Extract NER
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from elasticsearch import Elasticsearch | |
import spacy | |
import os | |
import json | |
from pymongo import MongoClient | |
from spacy.pipeline import EntityRuler | |
import hashlib | |
import inflection | |
def set_custom_boundaries(doc): | |
for token in doc[:-1]: | |
if token.text == ";": | |
doc[token.i+1].is_sent_start = True | |
if token.text == "•": | |
doc[token.i+1].is_sent_start = True | |
if token.text == "●": | |
doc[token.i+1].is_sent_start = True | |
if token.text == ".": | |
doc[token.i+1].is_sent_start = True | |
return doc | |
es = Elasticsearch(os.environ["ES"]) | |
nlp = spacy.load("en_core_web_sm") | |
nlp.add_pipe(set_custom_boundaries, before="ner") | |
nlp.add_pipe(nlp.create_pipe('sentencizer'), before="ner") | |
client = MongoClient(os.environ['DB']) | |
db = client.fundy | |
training = db.training | |
RULES = [] | |
for ele in training.find({}): | |
if ele["entitytype"] == "person": | |
entitytype = "PERSON" | |
if ele["entitytype"] == "org": | |
entitytype = "ORG" | |
if ele["entitytype"] == "law": | |
entitytype = "LAW" | |
if ele["entitytype"] == "product": | |
entitytype = "PRODUCT" | |
if ele["entitytype"] == "gpes": | |
entitytype = "GPE" | |
if ele["entitytype"] == "woa": | |
entitytype = "WORK_OF_ART" | |
if ele["entitytype"] == "ignore": | |
entitytype = "IGNORE" | |
if ele["entitytype"] == "money": | |
entitytype = "MONEY" | |
if ele["entitytype"] == "fac": | |
entitytype = "FAC" | |
try: | |
patterns_string = ele["entity"].split() | |
patterns = [] | |
if len(patterns_string): | |
for p in patterns_string: | |
patterns.append({"LOWER": p.lower()}) | |
else: | |
patterns = [{"LOWER": ele["entity"].lower()}] | |
RULES.append({"label": entitytype, "pattern": patterns}) | |
except Exception as e: | |
pass | |
ner = nlp.get_pipe("ner") | |
ner.add_label("OTHER") | |
ruler = EntityRuler(nlp, overwrite_ents=True) | |
ruler.add_patterns(RULES) | |
nlp.add_pipe(ruler, after="ner") | |
# nlp.add_pipe(ruler, before="ner") | |
# nlp.add_pipe(nlp.create_pipe('sentencizer')) | |
hashes = [] | |
def query_docs(from_page): | |
res = es.search(index="item_1a", body={ | |
"_source": ["risks", "date", "form"], | |
"size": 10, | |
"from": from_page, | |
"query": { | |
"bool": { | |
"must": [{ | |
"match": { | |
"form": "10-K" | |
} | |
}, | |
{ | |
"range": {"date": {"gte": "2019", "format": "yyyy"}} | |
} | |
] | |
} | |
}}) | |
sentences = [] | |
for doc in res["hits"]["hits"]: | |
try: | |
if( doc["_source"]["form"]) == "10-K": | |
docner = nlp(inflection.transliterate(doc["_source"]["risks"]).replace("\n", " ")) | |
for sent in docner.sents: | |
labels = [] | |
text = "" | |
# print(sent.start) | |
# print(sent) | |
for ent in sent.ents: | |
# print(ent.sent.start_char) | |
# print(ent.text, ent.start_char-ent.sent.start_char, ent.end_char-ent.sent.start_char, ent.label_) | |
if str(ent.label_) != "IGNORE": | |
labels.append([ent.start_char-ent.sent.start_char, ent.end_char-ent.sent.start_char, ent.label_]) | |
text = str(sent) | |
result = hashlib.sha224(text.encode()).hexdigest() | |
if result not in hashes: | |
if(len(text.strip()) > 10): | |
if (len(labels) > 0): | |
sentences.append({"text": text, "labels": labels}) | |
else: | |
sentences.append({"text": text }) | |
hashes.append(result) | |
except Exception as e: | |
continue | |
for sentence in sentences: | |
print(json.dumps(sentence)) | |
for x in range(0, 999): | |
query_docs(x) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment