Skip to content

Instantly share code, notes, and snippets.

@kenwebb
Last active August 3, 2020 11:36
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save kenwebb/f59fc11a5d4485c641c9b8bf8bb9b606 to your computer and use it in GitHub Desktop.
Save kenwebb/f59fc11a5d4485c641c9b8bf8bb9b606 to your computer and use it in GitHub Desktop.
React Tutorial
<?xml version="1.0" encoding="UTF-8"?>
<!--Xholon Workbook http://www.primordion.com/Xholon/gwt/ MIT License, Copyright (C) Ken Webb, Mon Aug 03 2020 07:35:50 GMT-0400 (Eastern Daylight Time)-->
<XholonWorkbook>
<Notes><![CDATA[
Xholon
------
Title: React Tutorial
Description:
Url: http://www.primordion.com/Xholon/gwt/
InternalName: f59fc11a5d4485c641c9b8bf8bb9b606
Keywords:
My Notes
--------
August 1, 2020
I am learning React. This workbook is about the React Tutorial, a game of Tic Tac Toe.
To get started with the tutorial:
--------------------------------
cd ~/FStkWDvRc/Course2/React152
npx create-react-app tic-tac-toe
- various warnings, but it seems to have worked
- BUT it's missing stuff from package.json, and missing src folder, etc.
- I've installed older versions of node, npm,etc. for the course I'm doing
cd tic-tac-toe
NO cd src
NO rm -f *
NO cd ..
mkdir src
cd src
touch index.css
touch index.js
Add these three lines to the top of `index.js` in the `src/` folder:
```js
import React from 'react';
import ReactDOM from 'react-dom';
import './index.css';
```
Add to package.json:
,
"scripts": {
"start": "react-scripts start",
"build": "react-scripts build",
"test": "react-scripts test --env=jsdom",
"eject": "react-scripts eject"
}
Create public folder with:
index.html
favicon.ico
manifest.json
Now if you run `npm start` in the project folder and open `http://localhost:3000` in the browser, you should see an empty tic-tac-toe field.
OK, but it added some lines to package.json about browsers
Step 1
------
I added the code from https://codepen.io/gaearon/pen/oWWQNa?editors=0010
it works
cd ~/FStkWDvRc/Course2/React152/tic-tac-toe
touch .gitignore
- add node_modules and yarn.lock
git init
git status
git add .
git commit -m "Ken initial commit"
Step 2
------
Passing Data Through Props
Step 3
------
Making an Interactive Component
Step 4
------
Completing the Game
Step 5
------
Why Immutability Is Important
Step
----
Taking Turns
Step
----
Declaring a Winner
Step
----
References
----------
() https://reactjs.org/
() https://reactjs.org/tutorial/tutorial.html
() https://github.com/reactjs/reactjs.org/blob/master/content/tutorial/tutorial.md
() https://raw.githubusercontent.com/reactjs/reactjs.org/master/content/tutorial/tutorial.md
the Xholon WorkBook Markdown (see below) is copied from this URL
]]></Notes>
<markdown><![CDATA[
---
id: tutorial
title: "Tutorial: Intro to React"
layout: tutorial
sectionid: tutorial
permalink: tutorial/tutorial.html
redirect_from:
- "docs/tutorial.html"
- "docs/why-react.html"
- "docs/tutorial-ja-JP.html"
- "docs/tutorial-ko-KR.html"
- "docs/tutorial-zh-CN.html"
---
This tutorial doesn't assume any existing React knowledge.
## Before We Start the Tutorial {#before-we-start-the-tutorial}
We will build a small game during this tutorial. **You might be tempted to skip it because you're not building games -- but give it a chance.** The techniques you'll learn in the tutorial are fundamental to building any React app, and mastering it will give you a deep understanding of React.
>Tip
>
>This tutorial is designed for people who prefer to **learn by doing**. If you prefer learning concepts from the ground up, check out our [step-by-step guide](/docs/hello-world.html). You might find this tutorial and the guide complementary to each other.
The tutorial is divided into several sections:
* [Setup for the Tutorial](#setup-for-the-tutorial) will give you **a starting point** to follow the tutorial.
* [Overview](#overview) will teach you **the fundamentals** of React: components, props, and state.
* [Completing the Game](#completing-the-game) will teach you **the most common techniques** in React development.
* [Adding Time Travel](#adding-time-travel) will give you **a deeper insight** into the unique strengths of React.
You don't have to complete all of the sections at once to get the value out of this tutorial. Try to get as far as you can -- even if it's one or two sections.
### What Are We Building? {#what-are-we-building}
In this tutorial, we'll show how to build an interactive tic-tac-toe game with React.
You can see what we'll be building here: **[Final Result](https://codepen.io/gaearon/pen/gWWZgR?editors=0010)**. If the code doesn't make sense to you, or if you are unfamiliar with the code's syntax, don't worry! The goal of this tutorial is to help you understand React and its syntax.
We recommend that you check out the tic-tac-toe game before continuing with the tutorial. One of the features that you'll notice is that there is a numbered list to the right of the game's board. This list gives you a history of all of the moves that have occurred in the game, and it is updated as the game progresses.
You can close the tic-tac-toe game once you're familiar with it. We'll be starting from a simpler template in this tutorial. Our next step is to set you up so that you can start building the game.
### Prerequisites {#prerequisites}
We'll assume that you have some familiarity with HTML and JavaScript, but you should be able to follow along even if you're coming from a different programming language. We'll also assume that you're familiar with programming concepts like functions, objects, arrays, and to a lesser extent, classes.
If you need to review JavaScript, we recommend reading [this guide](https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript). Note that we're also using some features from ES6 -- a recent version of JavaScript. In this tutorial, we're using [arrow functions](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions), [classes](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes), [`let`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/let), and [`const`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const) statements. You can use the [Babel REPL](babel://es5-syntax-example) to check what ES6 code compiles to.
## Setup for the Tutorial {#setup-for-the-tutorial}
There are two ways to complete this tutorial: you can either write the code in your browser, or you can set up a local development environment on your computer.
### Setup Option 1: Write Code in the Browser {#setup-option-1-write-code-in-the-browser}
This is the quickest way to get started!
First, open this **[Starter Code](https://codepen.io/gaearon/pen/oWWQNa?editors=0010)** in a new tab. The new tab should display an empty tic-tac-toe game board and React code. We will be editing the React code in this tutorial.
You can now skip the second setup option, and go to the [Overview](#overview) section to get an overview of React.
### Setup Option 2: Local Development Environment {#setup-option-2-local-development-environment}
This is completely optional and not required for this tutorial!
<br>
<details>
<summary><b>Optional: Instructions for following along locally using your preferred text editor</b></summary>
This setup requires more work but allows you to complete the tutorial using an editor of your choice. Here are the steps to follow:
1. Make sure you have a recent version of [Node.js](https://nodejs.org/en/) installed.
2. Follow the [installation instructions for Create React App](/docs/create-a-new-react-app.html#create-react-app) to make a new project.
```bash
npx create-react-app my-app
```
3. Delete all files in the `src/` folder of the new project
> Note:
>
>**Don't delete the entire `src` folder, just the original source files inside it.** We'll replace the default source files with examples for this project in the next step.
```bash
cd my-app
cd src
# If you're using a Mac or Linux:
rm -f *
# Or, if you're on Windows:
del *
# Then, switch back to the project folder
cd ..
```
4. Add a file named `index.css` in the `src/` folder with [this CSS code](https://codepen.io/gaearon/pen/oWWQNa?editors=0100).
5. Add a file named `index.js` in the `src/` folder with [this JS code](https://codepen.io/gaearon/pen/oWWQNa?editors=0010).
6. Add these three lines to the top of `index.js` in the `src/` folder:
```js
import React from 'react';
import ReactDOM from 'react-dom';
import './index.css';
```
Now if you run `npm start` in the project folder and open `http://localhost:3000` in the browser, you should see an empty tic-tac-toe field.
We recommend following [these instructions](https://babeljs.io/docs/editors/) to configure syntax highlighting for your editor.
</details>
### Help, I'm Stuck! {#help-im-stuck}
If you get stuck, check out the [community support resources](/community/support.html). In particular, [Reactiflux Chat](https://discord.gg/reactiflux) is a great way to get help quickly. If you don't receive an answer, or if you remain stuck, please file an issue, and we'll help you out.
## Overview {#overview}
Now that you're set up, let's get an overview of React!
### What Is React? {#what-is-react}
React is a declarative, efficient, and flexible JavaScript library for building user interfaces. It lets you compose complex UIs from small and isolated pieces of code called "components".
React has a few different kinds of components, but we'll start with `React.Component` subclasses:
```javascript
class ShoppingList extends React.Component {
render() {
return (
<div className="shopping-list">
<h1>Shopping List for {this.props.name}</h1>
<ul>
<li>Instagram</li>
<li>WhatsApp</li>
<li>Oculus</li>
</ul>
</div>
);
}
}
// Example usage: <ShoppingList name="Mark" />
```
We'll get to the funny XML-like tags soon. We use components to tell React what we want to see on the screen. When our data changes, React will efficiently update and re-render our components.
Here, ShoppingList is a **React component class**, or **React component type**. A component takes in parameters, called `props` (short for "properties"), and returns a hierarchy of views to display via the `render` method.
The `render` method returns a *description* of what you want to see on the screen. React takes the description and displays the result. In particular, `render` returns a **React element**, which is a lightweight description of what to render. Most React developers use a special syntax called "JSX" which makes these structures easier to write. The `<div />` syntax is transformed at build time to `React.createElement('div')`. The example above is equivalent to:
```javascript
return React.createElement('div', {className: 'shopping-list'},
React.createElement('h1', /* ... h1 children ... */),
React.createElement('ul', /* ... ul children ... */)
);
```
[See full expanded version.](babel://tutorial-expanded-version)
If you're curious, `createElement()` is described in more detail in the [API reference](/docs/react-api.html#createelement), but we won't be using it in this tutorial. Instead, we will keep using JSX.
JSX comes with the full power of JavaScript. You can put *any* JavaScript expressions within braces inside JSX. Each React element is a JavaScript object that you can store in a variable or pass around in your program.
The `ShoppingList` component above only renders built-in DOM components like `<div />` and `<li />`. But you can compose and render custom React components too. For example, we can now refer to the whole shopping list by writing `<ShoppingList />`. Each React component is encapsulated and can operate independently; this allows you to build complex UIs from simple components.
## Inspecting the Starter Code {#inspecting-the-starter-code}
If you're going to work on the tutorial **in your browser,** open this code in a new tab: **[Starter Code](https://codepen.io/gaearon/pen/oWWQNa?editors=0010)**. If you're going to work on the tutorial **locally,** instead open `src/index.js` in your project folder (you have already touched this file during the [setup](#setup-option-2-local-development-environment)).
This Starter Code is the base of what we're building. We've provided the CSS styling so that you only need to focus on learning React and programming the tic-tac-toe game.
By inspecting the code, you'll notice that we have three React components:
* Square
* Board
* Game
The Square component renders a single `<button>` and the Board renders 9 squares. The Game component renders a board with placeholder values which we'll modify later. There are currently no interactive components.
### Passing Data Through Props {#passing-data-through-props}
To get our feet wet, let's try passing some data from our Board component to our Square component.
We strongly recommend typing code by hand as you're working through the tutorial and not using copy/paste. This will help you develop muscle memory and a stronger understanding.
In Board's `renderSquare` method, change the code to pass a prop called `value` to the Square:
```js{3}
class Board extends React.Component {
renderSquare(i) {
return <Square value={i} />;
}
}
```
Change Square's `render` method to show that value by replacing `{/* TODO */}` with `{this.props.value}`:
```js{5}
class Square extends React.Component {
render() {
return (
<button className="square">
{this.props.value}
</button>
);
}
}
```
Before:
![React Devtools](../images/tutorial/tictac-empty.png)
After: You should see a number in each square in the rendered output.
![React Devtools](../images/tutorial/tictac-numbers.png)
**[View the full code at this point](https://codepen.io/gaearon/pen/aWWQOG?editors=0010)**
Congratulations! You've just "passed a prop" from a parent Board component to a child Square component. Passing props is how information flows in React apps, from parents to children.
### Making an Interactive Component {#making-an-interactive-component}
Let's fill the Square component with an "X" when we click it.
First, change the button tag that is returned from the Square component's `render()` function to this:
```javascript{4}
class Square extends React.Component {
render() {
return (
<button className="square" onClick={function() { alert('click'); }}>
{this.props.value}
</button>
);
}
}
```
If you click on a Square now, you should see an alert in your browser.
>Note
>
>To save typing and avoid the [confusing behavior of `this`](https://yehudakatz.com/2011/08/11/understanding-javascript-function-invocation-and-this/), we will use the [arrow function syntax](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions) for event handlers here and further below:
>
>```javascript{4}
>class Square extends React.Component {
> render() {
> return (
> <button className="square" onClick={() => alert('click')}>
> {this.props.value}
> </button>
> );
> }
>}
>```
>
>Notice how with `onClick={() => alert('click')}`, we're passing *a function* as the `onClick` prop. React will only call this function after a click. Forgetting `() =>` and writing `onClick={alert('click')}` is a common mistake, and would fire the alert every time the component re-renders.
As a next step, we want the Square component to "remember" that it got clicked, and fill it with an "X" mark. To "remember" things, components use **state**.
React components can have state by setting `this.state` in their constructors. `this.state` should be considered as private to a React component that it's defined in. Let's store the current value of the Square in `this.state`, and change it when the Square is clicked.
First, we'll add a constructor to the class to initialize the state:
```javascript{2-7}
class Square extends React.Component {
constructor(props) {
super(props);
this.state = {
value: null,
};
}
render() {
return (
<button className="square" onClick={() => alert('click')}>
{this.props.value}
</button>
);
}
}
```
>Note
>
>In [JavaScript classes](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes), you need to always call `super` when defining the constructor of a subclass. All React component classes that have a `constructor` should start with a `super(props)` call.
Now we'll change the Square's `render` method to display the current state's value when clicked:
* Replace `this.props.value` with `this.state.value` inside the `<button>` tag.
* Replace the `onClick={...}` event handler with `onClick={() => this.setState({value: 'X'})}`.
* Put the `className` and `onClick` props on separate lines for better readability.
After these changes, the `<button>` tag that is returned by the Square's `render` method looks like this:
```javascript{12-13,15}
class Square extends React.Component {
constructor(props) {
super(props);
this.state = {
value: null,
};
}
render() {
return (
<button
className="square"
onClick={() => this.setState({value: 'X'})}
>
{this.state.value}
</button>
);
}
}
```
By calling `this.setState` from an `onClick` handler in the Square's `render` method, we tell React to re-render that Square whenever its `<button>` is clicked. After the update, the Square's `this.state.value` will be `'X'`, so we'll see the `X` on the game board. If you click on any Square, an `X` should show up.
When you call `setState` in a component, React automatically updates the child components inside of it too.
**[View the full code at this point](https://codepen.io/gaearon/pen/VbbVLg?editors=0010)**
### Developer Tools {#developer-tools}
The React Devtools extension for [Chrome](https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi?hl=en) and [Firefox](https://addons.mozilla.org/en-US/firefox/addon/react-devtools/) lets you inspect a React component tree with your browser's developer tools.
<img src="../images/tutorial/devtools.png" alt="React Devtools" style="max-width: 100%">
The React DevTools let you check the props and the state of your React components.
After installing React DevTools, you can right-click on any element on the page, click "Inspect" to open the developer tools, and the React tabs ("⚛️ Components" and "⚛️ Profiler") will appear as the last tabs to the right. Use "⚛️ Components" to inspect the component tree.
**However, note there are a few extra steps to get it working with CodePen:**
1. Log in or register and confirm your email (required to prevent spam).
2. Click the "Fork" button.
3. Click "Change View" and then choose "Debug mode".
4. In the new tab that opens, the devtools should now have a React tab.
## Completing the Game {#completing-the-game}
We now have the basic building blocks for our tic-tac-toe game. To have a complete game, we now need to alternate placing "X"s and "O"s on the board, and we need a way to determine a winner.
### Lifting State Up {#lifting-state-up}
Currently, each Square component maintains the game's state. To check for a winner, we'll maintain the value of each of the 9 squares in one location.
We may think that Board should just ask each Square for the Square's state. Although this approach is possible in React, we discourage it because the code becomes difficult to understand, susceptible to bugs, and hard to refactor. Instead, the best approach is to store the game's state in the parent Board component instead of in each Square. The Board component can tell each Square what to display by passing a prop, [just like we did when we passed a number to each Square](#passing-data-through-props).
**To collect data from multiple children, or to have two child components communicate with each other, you need to declare the shared state in their parent component instead. The parent component can pass the state back down to the children by using props; this keeps the child components in sync with each other and with the parent component.**
Lifting state into a parent component is common when React components are refactored -- let's take this opportunity to try it out.
Add a constructor to the Board and set the Board's initial state to contain an array of 9 nulls corresponding to the 9 squares:
```javascript{2-7}
class Board extends React.Component {
constructor(props) {
super(props);
this.state = {
squares: Array(9).fill(null),
};
}
renderSquare(i) {
return <Square value={i} />;
}
```
When we fill the board in later, the `this.state.squares` array will look something like this:
```javascript
[
'O', null, 'X',
'X', 'X', 'O',
'O', null, null,
]
```
The Board's `renderSquare` method currently looks like this:
```javascript
renderSquare(i) {
return <Square value={i} />;
}
```
In the beginning, we [passed the `value` prop down](#passing-data-through-props) from the Board to show numbers from 0 to 8 in every Square. In a different previous step, we replaced the numbers with an "X" mark [determined by Square's own state](#making-an-interactive-component). This is why Square currently ignores the `value` prop passed to it by the Board.
We will now use the prop passing mechanism again. We will modify the Board to instruct each individual Square about its current value (`'X'`, `'O'`, or `null`). We have already defined the `squares` array in the Board's constructor, and we will modify the Board's `renderSquare` method to read from it:
```javascript{2}
renderSquare(i) {
return <Square value={this.state.squares[i]} />;
}
```
**[View the full code at this point](https://codepen.io/gaearon/pen/gWWQPY?editors=0010)**
Each Square will now receive a `value` prop that will either be `'X'`, `'O'`, or `null` for empty squares.
Next, we need to change what happens when a Square is clicked. The Board component now maintains which squares are filled. We need to create a way for the Square to update the Board's state. Since state is considered to be private to a component that defines it, we cannot update the Board's state directly from Square.
Instead, we'll pass down a function from the Board to the Square, and we'll have Square call that function when a square is clicked. We'll change the `renderSquare` method in Board to:
```javascript{5}
renderSquare(i) {
return (
<Square
value={this.state.squares[i]}
onClick={() => this.handleClick(i)}
/>
);
}
```
>Note
>
>We split the returned element into multiple lines for readability, and added parentheses so that JavaScript doesn't insert a semicolon after `return` and break our code.
Now we're passing down two props from Board to Square: `value` and `onClick`. The `onClick` prop is a function that Square can call when clicked. We'll make the following changes to Square:
* Replace `this.state.value` with `this.props.value` in Square's `render` method
* Replace `this.setState()` with `this.props.onClick()` in Square's `render` method
* Delete the `constructor` from Square because Square no longer keeps track of the game's state
After these changes, the Square component looks like this:
```javascript{1,2,6,8}
class Square extends React.Component {
render() {
return (
<button
className="square"
onClick={() => this.props.onClick()}
>
{this.props.value}
</button>
);
}
}
```
When a Square is clicked, the `onClick` function provided by the Board is called. Here's a review of how this is achieved:
1. The `onClick` prop on the built-in DOM `<button>` component tells React to set up a click event listener.
2. When the button is clicked, React will call the `onClick` event handler that is defined in Square's `render()` method.
3. This event handler calls `this.props.onClick()`. The Square's `onClick` prop was specified by the Board.
4. Since the Board passed `onClick={() => this.handleClick(i)}` to Square, the Square calls `this.handleClick(i)` when clicked.
5. We have not defined the `handleClick()` method yet, so our code crashes. If you click a square now, you should see a red error screen saying something like "this.handleClick is not a function".
>Note
>
>The DOM `<button>` element's `onClick` attribute has a special meaning to React because it is a built-in component. For custom components like Square, the naming is up to you. We could give any name to the Square's `onClick` prop or Board's `handleClick` method, and the code would work the same. In React, it's conventional to use `on[Event]` names for props which represent events and `handle[Event]` for the methods which handle the events.
When we try to click a Square, we should get an error because we haven't defined `handleClick` yet. We'll now add `handleClick` to the Board class:
```javascript{9-13}
class Board extends React.Component {
constructor(props) {
super(props);
this.state = {
squares: Array(9).fill(null),
};
}
handleClick(i) {
const squares = this.state.squares.slice();
squares[i] = 'X';
this.setState({squares: squares});
}
renderSquare(i) {
return (
<Square
value={this.state.squares[i]}
onClick={() => this.handleClick(i)}
/>
);
}
render() {
const status = 'Next player: X';
return (
<div>
<div className="status">{status}</div>
<div className="board-row">
{this.renderSquare(0)}
{this.renderSquare(1)}
{this.renderSquare(2)}
</div>
<div className="board-row">
{this.renderSquare(3)}
{this.renderSquare(4)}
{this.renderSquare(5)}
</div>
<div className="board-row">
{this.renderSquare(6)}
{this.renderSquare(7)}
{this.renderSquare(8)}
</div>
</div>
);
}
}
```
**[View the full code at this point](https://codepen.io/gaearon/pen/ybbQJX?editors=0010)**
After these changes, we're again able to click on the Squares to fill them, the same as we had before. However, now the state is stored in the Board component instead of the individual Square components. When the Board's state changes, the Square components re-render automatically. Keeping the state of all squares in the Board component will allow it to determine the winner in the future.
Since the Square components no longer maintain state, the Square components receive values from the Board component and inform the Board component when they're clicked. In React terms, the Square components are now **controlled components**. The Board has full control over them.
Note how in `handleClick`, we call `.slice()` to create a copy of the `squares` array to modify instead of modifying the existing array. We will explain why we create a copy of the `squares` array in the next section.
### Why Immutability Is Important {#why-immutability-is-important}
In the previous code example, we suggested that you use the `.slice()` method to create a copy of the `squares` array to modify instead of modifying the existing array. We'll now discuss immutability and why immutability is important to learn.
There are generally two approaches to changing data. The first approach is to *mutate* the data by directly changing the data's values. The second approach is to replace the data with a new copy which has the desired changes.
#### Data Change with Mutation {#data-change-with-mutation}
```javascript
var player = {score: 1, name: 'Jeff'};
player.score = 2;
// Now player is {score: 2, name: 'Jeff'}
```
#### Data Change without Mutation {#data-change-without-mutation}
```javascript
var player = {score: 1, name: 'Jeff'};
var newPlayer = Object.assign({}, player, {score: 2});
// Now player is unchanged, but newPlayer is {score: 2, name: 'Jeff'}
// Or if you are using object spread syntax proposal, you can write:
// var newPlayer = {...player, score: 2};
```
The end result is the same but by not mutating (or changing the underlying data) directly, we gain several benefits described below.
#### Complex Features Become Simple {#complex-features-become-simple}
Immutability makes complex features much easier to implement. Later in this tutorial, we will implement a "time travel" feature that allows us to review the tic-tac-toe game's history and "jump back" to previous moves. This functionality isn't specific to games -- an ability to undo and redo certain actions is a common requirement in applications. Avoiding direct data mutation lets us keep previous versions of the game's history intact, and reuse them later.
#### Detecting Changes {#detecting-changes}
Detecting changes in mutable objects is difficult because they are modified directly. This detection requires the mutable object to be compared to previous copies of itself and the entire object tree to be traversed.
Detecting changes in immutable objects is considerably easier. If the immutable object that is being referenced is different than the previous one, then the object has changed.
#### Determining When to Re-Render in React {#determining-when-to-re-render-in-react}
The main benefit of immutability is that it helps you build _pure components_ in React. Immutable data can easily determine if changes have been made, which helps to determine when a component requires re-rendering.
You can learn more about `shouldComponentUpdate()` and how you can build *pure components* by reading [Optimizing Performance](/docs/optimizing-performance.html#examples).
### Function Components {#function-components}
We'll now change the Square to be a **function component**.
In React, **function components** are a simpler way to write components that only contain a `render` method and don't have their own state. Instead of defining a class which extends `React.Component`, we can write a function that takes `props` as input and returns what should be rendered. Function components are less tedious to write than classes, and many components can be expressed this way.
Replace the Square class with this function:
```javascript
function Square(props) {
return (
<button className="square" onClick={props.onClick}>
{props.value}
</button>
);
}
```
We have changed `this.props` to `props` both times it appears.
**[View the full code at this point](https://codepen.io/gaearon/pen/QvvJOv?editors=0010)**
>Note
>
>When we modified the Square to be a function component, we also changed `onClick={() => this.props.onClick()}` to a shorter `onClick={props.onClick}` (note the lack of parentheses on *both* sides).
### Taking Turns {#taking-turns}
We now need to fix an obvious defect in our tic-tac-toe game: the "O"s cannot be marked on the board.
We'll set the first move to be "X" by default. We can set this default by modifying the initial state in our Board constructor:
```javascript{6}
class Board extends React.Component {
constructor(props) {
super(props);
this.state = {
squares: Array(9).fill(null),
xIsNext: true,
};
}
```
Each time a player moves, `xIsNext` (a boolean) will be flipped to determine which player goes next and the game's state will be saved. We'll update the Board's `handleClick` function to flip the value of `xIsNext`:
```javascript{3,6}
handleClick(i) {
const squares = this.state.squares.slice();
squares[i] = this.state.xIsNext ? 'X' : 'O';
this.setState({
squares: squares,
xIsNext: !this.state.xIsNext,
});
}
```
With this change, "X"s and "O"s can take turns. Try it!
Let's also change the "status" text in Board's `render` so that it displays which player has the next turn:
```javascript{2}
render() {
const status = 'Next player: ' + (this.state.xIsNext ? 'X' : 'O');
return (
// the rest has not changed
```
After applying these changes, you should have this Board component:
```javascript{6,11-16,29}
class Board extends React.Component {
constructor(props) {
super(props);
this.state = {
squares: Array(9).fill(null),
xIsNext: true,
};
}
handleClick(i) {
const squares = this.state.squares.slice();
squares[i] = this.state.xIsNext ? 'X' : 'O';
this.setState({
squares: squares,
xIsNext: !this.state.xIsNext,
});
}
renderSquare(i) {
return (
<Square
value={this.state.squares[i]}
onClick={() => this.handleClick(i)}
/>
);
}
render() {
const status = 'Next player: ' + (this.state.xIsNext ? 'X' : 'O');
return (
<div>
<div className="status">{status}</div>
<div className="board-row">
{this.renderSquare(0)}
{this.renderSquare(1)}
{this.renderSquare(2)}
</div>
<div className="board-row">
{this.renderSquare(3)}
{this.renderSquare(4)}
{this.renderSquare(5)}
</div>
<div className="board-row">
{this.renderSquare(6)}
{this.renderSquare(7)}
{this.renderSquare(8)}
</div>
</div>
);
}
}
```
**[View the full code at this point](https://codepen.io/gaearon/pen/KmmrBy?editors=0010)**
### Declaring a Winner {#declaring-a-winner}
Now that we show which player's turn is next, we should also show when the game is won and there are no more turns to make. Copy this helper function and paste it at the end of the file:
```javascript
function calculateWinner(squares) {
const lines = [
[0, 1, 2],
[3, 4, 5],
[6, 7, 8],
[0, 3, 6],
[1, 4, 7],
[2, 5, 8],
[0, 4, 8],
[2, 4, 6],
];
for (let i = 0; i < lines.length; i++) {
const [a, b, c] = lines[i];
if (squares[a] && squares[a] === squares[b] && squares[a] === squares[c]) {
return squares[a];
}
}
return null;
}
```
Given an array of 9 squares, this function will check for a winner and return `'X'`, `'O'`, or `null` as appropriate.
We will call `calculateWinner(squares)` in the Board's `render` function to check if a player has won. If a player has won, we can display text such as "Winner: X" or "Winner: O". We'll replace the `status` declaration in Board's `render` function with this code:
```javascript{2-8}
render() {
const winner = calculateWinner(this.state.squares);
let status;
if (winner) {
status = 'Winner: ' + winner;
} else {
status = 'Next player: ' + (this.state.xIsNext ? 'X' : 'O');
}
return (
// the rest has not changed
```
We can now change the Board's `handleClick` function to return early by ignoring a click if someone has won the game or if a Square is already filled:
```javascript{3-5}
handleClick(i) {
const squares = this.state.squares.slice();
if (calculateWinner(squares) || squares[i]) {
return;
}
squares[i] = this.state.xIsNext ? 'X' : 'O';
this.setState({
squares: squares,
xIsNext: !this.state.xIsNext,
});
}
```
**[View the full code at this point](https://codepen.io/gaearon/pen/LyyXgK?editors=0010)**
Congratulations! You now have a working tic-tac-toe game. And you've just learned the basics of React too. So *you're* probably the real winner here.
## Adding Time Travel {#adding-time-travel}
As a final exercise, let's make it possible to "go back in time" to the previous moves in the game.
### Storing a History of Moves {#storing-a-history-of-moves}
If we mutated the `squares` array, implementing time travel would be very difficult.
However, we used `slice()` to create a new copy of the `squares` array after every move, and [treated it as immutable](#why-immutability-is-important). This will allow us to store every past version of the `squares` array, and navigate between the turns that have already happened.
We'll store the past `squares` arrays in another array called `history`. The `history` array represents all board states, from the first to the last move, and has a shape like this:
```javascript
history = [
// Before first move
{
squares: [
null, null, null,
null, null, null,
null, null, null,
]
},
// After first move
{
squares: [
null, null, null,
null, 'X', null,
null, null, null,
]
},
// After second move
{
squares: [
null, null, null,
null, 'X', null,
null, null, 'O',
]
},
// ...
]
```
Now we need to decide which component should own the `history` state.
### Lifting State Up, Again {#lifting-state-up-again}
We'll want the top-level Game component to display a list of past moves. It will need access to the `history` to do that, so we will place the `history` state in the top-level Game component.
Placing the `history` state into the Game component lets us remove the `squares` state from its child Board component. Just like we ["lifted state up"](#lifting-state-up) from the Square component into the Board component, we are now lifting it up from the Board into the top-level Game component. This gives the Game component full control over the Board's data, and lets it instruct the Board to render previous turns from the `history`.
First, we'll set up the initial state for the Game component within its constructor:
```javascript{2-10}
class Game extends React.Component {
constructor(props) {
super(props);
this.state = {
history: [{
squares: Array(9).fill(null),
}],
xIsNext: true,
};
}
render() {
return (
<div className="game">
<div className="game-board">
<Board />
</div>
<div className="game-info">
<div>{/* status */}</div>
<ol>{/* TODO */}</ol>
</div>
</div>
);
}
}
```
Next, we'll have the Board component receive `squares` and `onClick` props from the Game component. Since we now have a single click handler in Board for many Squares, we'll need to pass the location of each Square into the `onClick` handler to indicate which Square was clicked. Here are the required steps to transform the Board component:
* Delete the `constructor` in Board.
* Replace `this.state.squares[i]` with `this.props.squares[i]` in Board's `renderSquare`.
* Replace `this.handleClick(i)` with `this.props.onClick(i)` in Board's `renderSquare`.
The Board component now looks like this:
```javascript{17,18}
class Board extends React.Component {
handleClick(i) {
const squares = this.state.squares.slice();
if (calculateWinner(squares) || squares[i]) {
return;
}
squares[i] = this.state.xIsNext ? 'X' : 'O';
this.setState({
squares: squares,
xIsNext: !this.state.xIsNext,
});
}
renderSquare(i) {
return (
<Square
value={this.props.squares[i]}
onClick={() => this.props.onClick(i)}
/>
);
}
render() {
const winner = calculateWinner(this.state.squares);
let status;
if (winner) {
status = 'Winner: ' + winner;
} else {
status = 'Next player: ' + (this.state.xIsNext ? 'X' : 'O');
}
return (
<div>
<div className="status">{status}</div>
<div className="board-row">
{this.renderSquare(0)}
{this.renderSquare(1)}
{this.renderSquare(2)}
</div>
<div className="board-row">
{this.renderSquare(3)}
{this.renderSquare(4)}
{this.renderSquare(5)}
</div>
<div className="board-row">
{this.renderSquare(6)}
{this.renderSquare(7)}
{this.renderSquare(8)}
</div>
</div>
);
}
}
```
We'll update the Game component's `render` function to use the most recent history entry to determine and display the game's status:
```javascript{2-11,16-19,22}
render() {
const history = this.state.history;
const current = history[history.length - 1];
const winner = calculateWinner(current.squares);
let status;
if (winner) {
status = 'Winner: ' + winner;
} else {
status = 'Next player: ' + (this.state.xIsNext ? 'X' : 'O');
}
return (
<div className="game">
<div className="game-board">
<Board
squares={current.squares}
onClick={(i) => this.handleClick(i)}
/>
</div>
<div className="game-info">
<div>{status}</div>
<ol>{/* TODO */}</ol>
</div>
</div>
);
}
```
Since the Game component is now rendering the game's status, we can remove the corresponding code from the Board's `render` method. After refactoring, the Board's `render` function looks like this:
```js{1-4}
render() {
return (
<div>
<div className="board-row">
{this.renderSquare(0)}
{this.renderSquare(1)}
{this.renderSquare(2)}
</div>
<div className="board-row">
{this.renderSquare(3)}
{this.renderSquare(4)}
{this.renderSquare(5)}
</div>
<div className="board-row">
{this.renderSquare(6)}
{this.renderSquare(7)}
{this.renderSquare(8)}
</div>
</div>
);
}
```
Finally, we need to move the `handleClick` method from the Board component to the Game component. We also need to modify `handleClick` because the Game component's state is structured differently. Within the Game's `handleClick` method, we concatenate new history entries onto `history`.
```javascript{2-4,10-12}
handleClick(i) {
const history = this.state.history;
const current = history[history.length - 1];
const squares = current.squares.slice();
if (calculateWinner(squares) || squares[i]) {
return;
}
squares[i] = this.state.xIsNext ? 'X' : 'O';
this.setState({
history: history.concat([{
squares: squares,
}]),
xIsNext: !this.state.xIsNext,
});
}
```
>Note
>
>Unlike the array `push()` method you might be more familiar with, the `concat()` method doesn't mutate the original array, so we prefer it.
At this point, the Board component only needs the `renderSquare` and `render` methods. The game's state and the `handleClick` method should be in the Game component.
**[View the full code at this point](https://codepen.io/gaearon/pen/EmmOqJ?editors=0010)**
### Showing the Past Moves {#showing-the-past-moves}
Since we are recording the tic-tac-toe game's history, we can now display it to the player as a list of past moves.
We learned earlier that React elements are first-class JavaScript objects; we can pass them around in our applications. To render multiple items in React, we can use an array of React elements.
In JavaScript, arrays have a [`map()` method](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map) that is commonly used for mapping data to other data, for example:
```js
const numbers = [1, 2, 3];
const doubled = numbers.map(x => x * 2); // [2, 4, 6]
```
Using the `map` method, we can map our history of moves to React elements representing buttons on the screen, and display a list of buttons to "jump" to past moves.
Let's `map` over the `history` in the Game's `render` method:
```javascript{6-15,34}
render() {
const history = this.state.history;
const current = history[history.length - 1];
const winner = calculateWinner(current.squares);
const moves = history.map((step, move) => {
const desc = move ?
'Go to move #' + move :
'Go to game start';
return (
<li>
<button onClick={() => this.jumpTo(move)}>{desc}</button>
</li>
);
});
let status;
if (winner) {
status = 'Winner: ' + winner;
} else {
status = 'Next player: ' + (this.state.xIsNext ? 'X' : 'O');
}
return (
<div className="game">
<div className="game-board">
<Board
squares={current.squares}
onClick={(i) => this.handleClick(i)}
/>
</div>
<div className="game-info">
<div>{status}</div>
<ol>{moves}</ol>
</div>
</div>
);
}
```
**[View the full code at this point](https://codepen.io/gaearon/pen/EmmGEa?editors=0010)**
For each move in the tic-tac-toe game's history, we create a list item `<li>` which contains a button `<button>`. The button has a `onClick` handler which calls a method called `this.jumpTo()`. We haven't implemented the `jumpTo()` method yet. For now, we should see a list of the moves that have occurred in the game and a warning in the developer tools console that says:
> Warning:
> Each child in an array or iterator should have a unique "key" prop. Check the render method of "Game".
Let's discuss what the above warning means.
### Picking a Key {#picking-a-key}
When we render a list, React stores some information about each rendered list item. When we update a list, React needs to determine what has changed. We could have added, removed, re-arranged, or updated the list's items.
Imagine transitioning from
```html
<li>Alexa: 7 tasks left</li>
<li>Ben: 5 tasks left</li>
```
to
```html
<li>Ben: 9 tasks left</li>
<li>Claudia: 8 tasks left</li>
<li>Alexa: 5 tasks left</li>
```
In addition to the updated counts, a human reading this would probably say that we swapped Alexa and Ben's ordering and inserted Claudia between Alexa and Ben. However, React is a computer program and does not know what we intended. Because React cannot know our intentions, we need to specify a *key* property for each list item to differentiate each list item from its siblings. One option would be to use the strings `alexa`, `ben`, `claudia`. If we were displaying data from a database, Alexa, Ben, and Claudia's database IDs could be used as keys.
```html
<li key={user.id}>{user.name}: {user.taskCount} tasks left</li>
```
When a list is re-rendered, React takes each list item's key and searches the previous list's items for a matching key. If the current list has a key that didn't exist before, React creates a component. If the current list is missing a key that existed in the previous list, React destroys the previous component. If two keys match, the corresponding component is moved. Keys tell React about the identity of each component which allows React to maintain state between re-renders. If a component's key changes, the component will be destroyed and re-created with a new state.
`key` is a special and reserved property in React (along with `ref`, a more advanced feature). When an element is created, React extracts the `key` property and stores the key directly on the returned element. Even though `key` may look like it belongs in `props`, `key` cannot be referenced using `this.props.key`. React automatically uses `key` to decide which components to update. A component cannot inquire about its `key`.
**It's strongly recommended that you assign proper keys whenever you build dynamic lists.** If you don't have an appropriate key, you may want to consider restructuring your data so that you do.
If no key is specified, React will present a warning and use the array index as a key by default. Using the array index as a key is problematic when trying to re-order a list's items or inserting/removing list items. Explicitly passing `key={i}` silences the warning but has the same problems as array indices and is not recommended in most cases.
Keys do not need to be globally unique; they only need to be unique between components and their siblings.
### Implementing Time Travel {#implementing-time-travel}
In the tic-tac-toe game's history, each past move has a unique ID associated with it: it's the sequential number of the move. The moves are never re-ordered, deleted, or inserted in the middle, so it's safe to use the move index as a key.
In the Game component's `render` method, we can add the key as `<li key={move}>` and React's warning about keys should disappear:
```js{6}
const moves = history.map((step, move) => {
const desc = move ?
'Go to move #' + move :
'Go to game start';
return (
<li key={move}>
<button onClick={() => this.jumpTo(move)}>{desc}</button>
</li>
);
});
```
**[View the full code at this point](https://codepen.io/gaearon/pen/PmmXRE?editors=0010)**
Clicking any of the list item's buttons throws an error because the `jumpTo` method is undefined. Before we implement `jumpTo`, we'll add `stepNumber` to the Game component's state to indicate which step we're currently viewing.
First, add `stepNumber: 0` to the initial state in Game's `constructor`:
```js{8}
class Game extends React.Component {
constructor(props) {
super(props);
this.state = {
history: [{
squares: Array(9).fill(null),
}],
stepNumber: 0,
xIsNext: true,
};
}
```
Next, we'll define the `jumpTo` method in Game to update that `stepNumber`. We also set `xIsNext` to true if the number that we're changing `stepNumber` to is even:
```javascript{5-10}
handleClick(i) {
// this method has not changed
}
jumpTo(step) {
this.setState({
stepNumber: step,
xIsNext: (step % 2) === 0,
});
}
render() {
// this method has not changed
}
```
We will now make a few changes to the Game's `handleClick` method which fires when you click on a square.
The `stepNumber` state we've added reflects the move displayed to the user now. After we make a new move, we need to update `stepNumber` by adding `stepNumber: history.length` as part of the `this.setState` argument. This ensures we don't get stuck showing the same move after a new one has been made.
We will also replace reading `this.state.history` with `this.state.history.slice(0, this.state.stepNumber + 1)`. This ensures that if we "go back in time" and then make a new move from that point, we throw away all the "future" history that would now become incorrect.
```javascript{2,13}
handleClick(i) {
const history = this.state.history.slice(0, this.state.stepNumber + 1);
const current = history[history.length - 1];
const squares = current.squares.slice();
if (calculateWinner(squares) || squares[i]) {
return;
}
squares[i] = this.state.xIsNext ? 'X' : 'O';
this.setState({
history: history.concat([{
squares: squares
}]),
stepNumber: history.length,
xIsNext: !this.state.xIsNext,
});
}
```
Finally, we will modify the Game component's `render` method from always rendering the last move to rendering the currently selected move according to `stepNumber`:
```javascript{3}
render() {
const history = this.state.history;
const current = history[this.state.stepNumber];
const winner = calculateWinner(current.squares);
// the rest has not changed
```
If we click on any step in the game's history, the tic-tac-toe board should immediately update to show what the board looked like after that step occurred.
**[View the full code at this point](https://codepen.io/gaearon/pen/gWWZgR?editors=0010)**
### Wrapping Up {#wrapping-up}
Congratulations! You've created a tic-tac-toe game that:
* Lets you play tic-tac-toe,
* Indicates when a player has won the game,
* Stores a game's history as a game progresses,
* Allows players to review a game's history and see previous versions of a game's board.
Nice work! We hope you now feel like you have a decent grasp of how React works.
Check out the final result here: **[Final Result](https://codepen.io/gaearon/pen/gWWZgR?editors=0010)**.
If you have extra time or want to practice your new React skills, here are some ideas for improvements that you could make to the tic-tac-toe game which are listed in order of increasing difficulty:
1. Display the location for each move in the format (col, row) in the move history list.
2. Bold the currently selected item in the move list.
3. Rewrite Board to use two loops to make the squares instead of hardcoding them.
4. Add a toggle button that lets you sort the moves in either ascending or descending order.
5. When someone wins, highlight the three squares that caused the win.
6. When no one wins, display a message about the result being a draw.
Throughout this tutorial, we touched on React concepts including elements, components, props, and state. For a more detailed explanation of each of these topics, check out [the rest of the documentation](/docs/hello-world.html). To learn more about defining components, check out the [`React.Component` API reference](/docs/react-component.html).
]]></markdown>
<_-.XholonClass>
<!-- domain objects -->
<PhysicalSystem/>
<Block/>
<Brick/>
<!-- quantities -->
<Height superClass="Quantity"/>
<!-- tic-tac-toe -->
<Game/>
<Board/>
<Square/>
</_-.XholonClass>
<xholonClassDetails>
<Block>
<port name="height" connector="Height"/>
</Block>
</xholonClassDetails>
<PhysicalSystem>
<Block>
<Height>0.1 m</Height>
</Block>
<Brick multiplicity="2"/>
<!-- tic-tac-toe -->
<Game>
<Board>
<Square multiplicity="9"/>
</Board>
</Game>
</PhysicalSystem>
<Blockbehavior implName="org.primordion.xholon.base.Behavior_gwtjs"><![CDATA[
var a = 123;
var b = 456;
var c = a * b;
if (console) {
console.log(c);
}
//# sourceURL=Blockbehavior.js
]]></Blockbehavior>
<Heightbehavior implName="org.primordion.xholon.base.Behavior_gwtjs"><![CDATA[
var myHeight, testing;
var beh = {
postConfigure: function() {
testing = Math.floor(Math.random() * 10);
myHeight = this.cnode.parent();
},
act: function() {
myHeight.println(this.toString());
},
toString: function() {
return "testing:" + testing;
}
}
//# sourceURL=Heightbehavior.js
]]></Heightbehavior>
<Brickbehavior implName="org.primordion.xholon.base.Behavior_gwtjs"><![CDATA[
$wnd.xh.Brickbehavior = function Brickbehavior() {}
$wnd.xh.Brickbehavior.prototype.postConfigure = function() {
this.brick = this.cnode.parent();
this.iam = " red brick";
};
$wnd.xh.Brickbehavior.prototype.act = function() {
this.brick.println("I am a" + this.iam);
};
//# sourceURL=Brickbehavior.js
]]></Brickbehavior>
<Brickbehavior implName="org.primordion.xholon.base.Behavior_gwtjs"><![CDATA[
console.log("I'm another brick behavior");
]]></Brickbehavior>
<SvgClient><Attribute_String roleName="svgUri"><![CDATA[data:image/svg+xml,
<svg width="100" height="50" xmlns="http://www.w3.org/2000/svg">
<g>
<title>Block</title>
<rect id="PhysicalSystem/Block" fill="#98FB98" height="50" width="50" x="25" y="0"/>
<g>
<title>Height</title>
<rect id="PhysicalSystem/Block/Height" fill="#6AB06A" height="50" width="10" x="80" y="0"/>
</g>
</g>
</svg>
]]></Attribute_String><Attribute_String roleName="setup">${MODELNAME_DEFAULT},${SVGURI_DEFAULT}</Attribute_String></SvgClient>
</XholonWorkbook>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment