Skip to content

Instantly share code, notes, and snippets.

@kaeflint
Created July 9, 2018 21:02
Show Gist options
  • Save kaeflint/7ce9159b65a2944c048fd30f0569cfc5 to your computer and use it in GitHub Desktop.
Save kaeflint/7ce9159b65a2944c048fd30f0569cfc5 to your computer and use it in GitHub Desktop.
Attention Decoder (TF & Keras)
import tensorflow as tf
from keras import backend as K
from keras import regularizers, constraints, initializers, activations
from keras.layers.recurrent import Recurrent, _time_distributed_dense
from keras.engine import InputSpec
tfPrint = lambda d, T: tf.Print(input_=T, data=[T, tf.shape(T)], message=d)
class AttentionDecoder(Recurrent):
def __init__(self, units, output_dim,
activation='tanh',
return_probabilities=False,
name='AttentionDecoder',
kernel_initializer='glorot_uniform',
recurrent_initializer='orthogonal',
bias_initializer='zeros',
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
**kwargs):
"""
Implements an AttentionDecoder that takes in a sequence encoded by an
encoder and outputs the decoded states
:param units: dimension of the hidden state and the attention matrices
:param output_dim: the number of labels in the output space
references:
Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio.
"Neural machine translation by jointly learning to align and translate."
arXiv preprint arXiv:1409.0473 (2014).
"""
self.units = units
self.output_dim = output_dim
self.return_probabilities = return_probabilities
self.activation = activations.get(activation)
self.kernel_initializer = initializers.get(kernel_initializer)
self.recurrent_initializer = initializers.get(recurrent_initializer)
self.bias_initializer = initializers.get(bias_initializer)
self.kernel_regularizer = regularizers.get(kernel_regularizer)
self.recurrent_regularizer = regularizers.get(kernel_regularizer)
self.bias_regularizer = regularizers.get(bias_regularizer)
self.activity_regularizer = regularizers.get(activity_regularizer)
self.kernel_constraint = constraints.get(kernel_constraint)
self.recurrent_constraint = constraints.get(kernel_constraint)
self.bias_constraint = constraints.get(bias_constraint)
super(AttentionDecoder, self).__init__(**kwargs)
self.name = name
self.return_sequences = True # must return sequences
def build(self, input_shape):
"""
See Appendix 2 of Bahdanau 2014, arXiv:1409.0473
for model details that correspond to the matrices here.
"""
self.batch_size, self.timesteps, self.input_dim = input_shape
if self.stateful:
super(AttentionDecoder, self).reset_states()
self.states = [None, None] # y, s
"""
Matrices for creating the context vector
"""
self.V_a = self.add_weight(shape=(self.units,),
name='V_a',
initializer=self.kernel_initializer,
regularizer=self.kernel_regularizer,
constraint=self.kernel_constraint)
self.W_a = self.add_weight(shape=(self.units, self.units),
name='W_a',
initializer=self.kernel_initializer,
regularizer=self.kernel_regularizer,
constraint=self.kernel_constraint)
self.U_a = self.add_weight(shape=(self.input_dim, self.units),
name='U_a',
initializer=self.kernel_initializer,
regularizer=self.kernel_regularizer,
constraint=self.kernel_constraint)
self.b_a = self.add_weight(shape=(self.units,),
name='b_a',
initializer=self.bias_initializer,
regularizer=self.bias_regularizer,
constraint=self.bias_constraint)
"""
Matrices for the r (reset) gate
"""
self.C_r = self.add_weight(shape=(self.input_dim, self.units),
name='C_r',
initializer=self.recurrent_initializer,
regularizer=self.recurrent_regularizer,
constraint=self.recurrent_constraint)
self.U_r = self.add_weight(shape=(self.units, self.units),
name='U_r',
initializer=self.recurrent_initializer,
regularizer=self.recurrent_regularizer,
constraint=self.recurrent_constraint)
self.W_r = self.add_weight(shape=(self.output_dim, self.units),
name='W_r',
initializer=self.recurrent_initializer,
regularizer=self.recurrent_regularizer,
constraint=self.recurrent_constraint)
self.b_r = self.add_weight(shape=(self.units, ),
name='b_r',
initializer=self.bias_initializer,
regularizer=self.bias_regularizer,
constraint=self.bias_constraint)
"""
Matrices for the z (update) gate
"""
self.C_z = self.add_weight(shape=(self.input_dim, self.units),
name='C_z',
initializer=self.recurrent_initializer,
regularizer=self.recurrent_regularizer,
constraint=self.recurrent_constraint)
self.U_z = self.add_weight(shape=(self.units, self.units),
name='U_z',
initializer=self.recurrent_initializer,
regularizer=self.recurrent_regularizer,
constraint=self.recurrent_constraint)
self.W_z = self.add_weight(shape=(self.output_dim, self.units),
name='W_z',
initializer=self.recurrent_initializer,
regularizer=self.recurrent_regularizer,
constraint=self.recurrent_constraint)
self.b_z = self.add_weight(shape=(self.units, ),
name='b_z',
initializer=self.bias_initializer,
regularizer=self.bias_regularizer,
constraint=self.bias_constraint)
"""
Matrices for the proposal
"""
self.C_p = self.add_weight(shape=(self.input_dim, self.units),
name='C_p',
initializer=self.recurrent_initializer,
regularizer=self.recurrent_regularizer,
constraint=self.recurrent_constraint)
self.U_p = self.add_weight(shape=(self.units, self.units),
name='U_p',
initializer=self.recurrent_initializer,
regularizer=self.recurrent_regularizer,
constraint=self.recurrent_constraint)
self.W_p = self.add_weight(shape=(self.output_dim, self.units),
name='W_p',
initializer=self.recurrent_initializer,
regularizer=self.recurrent_regularizer,
constraint=self.recurrent_constraint)
self.b_p = self.add_weight(shape=(self.units, ),
name='b_p',
initializer=self.bias_initializer,
regularizer=self.bias_regularizer,
constraint=self.bias_constraint)
"""
Matrices for making the final prediction vector
"""
self.C_o = self.add_weight(shape=(self.input_dim, self.output_dim),
name='C_o',
initializer=self.recurrent_initializer,
regularizer=self.recurrent_regularizer,
constraint=self.recurrent_constraint)
self.U_o = self.add_weight(shape=(self.units, self.output_dim),
name='U_o',
initializer=self.recurrent_initializer,
regularizer=self.recurrent_regularizer,
constraint=self.recurrent_constraint)
self.W_o = self.add_weight(shape=(self.output_dim, self.output_dim),
name='W_o',
initializer=self.recurrent_initializer,
regularizer=self.recurrent_regularizer,
constraint=self.recurrent_constraint)
self.b_o = self.add_weight(shape=(self.output_dim, ),
name='b_o',
initializer=self.bias_initializer,
regularizer=self.bias_regularizer,
constraint=self.bias_constraint)
# For creating the initial state:
self.W_s = self.add_weight(shape=(self.input_dim, self.units),
name='W_s',
initializer=self.recurrent_initializer,
regularizer=self.recurrent_regularizer,
constraint=self.recurrent_constraint)
self.input_spec = [
InputSpec(shape=(self.batch_size, self.timesteps, self.input_dim))]
self.built = True
def call(self, x):
# store the whole sequence so we can "attend" to it at each timestep
self.x_seq = x
# apply the a dense layer over the time dimension of the sequence
# do it here because it doesn't depend on any previous steps
# thefore we can save computation time:
self._uxpb = _time_distributed_dense(self.x_seq, self.U_a, b=self.b_a,
input_dim=self.input_dim,
timesteps=self.timesteps,
output_dim=self.units)
return super(AttentionDecoder, self).call(x)
def get_initial_state(self, inputs):
# apply the matrix on the first time step to get the initial s0.
s0 = activations.tanh(K.dot(inputs[:, 0], self.W_s))
# from keras.layers.recurrent to initialize a vector of (batchsize,
# output_dim)
y0 = K.zeros_like(inputs) # (samples, timesteps, input_dims)
y0 = K.sum(y0, axis=(1, 2)) # (samples, )
y0 = K.expand_dims(y0) # (samples, 1)
y0 = K.tile(y0, [1, self.output_dim])
return [y0, s0]
def step(self, x, states):
ytm, stm = states
# repeat the hidden state to the length of the sequence
_stm = K.repeat(stm, self.timesteps)
# now multiplty the weight matrix with the repeated hidden state
_Wxstm = K.dot(_stm, self.W_a)
# calculate the attention probabilities
# this relates how much other timesteps contributed to this one.
et = K.dot(activations.tanh(_Wxstm + self._uxpb),
K.expand_dims(self.V_a))
at = K.exp(et)
at_sum = K.sum(at, axis=1)
at_sum_repeated = K.repeat(at_sum, self.timesteps)
at /= at_sum_repeated # vector of size (batchsize, timesteps, 1)
# calculate the context vector
context = K.squeeze(K.batch_dot(at, self.x_seq, axes=1), axis=1)
# ~~~> calculate new hidden state
# first calculate the "r" gate:
rt = activations.sigmoid(
K.dot(ytm, self.W_r)
+ K.dot(stm, self.U_r)
+ K.dot(context, self.C_r)
+ self.b_r)
# now calculate the "z" gate
zt = activations.sigmoid(
K.dot(ytm, self.W_z)
+ K.dot(stm, self.U_z)
+ K.dot(context, self.C_z)
+ self.b_z)
# calculate the proposal hidden state:
s_tp = activations.tanh(
K.dot(ytm, self.W_p)
+ K.dot((rt * stm), self.U_p)
+ K.dot(context, self.C_p)
+ self.b_p)
# new hidden state:
st = (1-zt)*stm + zt * s_tp
yt = activations.softmax(
K.dot(ytm, self.W_o)
+ K.dot(stm, self.U_o)
+ K.dot(context, self.C_o)
+ self.b_o)
if self.return_probabilities:
return at, [yt, st]
else:
return yt, [yt, st]
def compute_output_shape(self, input_shape):
"""
For Keras internal compatability checking
"""
if self.return_probabilities:
return (None, self.timesteps, self.timesteps)
else:
return (None, self.timesteps, self.output_dim)
def get_config(self):
"""
For rebuilding models on load time.
"""
config = {
'output_dim': self.output_dim,
'units': self.units,
'return_probabilities': self.return_probabilities
}
base_config = super(AttentionDecoder, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment