Instantly share code, notes, and snippets.

Embed
What would you like to do?
TensorFlow basic DNN
import tensorflow as tf
import numpy as np
import pandas as pd
import math
# Data sets
IRIS_TRAINING = "iris_training.csv"
IRIS_TEST = "iris_test.csv"
IRIS_DATA_SIZE = 4
CLASS_SIZE = 3
# load csv data for iris data format
def load_csv(filename):
file = pd.read_csv(filename, header=0)
# get sample's metadata
n_samples = int(file.columns[0])
n_features = int(file.columns[1])
# divide samples into explanation variables and target variable
data = np.empty((n_samples, n_features))
target = np.empty((n_samples,), dtype=np.int)
for i, row in enumerate(file.itertuples()):
target[i] = np.asarray(row[-1], dtype=np.int)
data[i] = np.asarray(row[1:n_features+1], dtype=np.float64)
return (data, target)
# output train data
def get_batch_data(x_train, y_train, size=None):
if size is None:
size = len(x_train)
batch_xs = x_train
batch_ys = []
# convert to 1-of-N vector
for i in range(len(y_train)):
val = np.zeros((3), dtype=np.float64)
val[y_train[i]] = 1.0
batch_ys.append(val)
batch_ys = np.asarray(batch_ys)
return batch_xs[:size], batch_ys[:size]
# output test data
def get_test_data(x_test, y_test):
batch_ys = []
# convert to 1-of-N vector
for i in range(len(y_test)):
val = np.zeros((3), dtype=np.float64)
val[y_test[i]] = 1.0
batch_ys.append(val)
return x_test, np.asarray(batch_ys)
# for parameter initialize
def get_stddev(in_dim, out_dim):
return 1.3 / math.sqrt(float(in_dim) + float(out_dim))
# DNN Model Class
class Classifier:
def __init__(self, hidden_units=[10], n_classes=0):
self._hidden_units = hidden_units
self._n_classes = n_classes
self._sess = tf.Session()
# build model
def inference(self, x):
hidden = []
# Input Layer
with tf.name_scope("input"):
weights = tf.Variable(tf.truncated_normal([IRIS_DATA_SIZE, self._hidden_units[0]], stddev=get_stddev(IRIS_DATA_SIZE, self._hidden_units[0])), name='weights')
biases = tf.Variable(tf.zeros([self._hidden_units[0]]), name='biases')
input = tf.matmul(x, weights) + biases
# Hidden Layers
for index, num_hidden in enumerate(self._hidden_units):
if index == len(self._hidden_units) - 1: break
with tf.name_scope("hidden{}".format(index+1)):
weights = tf.Variable(tf.truncated_normal([num_hidden, self._hidden_units[index+1]], stddev=get_stddev(num_hidden, self._hidden_units[index+1])), name='weights')
biases = tf.Variable(tf.zeros([self._hidden_units[index+1]]), name='biases')
inputs = input if index == 0 else hidden[index-1]
hidden.append(tf.nn.relu(tf.matmul(inputs, weights) + biases, name="hidden{}".format(index+1)))
# Output Layer
with tf.name_scope('output'):
weights = tf.Variable(tf.truncated_normal([self._hidden_units[-1], self._n_classes], stddev=get_stddev(self._hidden_units[-1], self._n_classes)), name='weights')
biases = tf.Variable(tf.zeros([self._n_classes]), name='biases')
logits = tf.nn.softmax(tf.matmul(hidden[-1], weights) + biases)
return logits
# loss function
def loss(self, logits, y):
return -tf.reduce_mean(y * tf.log(logits))
# fitting function for train data
def fit(self, x_train=None, y_train=None, steps=200):
# build model
x = tf.placeholder(tf.float32, [None, IRIS_DATA_SIZE])
y = tf.placeholder(tf.float32, [None, CLASS_SIZE])
logits = self.inference(x)
loss = self.loss(logits, y)
train_op = tf.train.GradientDescentOptimizer(0.5).minimize(loss)
# save variables
self._x = x
self._y = y
self._logits = logits
# init parameters
init = tf.initialize_all_variables()
self._sess.run(init)
# train
for i in range(steps):
batch_xs, batch_ys = get_batch_data(x_train, y_train)
self._sess.run(train_op, feed_dict={x: batch_xs, y: batch_ys})
# evaluation function for test data
def evaluate(self, x_test=None, y_test=None):
x_test, y_test = get_test_data(x_test, y_test)
# build accuracy calculate step
correct_prediction = tf.equal(tf.argmax(self._logits, 1), tf.argmax(self._y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
# evaluate
return self._sess.run([accuracy], feed_dict={self._x: x_test, self._y: y_test})
# label pridiction
def predict(self, samples):
predictions = tf.argmax(self._logits, 1)
return self._sess.run(predictions, {self._x: samples})
def main(args):
# Load datasets.
x_train, y_train = load_csv(filename=IRIS_TRAINING)
x_test, y_test = load_csv(filename=IRIS_TEST)
# Build 3 layer DNN with 10, 20, 10 units respectively.
classifier = Classifier(hidden_units=[10, 20, 10], n_classes=CLASS_SIZE)
# Fit model.
classifier.fit(x_train, y_train, steps=200)
# Evaluate accuracy.
accuracy_score = classifier.evaluate(x_test, y_test)[0]
print('Accuracy: {0:f}'.format(accuracy_score))
# Classify two new flower samples.
new_samples = np.array([[6.4, 3.2, 4.5, 1.5], [5.8, 3.1, 5.0, 1.7]], dtype=float)
y = classifier.predict(new_samples)
print ('Predictions: {}'.format(str(y)))
if __name__ == '__main__':
tf.app.run()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment