Dijkstra shortest path algorithm based on python heapq heap implementation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from collections import defaultdict | |
from heapq import * | |
def dijkstra(edges, f, t): | |
g = defaultdict(list) | |
for l,r,c in edges: | |
g[l].append((c,r)) | |
q, seen, mins = [(0,f,())], set(), {f: 0} | |
while q: | |
(cost,v1,path) = heappop(q) | |
if v1 not in seen: | |
seen.add(v1) | |
path = (v1, path) | |
if v1 == t: return (cost, path) | |
for c, v2 in g.get(v1, ()): | |
if v2 in seen: continue | |
prev = mins.get(v2, None) | |
next = cost + c | |
if prev is None or next < prev: | |
mins[v2] = next | |
heappush(q, (next, v2, path)) | |
return float("inf"), None | |
if __name__ == "__main__": | |
edges = [ | |
("A", "B", 7), | |
("A", "D", 5), | |
("B", "C", 8), | |
("B", "D", 9), | |
("B", "E", 7), | |
("C", "E", 5), | |
("D", "E", 15), | |
("D", "F", 6), | |
("E", "F", 8), | |
("E", "G", 9), | |
("F", "G", 11) | |
] | |
print "=== Dijkstra ===" | |
print edges | |
print "A -> E:" | |
print dijkstra(edges, "A", "E") | |
print "F -> G:" | |
print dijkstra(edges, "F", "G") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
@xdavidliu I was confused by this until I saw https://stackoverflow.com/a/31123108. I think Dijkstra's algorithm is a higher level concept, so either implementation is valid.