Created
April 14, 2017 22:57
-
-
Save juliensimon/4a5e999d9c851f0b036ab3870eccd59d to your computer and use it in GitHub Desktop.
MXNet + Inception v3
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import mxnet as mx | |
import numpy as np | |
import cv2 | |
from collections import namedtuple | |
def loadInceptionv3(): | |
sym, arg_params, aux_params = mx.model.load_checkpoint('Inception-BN', 0) | |
mod = mx.mod.Module(symbol=sym) | |
mod.bind(for_training=False, data_shapes=[('data', (1,3,224,224))]) | |
mod.set_params(arg_params, aux_params) | |
return mod | |
def loadCategories(): | |
synsetfile = open('synset.txt', 'r') | |
synsets = [] | |
for l in synsetfile: | |
synsets.append(l.rstrip()) | |
return synsets | |
def prepareNDArray(filename): | |
img = cv2.imread(filename) | |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
img = cv2.resize(img, (224, 224,)) | |
img = np.swapaxes(img, 0, 2) | |
img = np.swapaxes(img, 1, 2) | |
img = img[np.newaxis, :] | |
return mx.nd.array(img) | |
def predict(filename, model, categories, n): | |
array = prepareNDArray(filename) | |
Batch = namedtuple('Batch', ['data']) | |
model.forward(Batch([array])) | |
prob = model.get_outputs()[0].asnumpy() | |
prob = np.squeeze(prob) | |
sortedprobindex = np.argsort(prob)[::-1] | |
topn = [] | |
for i in sortedprobindex[0:n]: | |
topn.append((prob[i], categories[i])) | |
return topn | |
def init(): | |
model = loadInceptionv3() | |
cats = loadCategories() | |
return model, cats | |
m,c = init() | |
topn = predict("/tmp/kreator.jpeg",m,c,5) | |
print topn |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment