-
-
Save kastnerkyle/82e3da422a649461307fc21110af6e68 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import math | |
import torch | |
from torch import optim | |
class AdamWFinetune(optim.Optimizer): | |
r"""Implements AdamW algorithm with optional weight decay toward the starting value, to | |
prevent overfitting to the new dataset during fine-tuning. | |
The original Adam algorithm was proposed in `Adam: A Method for Stochastic Optimization`_. | |
The AdamW variant was proposed in `Decoupled Weight Decay Regularization`_. Unlike that | |
variant, this optimizer follows the PyTorch behavior of scaling the weight decay | |
coefficients by the learning rate. | |
Args: | |
params (iterable): iterable of parameters to optimize or dicts defining | |
parameter groups | |
lr (float, optional): learning rate (default: 1e-3) | |
betas (Tuple[float, float], optional): coefficients used for computing | |
running averages of gradient and its square (default: (0.9, 0.999)) | |
eps (float, optional): term added to the denominator to improve | |
numerical stability (default: 1e-8) | |
weight_decay (float, optional): weight decay coefficient (default: 0) | |
weight_decay_toward_start (float, optional): weight decay toward starting | |
value coefficient (default: 0) | |
amsgrad (boolean, optional): whether to use the AMSGrad variant of this | |
algorithm from the paper `On the Convergence of Adam and Beyond`_ | |
(default: False) | |
maximize (bool, optional): maximize the params based on the objective, instead of | |
minimizing (default: False) | |
.. _Adam\: A Method for Stochastic Optimization: | |
https://arxiv.org/abs/1412.6980 | |
.. _Decoupled Weight Decay Regularization: | |
https://arxiv.org/abs/1711.05101 | |
.. _On the Convergence of Adam and Beyond: | |
https://openreview.net/forum?id=ryQu7f-RZ | |
""" | |
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, | |
weight_decay=0., weight_decay_toward_start=0., amsgrad=False, *, | |
maximize=False): | |
if not 0.0 <= lr: | |
raise ValueError("Invalid learning rate: {}".format(lr)) | |
if not 0.0 <= eps: | |
raise ValueError("Invalid epsilon value: {}".format(eps)) | |
if not 0.0 <= betas[0] < 1.0: | |
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) | |
if not 0.0 <= betas[1] < 1.0: | |
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) | |
if not 0.0 <= weight_decay: | |
raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) | |
if not 0.0 <= weight_decay_toward_start: | |
raise ValueError("Invalid weight_decay_toward_start value: {}".format(weight_decay_toward_start)) | |
defaults = dict(lr=lr, betas=betas, eps=eps, | |
weight_decay=weight_decay, | |
weight_decay_toward_start=weight_decay_toward_start, | |
amsgrad=amsgrad, maximize=maximize) | |
super().__init__(params, defaults) | |
def __setstate__(self, state): | |
super().__setstate__(state) | |
for group in self.param_groups: | |
group.setdefault('amsgrad', False) | |
group.setdefault('maximize', False) | |
@torch.no_grad() | |
def step(self, closure=None): | |
"""Performs a single optimization step. | |
Args: | |
closure (callable, optional): A closure that reevaluates the model | |
and returns the loss. | |
""" | |
loss = None | |
if closure is not None: | |
with torch.enable_grad(): | |
loss = closure() | |
for group in self.param_groups: | |
for p in group['params']: | |
if p.grad is None: | |
continue | |
# Perform optimization step | |
grad = p.grad | |
if grad.is_sparse: | |
raise RuntimeError('AdamW does not support sparse gradients') | |
amsgrad = group['amsgrad'] | |
state = self.state[p] | |
# State initialization | |
if len(state) == 0: | |
state['step'] = 0 | |
# Starting value | |
state['start'] = p.clone() | |
# Exponential moving average of gradient values | |
state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format) | |
# Exponential moving average of squared gradient values | |
state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format) | |
if amsgrad: | |
# Maintains max of all exp. moving avg. of sq. grad. values | |
state['max_exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format) | |
# Decay toward 0 | |
p.mul_(1 - group['lr'] * group['weight_decay']) | |
# Decay toward starting value | |
p.lerp_(state['start'], group['lr'] * group['weight_decay_toward_start']) | |
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] | |
if amsgrad: | |
max_exp_avg_sq = state['max_exp_avg_sq'] | |
beta1, beta2 = group['betas'] | |
state['step'] += 1 | |
bias_correction1 = 1 - beta1 ** state['step'] | |
bias_correction2 = 1 - beta2 ** state['step'] | |
# Decay the first and second moment running average coefficient | |
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) | |
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) | |
if amsgrad: | |
# Maintains the maximum of all 2nd moment running avg. till now | |
torch.maximum(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq) | |
# Use the max. for normalizing running avg. of gradient | |
denom = (max_exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(group['eps']) | |
else: | |
denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(group['eps']) | |
step_size = group['lr'] / bias_correction1 | |
p.addcdiv_(exp_avg, denom, value=step_size if group['maximize'] else -step_size) | |
return loss |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment