Skip to content

Instantly share code, notes, and snippets.

@kbob
Created December 16, 2018 13:21
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save kbob/85aa12865631029a059544d6d369ac7d to your computer and use it in GitHub Desktop.
Save kbob/85aa12865631029a059544d6d369ac7d to your computer and use it in GitHub Desktop.
I fail to understand Rust types.
#[macro_use]
extern crate vulkano;
extern crate vulkano_shaders;
extern crate winit;
extern crate vulkano_win;
use vulkano::buffer::{CpuAccessibleBuffer, CpuBufferPool, BufferUsage};
use vulkano::command_buffer::{AutoCommandBufferBuilder, DynamicState};
use vulkano::descriptor::descriptor_set::PersistentDescriptorSet;
use vulkano::device::{Device, DeviceExtensions};
use vulkano::format::{ClearValue, Format};
use vulkano::framebuffer::{Framebuffer, FramebufferAbstract, Subpass, RenderPassAbstract};
use vulkano::image::{Dimensions, StorageImage, SwapchainImage};
use vulkano::instance::{Instance, PhysicalDevice};
use vulkano::pipeline::GraphicsPipeline;
use vulkano::pipeline::vertex::{BufferlessDefinition, BufferlessVertices};
use vulkano::pipeline::viewport::Viewport;
// use vulkano::sampler::{Filter, MipmapMode, Sampler, SamplerAddressMode};
use vulkano::swapchain::{AcquireError, PresentMode, SurfaceTransform, Swapchain, SwapchainCreationError};
use vulkano::swapchain;
use vulkano::sync::{GpuFuture, FlushError};
use vulkano::sync;
use vulkano_win::VkSurfaceBuild;
use winit::{EventsLoop, Window, WindowBuilder, Event, WindowEvent,
KeyboardInput, VirtualKeyCode, ModifiersState, dpi::LogicalSize};
use image;
use std::sync::Arc;
#[cfg(all(debug_assertions))]
const ENABLE_VALIDATION_LAYERS: bool = true;
#[cfg(not(debug_assertions))]
const ENABLE_VALIDATION_LAYERS: bool = false;
const VALIDATION_LAYERS: &[&str] = &["VK_LAYER_LUNARG_standard_validation"];
// type ConcreteGraphicsPipeline = GraphicsPipeline<
// BufferlessDefinition,
// Box<PipelineLayoutAbstract + Send + Sync + 'static>,
// Arc<RenderPassAbstract + Send + Sync + 'static>,
// >;
// type PixelImage = [u8; 4 * 64 * 64];
type PixelImage = [[u8; 4]; 64 * 64];
fn main() {
let instance = {
let extensions = vulkano_win::required_extensions();
if ENABLE_VALIDATION_LAYERS {
Instance::new(None, &extensions, VALIDATION_LAYERS.iter().map(|s|*s)).unwrap()
} else {
Instance::new(None, &extensions, None).unwrap()
}
};
let physical = PhysicalDevice::enumerate(&instance).next().unwrap();
// println!("Using device: {} (type: {:?})", physical.name(), physical.ty());
// The objective of this example is to draw a triangle on a window. To do so, we first need to
// create the window.
//
// This is done by creating a `WindowBuilder` from the `winit` crate, then calling the
// `build_vk_surface` method provided by the `VkSurfaceBuild` trait from `vulkano_win`. If you
// ever get an error about `build_vk_surface` being undefined in one of your projects, this
// probably means that you forgot to import this trait.
//
// This returns a `vulkano::swapchain::Surface` object that contains both a cross-platform winit
// window and a cross-platform Vulkan surface that represents the surface of the window.
let mut events_loop = EventsLoop::new();
let logical_size: f64 = 544.0;
let surface = WindowBuilder::new()
.with_title("Panel Simulator")
.with_dimensions(LogicalSize::new(logical_size, logical_size))
.with_resizable(false)
.build_vk_surface(&events_loop, instance.clone()).unwrap();
let window = surface.window();
// The next step is to choose which GPU queue will execute our draw commands.
//
// Devices can provide multiple queues to run commands in parallel (for example a draw queue
// and a compute queue), similar to CPU threads. This is something you have to have to manage
// manually in Vulkan.
//
// In a real-life application, we would probably use at least a graphics queue and a transfers
// queue to handle data transfers in parallel. In this example we only use one queue.
//
// We have to choose which queues to use early on, because we will need this info very soon.
let queue_family = physical.queue_families().find(|&q| {
// We take the first queue that supports drawing to our window.
q.supports_graphics() && surface.is_supported(q).unwrap_or(false)
}).unwrap();
// Now initializing the device. This is probably the most important object of Vulkan.
//
// We have to pass five parameters when creating a device:
//
// - Which physical device (GPU) to connect to.
//
// - A list of optional features and extensions that our program needs to work correctly.
// Some parts of the Vulkan specs are optional and must be enabled manually at device
// creation. In this example the only thing we are going to need is the `khr_swapchain`
// extension that allows us to draw to a window.
//
// - A list of layers to enable. This is very niche, and you will usually pass `None`.
//
// - The list of queues that we are going to use. The exact parameter is an iterator whose
// items are `(Queue, f32)` where the floating-point represents the priority of the queue
// between 0.0 and 1.0. The priority of the queue is a hint to the implementation about how
// much it should prioritize queues between one another.
//
// The list of created queues is returned by the function alongside with the device.
let device_ext = DeviceExtensions { khr_swapchain: true, .. DeviceExtensions::none() };
let (device, mut queues) = Device::new(physical, physical.supported_features(), &device_ext,
[(queue_family, 0.5)].iter().cloned()).unwrap();
// Since we can request multiple queues, the `queues` variable is in fact an iterator. In this
// example we use only one queue, so we just retrieve the first and only element of the
// iterator and throw it away.
let queue = queues.next().unwrap();
// Before we can draw on the surface, we have to create what is called a swapchain. Creating
// a swapchain allocates the color buffers that will contain the image that will ultimately
// be visible on the screen. These images are returned alongside with the swapchain.
let (mut swapchain, images) = {
// Querying the capabilities of the surface. When we create the swapchain we can only
// pass values that are allowed by the capabilities.
let caps = surface.capabilities(physical).unwrap();
let usage = caps.supported_usage_flags;
// The alpha mode indicates how the alpha value of the final image will behave. For example
// you can choose whether the window will be opaque or transparent.
let alpha = caps.supported_composite_alpha.iter().next().unwrap();
// Choosing the internal format that the images will have.
let format = caps.supported_formats[0].0;
// The dimensions of the window, only used to initially setup the swapchain.
// NOTE:
// On some drivers the swapchain dimensions are specified by `caps.current_extent` and the
// swapchain size must use these dimensions.
// These dimensions are always the same as the window dimensions
//
// However other drivers dont specify a value i.e. `caps.current_extent` is `None`
// These drivers will allow anything but the only sensible value is the window dimensions.
//
// Because for both of these cases, the swapchain needs to be the window dimensions, we just use that.
let initial_dimensions = if let Some(dimensions) = window.get_inner_size() {
// convert to physical pixels
let dimensions: (u32, u32) = dimensions.to_physical(window.get_hidpi_factor()).into();
[dimensions.0, dimensions.1]
} else {
// The window no longer exists so exit the application.
return;
};
// Please take a look at the docs for the meaning of the parameters we didn't mention.
Swapchain::new(device.clone(), surface.clone(), caps.min_image_count, format,
initial_dimensions, 1, usage, &queue, SurfaceTransform::Identity, alpha,
PresentMode::Fifo, true, None).unwrap()
};
// We now create a buffer that will store the shape of our triangle.
// let vertex_buffer = {
// #[derive(Debug, Clone)]
// struct Vertex { position: [f32; 2] }
// impl_vertex!(Vertex, position);
//
// CpuAccessibleBuffer::from_iter(device.clone(), BufferUsage::all(), [
// Vertex { position: [-0.5, -0.25] },
// Vertex { position: [0.0, 0.5] },
// Vertex { position: [0.25, -0.1] }
// ].iter().cloned()).unwrap()
// };
// The next step is to create the shaders.
//
// The raw shader creation API provided by the vulkano library is unsafe, for various reasons.
//
// An overview of what the `vulkano_shaders::shader!` macro generates can be found in the
// `vulkano-shaders` crate docs. You can view them at https://docs.rs/vulkano-shaders/
//
// TODO: explain this in details
mod vs {
vulkano_shaders::shader!{
ty: "vertex",
src: "
#version 450
#extension GL_ARB_separate_shader_objects : enable
// out gl_perVertex {
// vec4 gl_Position;
// };
vec2 positions[6] = vec2[](
vec2(-1.0, -1.0),
vec2(+1.0, -1.0),
vec2(-1.0, +1.0),
vec2(+1.0, +1.0),
vec2(-1.0, +1.0),
vec2(+1.0, -1.0)
);
void main() {
gl_Position = vec4(positions[gl_VertexIndex], 0.0, 1.0);
}
"
}
}
mod fs {
vulkano_shaders::shader!{
ty: "fragment",
src: "
#version 450
layout(location = 0) out vec4 f_color;
layout(set = 0, binding = 0, rgba8) uniform readonly image2D pixels;
void main() {
vec2 coord = gl_FragCoord.xy / 1088.0 * 64.0;
ivec2 i = ivec2(floor(coord));
vec2 f = fract(coord) - 0.5;
if (f.x * f.x + f.y * f.y >= 0.16)
f_color = vec4(0.0, 0.0, 0.0, 1.0);
else
// f_color = vec4(i.x / 64.0, i.y / 64.0, 1.0, 1.0);
f_color = imageLoad(pixels, i);
}
"
}
}
let vs = vs::Shader::load(device.clone()).unwrap();
let fs = fs::Shader::load(device.clone()).unwrap();
// At this point, OpenGL initialization would be finished. However in Vulkan it is not. OpenGL
// implicitly does a lot of computation whenever you draw. In Vulkan, you have to do all this
// manually.
// The next step is to create a *render pass*, which is an object that describes where the
// output of the graphics pipeline will go. It describes the layout of the images
// where the colors, depth and/or stencil information will be written.
let render_pass = Arc::new(single_pass_renderpass!(
device.clone(),
attachments: {
// `color` is a custom name we give to the first and only attachment.
color: {
// `load: Clear` means that we ask the GPU to clear the content of this
// attachment at the start of the drawing.
load: Clear,
// `store: Store` means that we ask the GPU to store the output of the draw
// in the actual image. We could also ask it to discard the result.
store: Store,
// `format: <ty>` indicates the type of the format of the image. This has to
// be one of the types of the `vulkano::format` module (or alternatively one
// of your structs that implements the `FormatDesc` trait). Here we use the
// same format as the swapchain.
format: swapchain.format(),
// TODO:
samples: 1,
}
},
pass: {
// We use the attachment named `color` as the one and only color attachment.
color: [color],
// No depth-stencil attachment is indicated with empty brackets.
depth_stencil: {}
}
).unwrap());
// Before we draw we have to create what is called a pipeline. This is similar to an OpenGL
// program, but much more specific.
let pipeline = Arc::new(GraphicsPipeline::start()
// We need to indicate the layout of the vertices.
// The type `SingleBufferDefinition` actually contains a template parameter corresponding
// to the type of each vertex. But in this code it is automatically inferred.
//.vertex_input_single_buffer()
.vertex_input(BufferlessDefinition {})
// A Vulkan shader can in theory contain multiple entry points, so we have to specify
// which one. The `main` word of `main_entry_point` actually corresponds to the name of
// the entry point.
.vertex_shader(vs.main_entry_point(), ())
// The content of the vertex buffer describes a list of triangles.
.triangle_list()
// Use a resizable viewport set to draw over the entire window
.viewports_dynamic_scissors_irrelevant(1)
// See `vertex_shader`.
.fragment_shader(fs.main_entry_point(), ())
// We have to indicate which subpass of which render pass this pipeline is going to be used
// in. The pipeline will only be usable from this particular subpass.
.render_pass(Subpass::from(render_pass.clone(), 0).unwrap())
// Now that our builder is filled, we call `build()` to obtain an actual pipeline.
.build(device.clone())
.unwrap());
// Dynamic viewports allow us to recreate just the viewport when the window is resized
// Otherwise we would have to recreate the whole pipeline.
let mut dynamic_state = DynamicState { line_width: None, viewports: None, scissors: None };
// The render pass we created above only describes the layout of our framebuffers. Before we
// can draw we also need to create the actual framebuffers.
//
// Since we need to draw to multiple images, we are going to create a different framebuffer for
// each image.
let mut framebuffers = window_size_dependent_setup(&images, render_pass.clone(), &mut dynamic_state);
// Initialization is finally finished!
// In some situations, the swapchain will become invalid by itself. This includes for example
// when the window is resized (as the images of the swapchain will no longer match the
// window's) or, on Android, when the application went to the background and goes back to the
// foreground.
//
// In this situation, acquiring a swapchain image or presenting it will return an error.
// Rendering to an image of that swapchain will not produce any error, but may or may not work.
// To continue rendering, we need to recreate the swapchain by creating a new swapchain.
// Here, we remember that we need to do this for the next loop iteration.
let mut recreate_swapchain = false;
// In the loop below we are going to submit commands to the GPU. Submitting a command produces
// an object that implements the `GpuFuture` trait, which holds the resources for as long as
// they are in use by the GPU.
//
// Destroying the `GpuFuture` blocks until the GPU is finished executing it. In order to avoid
// that, we store the submission of the previous frame here.
let mut previous_frame_end = Box::new(sync::now(device.clone())) as Box<GpuFuture>;
let img_pool: CpuBufferPool<PixelImage> = CpuBufferPool::new(device.clone(), BufferUsage::all());
// let desc_set = Arc::new(PersistentDescriptorSet::start(pipeline.clone(), 0)
// .add_buffer(img_pool.clone()).unwrap()
// .build().unwrap()
// );
loop {
// It is important to call this function from time to time, otherwise resources will keep
// accumulating and you will eventually reach an out of memory error.
// Calling this function polls various fences in order to determine what the GPU has
// already processed, and frees the resources that are no longer needed.
previous_frame_end.cleanup_finished();
// Whenever the window resizes we need to recreate everything dependent on the window size.
// In this example that includes the swapchain, the framebuffers and the dynamic state viewport.
if recreate_swapchain {
// Get the new dimensions of the window.
let dimensions = if let Some(dimensions) = window.get_inner_size() {
let dimensions: (u32, u32) = dimensions.to_physical(window.get_hidpi_factor()).into();
[dimensions.0, dimensions.1]
} else {
return;
};
let (new_swapchain, new_images) = match swapchain.recreate_with_dimension(dimensions) {
Ok(r) => r,
// This error tends to happen when the user is manually resizing the window.
// Simply restarting the loop is the easiest way to fix this issue.
Err(SwapchainCreationError::UnsupportedDimensions) => continue,
Err(err) => panic!("{:?}", err)
};
swapchain = new_swapchain;
// Because framebuffers contains an Arc on the old swapchain, we need to
// recreate framebuffers as well.
framebuffers = window_size_dependent_setup(&new_images, render_pass.clone(), &mut dynamic_state);
recreate_swapchain = false;
}
// Before we can draw on the output, we have to *acquire* an image from the swapchain. If
// no image is available (which happens if you submit draw commands too quickly), then the
// function will block.
// This operation returns the index of the image that we are allowed to draw upon.
//
// This function can block if no image is available. The parameter is an optional timeout
// after which the function call will return an error.
let (image_num, acquire_future) = match swapchain::acquire_next_image(swapchain.clone(), None) {
Ok(r) => r,
Err(AcquireError::OutOfDate) => {
recreate_swapchain = true;
continue;
},
Err(err) => panic!("{:?}", err)
};
// Specify the color to clear the framebuffer with i.e. blue
let clear_values = vec!([0.0, 0.0, 0.6, 1.0].into());
// In order to draw, we have to build a *command buffer*. The command buffer object holds
// the list of commands that are going to be executed.
//
// Building a command buffer is an expensive operation (usually a few hundred
// microseconds), but it is known to be a hot path in the driver and is expected to be
// optimized.
//
// Note that we have to pass a queue family when we create the command buffer. The command
// buffer will only be executable on that given queue family.
let vertices = BufferlessVertices {
vertices: 6,
instances: 2,
};
let mut pixels: PixelImage = [[0; 4]; 64 * 64];
if let Some(img) = read_img() {
pixels = img;
}
//let img_buffer = img_pool.next(pixels).unwrap();
let img_buffer = CpuAccessibleBuffer::from_data(
device.clone(),
BufferUsage::all(),
// (0 .. 64 * 64 * 4).map(|_| 0u8))
[[0u8; 4]; 64 * 64])
.expect("failed to create buffer");
let img_img = StorageImage::new(
device.clone(),
Dimensions::Dim2d { width: 64, height: 64 },
Format::R8G8B8A8Unorm, Some(queue.family()),
).unwrap();
let desc_set =
Arc::new(PersistentDescriptorSet::start(pipeline.clone(), 0)
.add_image(img_img.clone()).unwrap()
.build().unwrap()
);
let command_buffer =
AutoCommandBufferBuilder::primary_one_time_submit(
device.clone(),
queue.family())
.unwrap()
.update_buffer(img_buffer.clone(), pixels)
.unwrap()
.clear_color_image(img_img.clone(), ClearValue::Float([0.2, 0.4, 0.0, 1.0]))
.unwrap()
.copy_buffer_to_image(img_buffer.clone(), img_img.clone())
// XXX This line does not compile. Error is:
// error[E0271]: type mismatch resolving `<std::sync::Arc<vulkano::buffer::CpuAccessibleBuffer<[[u8; 4]; 4096]>> as vulkano::buffer::TypedBufferAccess>::Content == [_]`
// --> src/main.rs:448:14
// |
// 448 | .copy_buffer_to_image(img_buffer.clone(), img_img.clone())
// | ^^^^^^^^^^^^^^^^^^^^ expected array of 4096 elements, found slice
// |
// = note: expected type `[[u8; 4]; 4096]`
// found type `[_]`
.unwrap()
// Before we can draw, we have to *enter a render pass*. There are two methods to do
// this: `draw_inline` and `draw_secondary`. The latter is a bit more advanced and is
// not covered here.
//
// The third parameter builds the list of values to clear the attachments with. The API
// is similar to the list of attachments when building the framebuffers, except that
// only the attachments that use `load: Clear` appear in the list.
.begin_render_pass(framebuffers[image_num].clone(), false, clear_values)
.unwrap()
// We are now inside the first subpass of the render pass. We add a draw command.
//
// The last two parameters contain the list of resources to pass to the shaders.
// Since we used an `EmptyPipeline` object, the objects have to be `()`.
// .draw(pipeline.clone(), &dynamic_state, vertex_buffer.clone(), (), ())
.draw(pipeline.clone(), &dynamic_state, vertices, desc_set.clone(), ())
.unwrap()
// We leave the render pass by calling `draw_end`. Note that if we had multiple
// subpasses we could have called `next_inline` (or `next_secondary`) to jump to the
// next subpass.
.end_render_pass()
.unwrap()
// Finish building the command buffer by calling `build`.
.build().unwrap();
let future = previous_frame_end.join(acquire_future)
.then_execute(queue.clone(), command_buffer).unwrap()
// The color output is now expected to contain our triangle. But in order to show it on
// the screen, we have to *present* the image by calling `present`.
//
// This function does not actually present the image immediately. Instead it submits a
// present command at the end of the queue. This means that it will only be presented once
// the GPU has finished executing the command buffer that draws the triangle.
.then_swapchain_present(queue.clone(), swapchain.clone(), image_num)
.then_signal_fence_and_flush();
match future {
Ok(future) => {
previous_frame_end = Box::new(future) as Box<_>;
}
Err(FlushError::OutOfDate) => {
recreate_swapchain = true;
previous_frame_end = Box::new(sync::now(device.clone())) as Box<_>;
}
Err(e) => {
println!("{:?}", e);
previous_frame_end = Box::new(sync::now(device.clone())) as Box<_>;
}
}
update_image();
// Note that in more complex programs it is likely that one of `acquire_next_image`,
// `command_buffer::submit`, or `present` will block for some time. This happens when the
// GPU's queue is full and the driver has to wait until the GPU finished some work.
//
// Unfortunately the Vulkan API doesn't provide any way to not wait or to detect when a
// wait would happen. Blocking may be the desired behavior, but if you don't want to
// block you should spawn a separate thread dedicated to submissions.
// Handling the window events in order to close the program when the user wants to close
// it.
let mut done = false;
events_loop.poll_events(|ev| {
// println!("event = {:?}", ev);
match ev {
Event::WindowEvent { event: WindowEvent::CloseRequested, .. } => done = true,
Event::WindowEvent { event: WindowEvent::Resized(_), .. } => recreate_swapchain = true,
Event::WindowEvent {
event:
WindowEvent::KeyboardInput {
input:
KeyboardInput {
virtual_keycode: Some(VirtualKeyCode::Q),
modifiers:
ModifiersState { logo: true, .. },
..
},
..
},
..
} => done = true,
Event::WindowEvent {
event:
WindowEvent::KeyboardInput {
input:
KeyboardInput {
virtual_keycode: Some(VirtualKeyCode::W),
modifiers:
ModifiersState { logo: true, .. },
..
},
..
},
..
} => done = true,
_ => ()
}
// println!("done = {:?}", done);
});
if done { std::process::exit(0); }
}
}
use image::Pixel;
fn read_img() -> Option<PixelImage> {
match image::open("/tmp/led-sim/0.png") {
Err(_) => None,
Ok(img) => {
let mut pix: PixelImage = [[0; 4]; 64 * 64];
for (i, pixel) in img.to_rgba().pixels().enumerate() {
let (r, g, b, a) = pixel.channels4();
// let bytes: &[u8] = pixel.channels();
pix[i] = [r, g, b, a];
// pix[4 * i + 0] = r;
// pix[4 * i + 1] = g;
// pix[4 * i + 2] = b;
// pix[4 * i + 3] = a;
if i == 64 * 64 { break; }
};
Some(pix)
}
}
}
#[allow(unused)]
fn update_image() {
// create dir if needed
// check that dir is readable and executable
// look for new files
//
}
/// This method is called once during initialization, then again whenever the window is resized
fn window_size_dependent_setup(
images: &[Arc<SwapchainImage<Window>>],
render_pass: Arc<RenderPassAbstract + Send + Sync>,
dynamic_state: &mut DynamicState
) -> Vec<Arc<FramebufferAbstract + Send + Sync>> {
let dimensions = images[0].dimensions();
let viewport = Viewport {
origin: [0.0, 0.0],
dimensions: [dimensions[0] as f32, dimensions[1] as f32],
depth_range: 0.0 .. 1.0,
};
dynamic_state.viewports = Some(vec!(viewport));
images.iter().map(|image| {
Arc::new(
Framebuffer::start(render_pass.clone())
.add(image.clone()).unwrap()
.build().unwrap()
) as Arc<FramebufferAbstract + Send + Sync>
}).collect::<Vec<_>>()
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment