Skip to content

Instantly share code, notes, and snippets.

@kastnerkyle
Last active June 28, 2023 19:52
Show Gist options
  • Save kastnerkyle/9822570 to your computer and use it in GitHub Desktop.
Save kastnerkyle/9822570 to your computer and use it in GitHub Desktop.
General preprocessing transforms in scikit-learn compatible format
# (C) Kyle Kastner, June 2014
# License: BSD 3 clause
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.utils import gen_batches
from scipy.linalg import eigh
from scipy.linalg import svd
import numpy as np
# From sklearn master
def svd_flip(u, v, u_based_decision=True):
"""Sign correction to ensure deterministic output from SVD.
Adjusts the columns of u and the rows of v such that the loadings in the
columns in u that are largest in absolute value are always positive.
Parameters
----------
u, v : ndarray
u and v are the output of `linalg.svd` or
`sklearn.utils.extmath.randomized_svd`, with matching inner dimensions
so one can compute `np.dot(u * s, v)`.
u_based_decision : boolean, (default=True)
If True, use the columns of u as the basis for sign flipping. Otherwise,
use the rows of v. The choice of which variable to base the decision on
is generally algorithm dependent.
Returns
-------
u_adjusted, v_adjusted : arrays with the same dimensions as the input.
"""
if u_based_decision:
# columns of u, rows of v
max_abs_cols = np.argmax(np.abs(u), axis=0)
signs = np.sign(u[max_abs_cols, xrange(u.shape[1])])
u *= signs
v *= signs[:, np.newaxis]
else:
# rows of v, columns of u
max_abs_rows = np.argmax(np.abs(v), axis=1)
signs = np.sign(v[xrange(v.shape[0]), max_abs_rows])
u *= signs
v *= signs[:, np.newaxis]
return u, v
def _batch_mean_variance_update(X, old_mean, old_variance, old_sample_count):
"""Calculate an average mean update and a Youngs and Cramer variance update.
From the paper "Algorithms for computing the sample variance: analysis and
recommendations", by Chan, Golub, and LeVeque.
Parameters
----------
X : array-like, shape (n_samples, n_features)
Data to use for variance update
old_mean : array-like, shape: (n_features,)
old_variance : array-like, shape: (n_features,)
old_sample_count : int
Returns
-------
updated_mean : array, shape (n_features,)
updated_variance : array, shape (n_features,)
updated_sample_count : int
References
----------
T. Chan, G. Golub, R. LeVeque. Algorithms for computing the sample variance:
recommendations, The American Statistician, Vol. 37, No. 3, pp. 242-247
"""
new_sum = X.sum(axis=0)
new_variance = X.var(axis=0) * X.shape[0]
old_sum = old_mean * old_sample_count
n_samples = X.shape[0]
updated_sample_count = old_sample_count + n_samples
partial_variance = old_sample_count / (n_samples * updated_sample_count) * (
n_samples / old_sample_count * old_sum - new_sum) ** 2
unnormalized_variance = old_variance * old_sample_count + new_variance + \
partial_variance
return ((old_sum + new_sum) / updated_sample_count,
unnormalized_variance / updated_sample_count,
updated_sample_count)
class _CovZCA(BaseEstimator, TransformerMixin):
def __init__(self, n_components=None, bias=.1, copy=True):
self.n_components = n_components
self.bias = bias
self.copy = copy
def fit(self, X, y=None):
if self.copy:
X = np.array(X, copy=self.copy)
n_samples, n_features = X.shape
self.mean_ = np.mean(X, axis=0)
X -= self.mean_
U, S, VT = svd(np.dot(X.T, X) / n_samples, full_matrices=False)
components = np.dot(VT.T * np.sqrt(1.0 / (S + self.bias)), VT)
self.components_ = components[:self.n_components]
return self
def transform(self, X):
if self.copy:
X = np.array(X, copy=self.copy)
X -= self.mean_
X_transformed = np.dot(X, self.components_.T)
return X_transformed
class ZCA(BaseEstimator, TransformerMixin):
"""
Identical to CovZCA up to scaling due to lack of division by n_samples
S ** 2 / n_samples should correct this but components_ come out different
though transformed examples are identical.
"""
def __init__(self, n_components=None, bias=.1, copy=True):
self.n_components = n_components
self.bias = bias
self.copy = copy
def fit(self, X, y=None):
if self.copy:
X = np.array(X, copy=self.copy)
n_samples, n_features = X.shape
self.mean_ = np.mean(X, axis=0)
X -= self.mean_
U, S, VT = svd(X, full_matrices=False)
components = np.dot(VT.T * np.sqrt(1.0 / (S ** 2 + self.bias)), VT)
self.components_ = components[:self.n_components]
return self
def transform(self, X):
if self.copy:
X = np.array(X, copy=self.copy)
X = np.copy(X)
X -= self.mean_
X_transformed = np.dot(X, self.components_.T)
return X_transformed
import scipy
X = scipy.misc.lena()
zca = ZCA()
czca = _CovZCA()
X_zca = zca.fit_transform(X)
X_czca = czca.fit_transform(X)
from IPython import embed; embed()
raise ValueError()
class IncrementalCovZCA(BaseEstimator, TransformerMixin):
def __init__(self, n_components=None, batch_size=None, bias=.1,
scale_by=1., copy=True):
self.n_components = n_components
self.batch_size = batch_size
self.bias = bias
self.scale_by = scale_by
self.copy = copy
self.scale_by = float(scale_by)
self.mean_ = None
self.covar_ = None
self.n_samples_seen_ = 0.
def fit(self, X, y=None):
self.mean_ = None
self.covar_ = None
self.n_samples_seen_ = 0.
n_samples, n_features = X.shape
if self.batch_size is None:
self.batch_size_ = 5 * n_features
else:
self.batch_size_ = self.batch_size
for batch in gen_batches(n_samples, self.batch_size_):
self.partial_fit(X[batch])
return self
def partial_fit(self, X):
self.components_ = None
if self.copy:
X = np.array(X, copy=self.copy)
X = np.copy(X)
X /= self.scale_by
n_samples, n_features = X.shape
batch_mean = np.mean(X, axis=0)
# Doing this without subtracting mean results in numerical instability
# will have to play some games to work around this
if self.mean_ is None:
X -= batch_mean
batch_covar = np.dot(X.T, X)
self.mean_ = batch_mean
self.covar_ = batch_covar
self.n_samples_seen_ += float(n_samples)
else:
prev_mean = self.mean_
prev_sample_count = self.n_samples_seen_
prev_scale = self.n_samples_seen_ / (self.n_samples_seen_
+ n_samples)
update_scale = n_samples / (self.n_samples_seen_ + n_samples)
self.mean_ = self.mean_ * prev_scale + batch_mean * update_scale
X -= batch_mean
# All of this correction is to minimize numerical instability in
# the dot product
batch_covar = np.dot(X.T, X)
batch_offset = (self.mean_ - batch_mean)
batch_adjustment = np.dot(batch_offset[None].T, batch_offset[None])
batch_covar += batch_adjustment * n_samples
mean_offset = (self.mean_ - prev_mean)
mean_adjustment = np.dot(mean_offset[None].T, mean_offset[None])
self.covar_ += mean_adjustment * prev_sample_count
self.covar_ += batch_covar
self.n_samples_seen_ += n_samples
def transform(self, X):
if self.copy:
X = np.array(X, copy=self.copy)
X = np.copy(X)
if self.components_ is None:
U, S, VT = svd(self.covar_ / self.n_samples_seen_,
full_matrices=False)
components = np.dot(VT.T * np.sqrt(1.0 / (S + self.bias)), VT)
self.components_ = components[:self.n_components]
X /= self.scale_by
X -= self.mean_
X_transformed = np.dot(X, self.components_.T)
return X_transformed
class IncrementalZCA(BaseEstimator, TransformerMixin):
def __init__(self, n_components=None, batch_size=None, bias=.1,
scale_by=1., copy=True):
self.n_components = n_components
self.batch_size = batch_size
self.bias = bias
self.scale_by = scale_by
self.copy = copy
self.scale_by = float(scale_by)
self.n_samples_seen_ = 0.
self.mean_ = None
self.var_ = None
self.components_ = None
def fit(self, X, y=None):
self.n_samples_seen_ = 0.
self.mean_ = None
self.var_ = None
self.components_ = None
n_samples, n_features = X.shape
if self.batch_size is None:
self.batch_size_ = 5 * n_features
else:
self.batch_size_ = self.batch_size
for batch in gen_batches(n_samples, self.batch_size_):
self.partial_fit(X[batch])
return self
def partial_fit(self, X):
if self.copy:
X = np.array(X, copy=self.copy)
X = np.copy(X)
n_samples, n_features = X.shape
self.n_components_ = self.n_components
X /= self.scale_by
if self.components_ is None:
# This is the first pass through partial_fit
self.n_samples_seen_ = 0.
col_var = X.var(axis=0)
col_mean = X.mean(axis=0)
X -= col_mean
U, S, V = svd(X, full_matrices=False)
U, V = svd_flip(U, V, u_based_decision=False)
else:
col_batch_mean = X.mean(axis=0)
col_mean, col_var, n_total_samples = _batch_mean_variance_update(
X, self.mean_, self.var_, self.n_samples_seen_)
X -= col_batch_mean
# Build matrix of combined previous basis and new data
correction = np.sqrt((self.n_samples_seen_ * n_samples)
/ n_total_samples)
mean_correction = correction * (self.mean_ - col_batch_mean)
X_combined = np.vstack((self.singular_values_.reshape((-1, 1)) *
self.components_,
X,
mean_correction))
U, S, V = svd(X_combined, full_matrices=False)
U, V = svd_flip(U, V, u_based_decision=False)
self.n_samples_seen_ += n_samples
self.components_ = V[:self.n_components_]
self.singular_values_ = S[:self.n_components_]
self.mean_ = col_mean
self.var_ = col_var
self.zca_components_ = np.dot(self.components_.T *
np.sqrt(1.0 / (self.singular_values_ ** 2 + self.bias)), self.components_)
def transform(self, X):
if self.copy:
X = np.array(X, copy=self.copy)
X = np.copy(X)
X /= self.scale_by
X -= self.mean_
X_transformed = np.dot(X, self.zca_components_.T)
return X_transformed
if __name__ == "__main__":
from numpy.testing import assert_almost_equal
import matplotlib.pyplot as plt
from scipy.misc import lena
# scale_by is necessary otherwise float32 results are numerically unstable
# scale_by is still not enough to totally eliminate the error in float32
# for many, many iterations but it is very close
X = lena().astype('float32')
X_orig = np.copy(X)
# Check that covariance ZCA and data ZCA produce same results
czca = CovZCA()
zca = ZCA()
X_czca = czca.fit_transform(X)
X_zca = zca.fit_transform(X)
assert_almost_equal(abs(zca.components_), abs(czca.components_), 3)
raise ValueError()
random_state = np.random.RandomState(1999)
X = random_state.rand(2000, 512).astype('float64') * 255.
X_orig = np.copy(X)
scale_by = 1.
from sklearn.decomposition import PCA, IncrementalPCA
zca = ZCA(n_components=512, scale_by=scale_by)
pca = PCA(n_components=512)
izca = IncrementalZCA(n_components=512, batch_size=1000)
ipca = IncrementalPCA(n_components=512, batch_size=1000)
X_pca = pca.fit_transform(X)
X_zca = zca.fit_transform(X)
X_izca = izca.fit_transform(X)
X_ipca = ipca.fit_transform(X)
assert_almost_equal(abs(pca.components_), abs(ipca.components_), 3)
from IPython import embed; embed()
assert_almost_equal(abs(zca.components_), abs(izca.zca_components_), 3)
for batch_size in [512, 128]:
print("Testing batch size %i" % batch_size)
izca = IncrementalZCA(batch_size=batch_size, scale_by=scale_by)
# Test that partial fit over subset has the same mean!
zca.fit(X[:batch_size])
izca.partial_fit(X[:batch_size])
# Make sure data was not modified
assert_almost_equal(X[:batch_size], X_orig[:batch_size])
# Make sure single batch results match
assert_almost_equal(zca.mean_, izca.mean_, decimal=3)
print("Got here")
izca.fit(X[:100])
izca.partial_fit(X[100:200])
zca.fit(X[:200])
# Make sure 2 batch results match
assert_almost_equal(zca.mean_, izca.mean_, decimal=3)
print("Got here 2")
# Make sure the input array is not modified
assert_almost_equal(X, X_orig, decimal=3)
X_zca = zca.fit_transform(X)
X_izca = izca.fit_transform(X)
# Make sure the input array is not modified
assert_almost_equal(X, X_orig, decimal=3)
print("Got here 3")
# Make sure the means are equal
assert_almost_equal(zca.mean_, izca.mean_, decimal=3)
print("Got here 4")
# Make sure the components are equal
assert_almost_equal(X_zca, X_izca, decimal=3)
plt.imshow(X, cmap="gray")
plt.title("Original")
plt.figure()
plt.imshow(X_zca, cmap="gray")
plt.title("ZCA")
plt.figure()
plt.imshow(X_izca, cmap="gray")
plt.title("IZCA")
plt.figure()
plt.matshow(zca.components_)
plt.title("ZCA")
plt.figure()
plt.matshow(izca.components_)
plt.title("IZCA")
plt.show()
@eickenberg
Copy link

You should always be able to replace your V, Ssquared, VT = svd(X.T.dot(X)) by U, S, VT = svd(X). The values in S will then already be the square roots. So you would need to square them back, add the regularizer and take the square root. Or accept a slight reparametrization of the regularizer. In any case, the VTs should be identical.

@121onto
Copy link

121onto commented Nov 10, 2015

self.zca_components_ may be huge. If this is an issue, delete lines 304 and 305 and update the definition of transform() accordingly.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment