Created
February 24, 2021 17:17
-
-
Save juntao/2ffac70d9e4c9334708bb4e83e6e1599 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// Load the model data from a file | |
let model_data: &[u8] = include_bytes!("lite-model_aiy_vision_classifier_food_V1_1.tflite"); | |
// Read the input image data from Tencent Cloud's API gateway | |
let mut buffer = String::new(); | |
io::stdin().read_to_string(&mut buffer).expect("Error reading from STDIN"); | |
let obj: FaasInput = serde_json::from_str(&buffer).unwrap(); | |
let img_buf = base64::decode_config(&(obj.body), base64::STANDARD).unwrap(); | |
// Resize the image to the size needed by the Tensorflow model | |
let flat_img = ssvm_tensorflow_interface::load_jpg_image_to_rgb8(&img_buf, 192, 192); | |
// Execute the model against the input image and gets the result tensor value | |
let mut session = ssvm_tensorflow_interface::Session::new(&model_data, ssvm_tensorflow_interface::ModelType::TensorFlowLite); | |
session.add_input("input", &flat_img, &[1, 192, 192, 3]).run(); | |
let res_vec: Vec<u8> = session.get_output("MobilenetV1/Predictions/Softmax"); |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment