Last active
May 28, 2021 18:21
-
-
Save jwintersinger/5fca5d2f25f9ae00f88c6eef5b8df5c3 to your computer and use it in GitHub Desktop.
Code to optimize multi-allele tumor heterogeneity scores (MATH). Specifically, we modify an underlying VAF distribution by swapping points while maintaining a constant MAD and median, yielding a constant MATH.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Code to optimize multi-allele tumor heterogeneity scores (MATH). | |
# Specifically, we modify an underlying VAF distribution by swapping points | |
# while maintaining a constant MAD and median, yielding a constant MATH. | |
using Distributions | |
using Random | |
using Statistics | |
using Gadfly | |
using Base64 | |
import Cairo, Fontconfig | |
function make_png(plt, width, height) | |
io = IOBuffer() | |
b64io = Base64EncodePipe(io) | |
draw(SVG(b64io, width, height), plt) | |
close(b64io) | |
return "<img src='data:image/svg+xml;base64,$(String(take!(io)))'>" | |
end | |
function plot_histogram(vals, xlabel; width=600px, height=400px) | |
@assert !any(isnothing.(vals)) | |
plt = plot( | |
x = vec(vals), | |
Geom.histogram(bincount=30), | |
Guide.xlabel(xlabel), | |
Guide.ylabel("Count"), | |
Coord.cartesian(xmin=0, xmax=1.1), | |
) | |
return make_png(plt, width, height) | |
end | |
function calc_mad(A) | |
med = median(A) | |
mad = median(abs.(A .- med)) | |
return mad | |
end | |
function sample_vafs(N, T, weights, phi) | |
@assert size(weights) == size(phi) | |
K = length(weights) | |
cats = rand(Categorical(weights), N) | |
V = [rand(Binomial(T, phi[cats[idx]])) for idx in 1:N] | |
vafs = V ./ T | |
return vafs | |
end | |
function exchange_points(A, dist; iters=1000) | |
A = copy(A) | |
N = length(A) | |
if N % 2 == 0 | |
A = A[2:end] | |
N -= 1 | |
end | |
med = median(A) | |
mad = calc_mad(A) | |
for iter in 1:iters | |
idx = rand(1:N) | |
V = A[idx] | |
dev = abs(med - V) | |
if V < med && dev < mad | |
L = med - mad | |
U = med | |
elseif V < med && dev > mad | |
L = 0 | |
U = med - mad | |
elseif V > med && dev < mad | |
L = med | |
U = med + mad | |
elseif V > med && dev > mad | |
L = med + mad | |
U = 1 | |
else | |
continue | |
end | |
A[idx] = rand(dist) * (U - L) + L | |
end | |
return A | |
end | |
function test_beta() | |
K = 10 | |
N = 10000 | |
X = [rand(Beta(0.5*K, 0.5*K), N)] | |
K *= 8.2 | |
push!(X, [ | |
rand(Beta(0.25*K, 0.75*K), floor(Int, 0.45*N)); | |
rand(Beta(0.50*K, 0.50*K), N); | |
rand(Beta(0.75*K, 0.25*K), floor(Int, 0.45*N)); | |
]) | |
push!(X, exchange_points(X[1], iters=10N)) | |
open("out.html", "w") do F | |
for xvals in X | |
println((calc_mad(xvals), median(xvals), mean(xvals))) | |
write(F, plot_histogram(xvals, "VAFs")) | |
write(F, "<br>") | |
end | |
end | |
end | |
function test_binom() | |
N = 10000 | |
T = 100 | |
X = [] | |
push!(X, sample_vafs( | |
N, | |
0.15*T, | |
[1.], | |
[0.2], | |
)) | |
push!(X, sample_vafs( | |
N, | |
2.75*T, | |
[0.5, 0.5], | |
[0.3, 0.59], | |
)) | |
push!(X, sample_vafs( | |
N, | |
2.75*T, | |
[0.28, 0.44, 0.28], | |
[0.67, 0.40, 0.25], | |
)) | |
for dist in (Uniform(0,1), Beta(0.5,5), Beta(5,5)) | |
push!(X, exchange_points( | |
X[3], | |
dist, | |
iters=10N), | |
) | |
end | |
push!(X, sample_vafs( | |
N, | |
2.75*T, | |
[0.35, 0.65], | |
[0.65, 0.45], | |
)) | |
return X | |
end | |
function main() | |
threshold = 1e-5 | |
iters = 10000 | |
done = 0 | |
dists = Array{Any}(undef,iters) | |
deltas = fill(Inf, iters) | |
# Samples with replacement. We would prefer without replacement, but this | |
# would require using StatsBase. | |
seeds = rand(1:2^32, iters) | |
lck = ReentrantLock() | |
Threads.@threads for iter in 1:iters | |
seed = seeds[iter] | |
Random.seed!(seed) | |
dists[iter] = test_binom() | |
scores = [calc_mad(xvals)/median(xvals) for xvals in dists[iter]] | |
# Exclude the two-subclone case that isn't supposed to have a similar MATH | |
# to other cases. | |
target_scores = scores[1:(end-1)] | |
deltas[iter] = maximum(target_scores) - minimum(target_scores) | |
lock(lck) do | |
done += 1 | |
status = (done, iter, iters, seed, deltas[iter], minimum(deltas)) | |
println(status) | |
end | |
end | |
best = argmin(deltas) | |
html = "" | |
for xvals in dists[best] | |
html *= "<p>$((calc_mad(xvals), median(xvals), mean(xvals), calc_mad(xvals)/median(xvals)))</p>" | |
html *= plot_histogram(xvals, "Variant allele frequency (VAF)") | |
html *= "<br>" | |
end | |
open("/scratch/q/qmorris/jawinter/tmp/out.html", "w") do F | |
write(F, html) | |
end | |
end |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment