
library(tidyverse) | |
library(nflseedR) | |
library(espnscrapeR) | |
# nflseedR code | |
sim <- simulate_nfl(...) | |
sim$overall | |
# # A tibble: 32 x 11 | |
# conf division team wins playoff div1 seed1 won_conf won_sb draft1 draft5 | |
# <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> | |
# 1 AFC AFC East BUF 11.5 0.956 0.894 0.348 0.258 0.16 0 0 | |
# 2 AFC AFC East MIA 7.92 0.352 0.098 0.01 0.016 0.008 0.004 0.08 | |
# 3 AFC AFC East NE 5.05 0.038 0.004 0 0 0 0.128 0.474 | |
# 4 AFC AFC East NYJ 4.90 0.026 0.004 0 0 0 0.112 0.51 | |
# 5 AFC AFC North BAL 9.57 0.718 0.472 0.066 0.072 0.042 0.004 0.022 | |
# 6 AFC AFC North CIN 6.86 0.192 0.078 0.002 0.006 0.002 0.028 0.2 | |
# 7 AFC AFC North CLE 9.21 0.602 0.394 0.056 0.056 0.032 0.002 0.022 | |
# 8 AFC AFC North PIT 6.63 0.134 0.056 0 0 0 0.028 0.226 | |
# 9 AFC AFC South HOU 9.29 0.662 0.266 0.046 0.058 0.026 0 0.012 | |
# 10 AFC AFC South IND 7.96 0.384 0.106 0.012 0.028 0.014 0.012 0.096 | |
# # … with 22 more rows | |
gt_nflseedR_overall <- function(data, ...){ | |
data %>% | |
mutate(division = str_remove(division, "AFC |NFC ")) %>% | |
select(conf, division, team, wins, playoff, div1:won_sb) %>% | |
group_by(conf, division) %>% | |
arrange(desc(won_sb)) %>% | |
gt() %>% | |
fmt_number(vars(wins), decimals = 1) %>% | |
fmt_percent(vars(playoff, div1, seed1, won_conf, won_sb), decimals = 0) %>% | |
cols_label( | |
playoff = html("Make<br>Playoffs"), | |
div1 = html("Win<br>DIV"), | |
seed1 = html("1st-RD<br>Bye"), | |
won_conf = html("Win<br>Conf"), | |
won_sb = html("Win<br>SB") | |
) %>% | |
data_color( | |
columns = vars(playoff, div1, seed1, won_conf, won_sb), | |
colors = scales::col_numeric(palette = c("white", "#6fc0e7", "#018fd5"), domain = c(0, 1)) | |
) %>% | |
gt::tab_header(title = md("**2020 NFL Simulations**"), subtitle = md("Team points simulated according to team QBR via `{nflseedR}`")) %>% | |
tab_source_note(source_note = "Data: nflseedR | Table: @thomas_mock") %>% | |
espnscrapeR::gt_theme_538() | |
} | |
sim$overall %>% | |
filter(conf == "AFC") %>% | |
gt_nflseedR_overall() | |
sim$overall %>% | |
filter(conf == "NFC") %>% | |
gt_nflseedR_overall() |
Author
jthomasmock
commented
Feb 22, 2021
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment