This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import tensorflow as tf | |
import tensorflow_io.kafka as kafka_io | |
# 1. Consume streaming data with Kafka and TensorFlow I/O | |
def func_x(x): | |
# Decode image to (28, 28) | |
x = tf.io.decode_raw(x, out_type=tf.uint8) | |
x = tf.reshape(x, [28, 28]) | |
# Convert to float32 for tf.keras | |
x = tf.image.convert_image_dtype(x, tf.float32) | |
return x | |
def func_y(y): | |
# Decode image to (,) | |
y = tf.io.decode_raw(y, out_type=tf.uint8) | |
y = tf.reshape(y, []) | |
return y | |
train_images = kafka_io.KafkaDataset(['xx:0'], group='xx', eof=True).map(func_x) | |
train_labels = kafka_io.KafkaDataset(['yy:0'], group='yy', eof=True).map(func_y) | |
train_kafka = tf.data.Dataset.zip((train_images, train_labels)).batch(1) | |
print(train_kafka) | |
# 2. Train Analytic Model with TensorFlow and Keras without an additional Data Store | |
model = tf.keras.Sequential([ | |
tf.keras.layers.Flatten(input_shape=(28, 28)), | |
tf.keras.layers.Dense(128, activation=tf.nn.relu), | |
tf.keras.layers.Dense(10, activation=tf.nn.softmax) | |
]) | |
model.compile(optimizer='adam', | |
loss='sparse_categorical_crossentropy', | |
metrics=['accuracy']) | |
# default: steps_per_epoch=12000 | |
model.fit(train_kafka, epochs=5, steps_per_epoch=1000) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment