Skip to content

Instantly share code, notes, and snippets.

@kdubovikov
Created June 18, 2017 07:26
Show Gist options
  • Save kdubovikov/eb2a4c3ecadd5295f68c126542e59f0a to your computer and use it in GitHub Desktop.
Save kdubovikov/eb2a4c3ecadd5295f68c126542e59f0a to your computer and use it in GitHub Desktop.
PyTorch MNIST example
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
# download and transform train dataset
train_loader = torch.utils.data.DataLoader(datasets.MNIST('../mnist_data',
download=True,
train=True,
transform=transforms.Compose([
transforms.ToTensor(), # first, convert image to PyTorch tensor
transforms.Normalize((0.1307,), (0.3081,)) # normalize inputs
])),
batch_size=10,
shuffle=True)
# download and transform test dataset
test_loader = torch.utils.data.DataLoader(datasets.MNIST('../mnist_data',
download=True,
train=False,
transform=transforms.Compose([
transforms.ToTensor(), # first, convert image to PyTorch tensor
transforms.Normalize((0.1307,), (0.3081,)) # normalize inputs
])),
batch_size=10,
shuffle=True)
class CNNClassifier(nn.Module):
"""Custom module for a simple convnet classifier"""
def __init__(self):
super(CNNClassifier, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.dropout = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
# input is 28x28x1
# conv1(kernel=5, filters=10) 28x28x10 -> 24x24x10
# max_pool(kernel=2) 24x24x10 -> 12x12x10
# Do not be afraid of F's - those are just functional wrappers for modules form nn package
# Please, see for yourself - http://pytorch.org/docs/_modules/torch/nn/functional.html
x = F.relu(F.max_pool2d(self.conv1(x), 2))
# conv2(kernel=5, filters=20) 12x12x20 -> 8x8x20
# max_pool(kernel=2) 8x8x20 -> 4x4x20
x = F.relu(F.max_pool2d(self.dropout(self.conv2(x)), 2))
# flatten 4x4x20 = 320
x = x.view(-1, 320)
# 320 -> 50
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
# 50 -> 10
x = self.fc2(x)
# transform to logits
return F.log_softmax(x)
# create classifier and optimizer objects
clf = CNNClassifier()
opt = optim.SGD(clf.parameters(), lr=0.01, momentum=0.5)
loss_history = []
acc_history = []
def train(epoch):
clf.train() # set model in training mode (need this because of dropout)
# dataset API gives us pythonic batching
for batch_id, (data, label) in enumerate(train_loader):
data = Variable(data)
target = Variable(label)
# forward pass, calculate loss and backprop!
opt.zero_grad()
preds = clf(data)
loss = F.nll_loss(preds, target)
loss.backward()
loss_history.append(loss.data[0])
opt.step()
if batch_id % 100 == 0:
print(loss.data[0])
def test(epoch):
clf.eval() # set model in inference mode (need this because of dropout)
test_loss = 0
correct = 0
for data, target in test_loader:
data = Variable(data, volatile=True)
target = Variable(target)
output = clf(data)
test_loss += F.nll_loss(output, target).data[0]
pred = output.data.max(1)[1] # get the index of the max log-probability
correct += pred.eq(target.data).cpu().sum()
test_loss = test_loss
test_loss /= len(test_loader) # loss function already averages over batch size
accuracy = 100. * correct / len(test_loader.dataset)
acc_history.append(accuracy)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
accuracy))
for epoch in range(0, 3):
print("Epoch %d" % epoch)
train(epoch)
test(epoch)
@IsaacRe
Copy link

IsaacRe commented Aug 31, 2019

Initialize your weights please.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment