Last active
June 3, 2019 00:30
-
-
Save jyuko/9e9f6e2b8fa928a463ee7a48386c2bf4 to your computer and use it in GitHub Desktop.
Revisions
-
jyuko revised this gist
Nov 17, 2018 . 1 changed file with 0 additions and 2 deletions.There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -4,8 +4,6 @@ import tempfile from six.moves import urllib import numpy as np from PIL import Image -
jyuko created this gist
Nov 17, 2018 .There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1,171 @@ import os from io import BytesIO import tarfile import tempfile from six.moves import urllib from matplotlib import gridspec from matplotlib import pyplot as plt import numpy as np from PIL import Image import tensorflow as tf import cv2 import time class DeepLabModel(object): """Class to load deeplab model and run inference.""" INPUT_TENSOR_NAME = 'ImageTensor:0' OUTPUT_TENSOR_NAME = 'SemanticPredictions:0' INPUT_SIZE = 513 FROZEN_GRAPH_NAME = 'frozen_inference_graph' def __init__(self, tarball_path): """Creates and loads pretrained deeplab model.""" self.graph = tf.Graph() graph_def = None # Extract frozen graph from tar archive. tar_file = tarfile.open(tarball_path) for tar_info in tar_file.getmembers(): if self.FROZEN_GRAPH_NAME in os.path.basename(tar_info.name): file_handle = tar_file.extractfile(tar_info) graph_def = tf.GraphDef.FromString(file_handle.read()) break tar_file.close() if graph_def is None: raise RuntimeError('Cannot find inference graph in tar archive.') with self.graph.as_default(): tf.import_graph_def(graph_def, name='') self.sess = tf.Session(graph=self.graph) def run(self, image): """Runs inference on a single image. Args: image: A PIL.Image object, raw input image. Returns: resized_image: RGB image resized from original input image. seg_map: Segmentation map of `resized_image`. """ resized_image = image batch_seg_map = self.sess.run( self.OUTPUT_TENSOR_NAME, feed_dict={self.INPUT_TENSOR_NAME: [np.asarray(resized_image)]}) seg_map = batch_seg_map[0] return resized_image, seg_map def create_pascal_label_colormap(): """Creates a label colormap used in PASCAL VOC segmentation benchmark. Returns: A Colormap for visualizing segmentation results. """ colormap = np.zeros((256, 3), dtype=int) ind = np.arange(256, dtype=int) for shift in reversed(range(8)): for channel in range(3): colormap[:, channel] |= ((ind >> channel) & 1) << shift ind >>= 3 return colormap def label_to_color_image(label): """Adds color defined by the dataset colormap to the label. Args: label: A 2D array with integer type, storing the segmentation label. Returns: result: A 2D array with floating type. The element of the array is the color indexed by the corresponding element in the input label to the PASCAL color map. Raises: ValueError: If label is not of rank 2 or its value is larger than color map maximum entry. """ if label.ndim != 2: raise ValueError('Expect 2-D input label') colormap = create_pascal_label_colormap() if np.max(label) >= len(colormap): raise ValueError('label value too large.') return colormap[label] def vis_segmentation(image, seg_map): seg_image = label_to_color_image(seg_map).astype(np.uint8) result = cv2.add(image, seg_image) cv2.imshow("camera window", result) LABEL_NAMES = np.asarray([ 'background', 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tv' ]) FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1) FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP) MODEL_NAME = 'mobilenetv2_coco_voctrainaug' # @param ['mobilenetv2_coco_voctrainaug', 'mobilenetv2_coco_voctrainval', 'xception_coco_voctrainaug', 'xception_coco_voctrainval'] _DOWNLOAD_URL_PREFIX = 'http://download.tensorflow.org/models/' _MODEL_URLS = { 'mobilenetv2_coco_voctrainaug': 'deeplabv3_mnv2_pascal_train_aug_2018_01_29.tar.gz', 'mobilenetv2_coco_voctrainval': 'deeplabv3_mnv2_pascal_trainval_2018_01_29.tar.gz', 'xception_coco_voctrainaug': 'deeplabv3_pascal_train_aug_2018_01_04.tar.gz', 'xception_coco_voctrainval': 'deeplabv3_pascal_trainval_2018_01_04.tar.gz', } _TARBALL_NAME = 'deeplab_model.tar.gz' model_dir = tempfile.mkdtemp() tf.gfile.MakeDirs(model_dir) download_path = os.path.join(model_dir, _TARBALL_NAME) print('downloading model, this might take a while...') urllib.request.urlretrieve(_DOWNLOAD_URL_PREFIX + _MODEL_URLS[MODEL_NAME], download_path) print('download completed! loading DeepLab model...') MODEL = DeepLabModel(download_path) print('model loaded successfully!') capure = cv2.VideoCapture(0) def run_visualization(): while(True): ret, frame = capure.read() original_im = cv2.resize(frame,(480,320)) start_time = time.time() resized_im, seg_map = MODEL.run(original_im) vis_segmentation(resized_im, seg_map) elapsed_time = time.time() - start_time print(elapsed_time) if cv2.waitKey(1) == 27: break capure.release() cv2.destroyAllWindows() run_visualization()