Created
March 31, 2013 02:03
-
-
Save kastner/5279172 to your computer and use it in GitHub Desktop.
forward and reverse kinematics for a linear delta bot
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
DELTA_DIAGONAL_ROD = 288.5 | |
// Horizontal offset from middle of printer to smooth rod center. | |
DELTA_SMOOTH_ROD_OFFSET = 206.0 // mm | |
// Horizontal offset of the universal joints on the end effector. | |
// DELTA_EFFECTOR_OFFSET = 32.0 // mm | |
DELTA_EFFECTOR_OFFSET = 32.0 // mm | |
// Horizontal offset of the universal joints on the carriages. | |
// DELTA_CARRIAGE_OFFSET = 26.0 // mm | |
DELTA_CARRIAGE_OFFSET = 25.0 // mm | |
// In order to correct low-center, DELTA_RADIUS must be increased. | |
// In order to correct high-center, DELTA_RADIUS must be decreased. | |
// For convex/concave -- -20->-30 makes the center go DOWN | |
// DELTA_FUDGE -27.4 // 152.4 total radius | |
DELTA_FUDGE = 0.5 | |
// Effective horizontal distance bridged by diagonal push rods. | |
DELTA_RADIUS = (DELTA_SMOOTH_ROD_OFFSET-DELTA_EFFECTOR_OFFSET-DELTA_CARRIAGE_OFFSET-DELTA_FUDGE) | |
// DELTA_RADIUS = (DELTA_SMOOTH_ROD_OFFSET-DELTA_EFFECTOR_OFFSET-DELTA_CARRIAGE_OFFSET-DELTA_FUDGE) | |
SIN_60 = 0.8660254037844386 | |
COS_60 = 0.5 | |
DELTA_TOWER1_X = 0.0 // back middle tower | |
DELTA_TOWER1_Y = DELTA_RADIUS | |
DELTA_TOWER2_X = -SIN_60*DELTA_RADIUS // front left tower | |
DELTA_TOWER2_Y = -COS_60*DELTA_RADIUS | |
DELTA_TOWER3_X = SIN_60*DELTA_RADIUS // front right tower | |
DELTA_TOWER3_Y = -COS_60*DELTA_RADIUS | |
function sqrt(num) { return Math.sqrt(num); } | |
function sq(num) { return num*num; } | |
X_AXIS = 0; | |
Y_AXIS = 1; | |
Z_AXIS = 2; | |
function inverse(cartesian) { | |
var delta = []; | |
delta[X_AXIS] = sqrt(sq(DELTA_DIAGONAL_ROD) | |
- sq(DELTA_TOWER1_X-cartesian[X_AXIS]) | |
- sq(DELTA_TOWER1_Y-cartesian[Y_AXIS]) | |
) + cartesian[Z_AXIS]; | |
delta[Y_AXIS] = sqrt(sq(DELTA_DIAGONAL_ROD) | |
- sq(DELTA_TOWER2_X-cartesian[X_AXIS]) | |
- sq(DELTA_TOWER2_Y-cartesian[Y_AXIS]) | |
) + cartesian[Z_AXIS]; | |
delta[Z_AXIS] = sqrt(sq(DELTA_DIAGONAL_ROD) | |
- sq(DELTA_TOWER3_X-cartesian[X_AXIS]) | |
- sq(DELTA_TOWER3_Y-cartesian[Y_AXIS]) | |
) + cartesian[Z_AXIS]; | |
return delta; | |
} | |
function forward(delta) { | |
var cartesian = []; | |
var y1 = DELTA_TOWER1_Y; | |
var z1 = delta[X_AXIS]; | |
var x2 = DELTA_TOWER2_X; | |
var y2 = DELTA_TOWER2_Y; | |
var z2 = delta[Y_AXIS]; | |
var x3 = DELTA_TOWER3_X; | |
var y3 = DELTA_TOWER3_Y; | |
var z3 = delta[Z_AXIS]; | |
var re = DELTA_DIAGONAL_ROD; | |
var dnm = (y2-y1)*x3-(y3-y1)*x2; | |
var w1 = y1*y1 + z1*z1; | |
var w2 = x2*x2 + y2*y2 + z2*z2; | |
var w3 = x3*x3 + y3*y3 + z3*z3; | |
// x = (a1*z + b1)/dnm | |
var a1 = (z2-z1)*(y3-y1)-(z3-z1)*(y2-y1); | |
var b1 = -((w2-w1)*(y3-y1)-(w3-w1)*(y2-y1))/2.0; | |
// y = (a2*z + b2)/dnm; | |
var a2 = -(z2-z1)*x3+(z3-z1)*x2; | |
var b2 = ((w2-w1)*x3 - (w3-w1)*x2)/2.0; | |
// a*z^2 + b*z + c = 0 | |
var a = a1*a1 + a2*a2 + dnm*dnm; | |
var b = 2*(a1*b1 + a2*(b2-y1*dnm) - z1*dnm*dnm); | |
var c = (b2-y1*dnm)*(b2-y1*dnm) + b1*b1 + dnm*dnm*(z1*z1 - re*re); | |
// discriminant | |
var d = b*b - 4.0*a*c; | |
if (d < 0) return -1; // non-existing point | |
cartesian[Z_AXIS] = -0.5*(b+sqrt(d))/a; | |
cartesian[X_AXIS] = (a1*cartesian[Z_AXIS] + b1)/dnm; | |
cartesian[Y_AXIS] = (a2*cartesian[Z_AXIS] + b2)/dnm; | |
return cartesian; | |
} | |
exports.forward = forward; | |
exports.inverse = inverse; |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment