Skip to content

Instantly share code, notes, and snippets.

@kettleio
Created May 13, 2016 19:37
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save kettleio/103fedc13685dfe9567aebcbcb55f16b to your computer and use it in GitHub Desktop.
Save kettleio/103fedc13685dfe9567aebcbcb55f16b to your computer and use it in GitHub Desktop.
Coordinates library
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/* Latitude/longitude spherical geodesy formulae & scripts (c) Chris Veness 2002-2012 */
/* - www.movable-type.co.uk/scripts/latlong.html */
/* */
/* Sample usage: */
/* var p1 = new LatLon(51.5136, -0.0983); */
/* var p2 = new LatLon(51.4778, -0.0015); */
/* var dist = p1.distanceTo(p2); // in km */
/* var brng = p1.bearingTo(p2); // in degrees clockwise from north */
/* ... etc */
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/**
* Creates a point on the earth's surface at the supplied latitude / longitude
*
* @constructor
* @param {Number} lat: latitude in numeric degrees
* @param {Number} lon: longitude in numeric degrees
* @param {Number} [rad=6371]: radius of earth if different value is required from standard 6,371km
*/
function LatLon(lat, lon, rad) {
if (typeof(rad) == 'undefined') rad = 6371; // earth's mean radius in km
// only accept numbers or valid numeric strings
this._lat = typeof(lat)=='number' ? lat : typeof(lat)=='string' && lat.trim()!='' ? +lat : NaN;
this._lon = typeof(lon)=='number' ? lon : typeof(lon)=='string' && lon.trim()!='' ? +lon : NaN;
this._radius = typeof(rad)=='number' ? rad : typeof(rad)=='string' && trim(lon)!='' ? +rad : NaN;
}
/**
* Returns the distance from this point to the supplied point, in km
* (using Haversine formula)
*
* from: Haversine formula - R. W. Sinnott, "Virtues of the Haversine",
* Sky and Telescope, vol 68, no 2, 1984
*
* @param {LatLon} point: Latitude/longitude of destination point
* @param {Number} [precision=4]: no of significant digits to use for returned value
* @returns {Number} Distance in km between this point and destination point
*/
LatLon.prototype.distanceTo = function(point, precision) {
// default 4 sig figs reflects typical 0.3% accuracy of spherical model
if (typeof precision == 'undefined') precision = 4;
var R = this._radius;
var lat1 = this._lat.toRad(), lon1 = this._lon.toRad();
var lat2 = point._lat.toRad(), lon2 = point._lon.toRad();
var dLat = lat2 - lat1;
var dLon = lon2 - lon1;
var a = Math.sin(dLat/2) * Math.sin(dLat/2) +
Math.cos(lat1) * Math.cos(lat2) *
Math.sin(dLon/2) * Math.sin(dLon/2);
var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));
var d = R * c;
return d.toPrecisionFixed(precision);
}
/**
* Returns the (initial) bearing from this point to the supplied point, in degrees
* see http://williams.best.vwh.net/avform.htm#Crs
*
* @param {LatLon} point: Latitude/longitude of destination point
* @returns {Number} Initial bearing in degrees from North
*/
LatLon.prototype.bearingTo = function(point) {
var lat1 = this._lat.toRad(), lat2 = point._lat.toRad();
var dLon = (point._lon-this._lon).toRad();
var y = Math.sin(dLon) * Math.cos(lat2);
var x = Math.cos(lat1)*Math.sin(lat2) -
Math.sin(lat1)*Math.cos(lat2)*Math.cos(dLon);
var brng = Math.atan2(y, x);
return (brng.toDeg()+360) % 360;
}
/**
* Returns final bearing arriving at supplied destination point from this point; the final bearing
* will differ from the initial bearing by varying degrees according to distance and latitude
*
* @param {LatLon} point: Latitude/longitude of destination point
* @returns {Number} Final bearing in degrees from North
*/
LatLon.prototype.finalBearingTo = function(point) {
// get initial bearing from supplied point back to this point...
var lat1 = point._lat.toRad(), lat2 = this._lat.toRad();
var dLon = (this._lon-point._lon).toRad();
var y = Math.sin(dLon) * Math.cos(lat2);
var x = Math.cos(lat1)*Math.sin(lat2) -
Math.sin(lat1)*Math.cos(lat2)*Math.cos(dLon);
var brng = Math.atan2(y, x);
// ... & reverse it by adding 180�
return (brng.toDeg()+180) % 360;
}
/**
* Returns the midpoint between this point and the supplied point.
* see http://mathforum.org/library/drmath/view/51822.html for derivation
*
* @param {LatLon} point: Latitude/longitude of destination point
* @returns {LatLon} Midpoint between this point and the supplied point
*/
LatLon.prototype.midpointTo = function(point) {
lat1 = this._lat.toRad(), lon1 = this._lon.toRad();
lat2 = point._lat.toRad();
var dLon = (point._lon-this._lon).toRad();
var Bx = Math.cos(lat2) * Math.cos(dLon);
var By = Math.cos(lat2) * Math.sin(dLon);
lat3 = Math.atan2(Math.sin(lat1)+Math.sin(lat2),
Math.sqrt( (Math.cos(lat1)+Bx)*(Math.cos(lat1)+Bx) + By*By) );
lon3 = lon1 + Math.atan2(By, Math.cos(lat1) + Bx);
lon3 = (lon3+3*Math.PI) % (2*Math.PI) - Math.PI; // normalise to -180..+180�
return new LatLon(lat3.toDeg(), lon3.toDeg());
}
/**
* Returns the destination point from this point having travelled the given distance (in km) on the
* given initial bearing (bearing may vary before destination is reached)
*
* see http://williams.best.vwh.net/avform.htm#LL
*
* @param {Number} brng: Initial bearing in degrees
* @param {Number} dist: Distance in km
* @returns {LatLon} Destination point
*/
LatLon.prototype.destinationPoint = function(brng, dist) {
dist = typeof(dist)=='number' ? dist : typeof(dist)=='string' && dist.trim()!='' ? +dist : NaN;
dist = dist/this._radius; // convert dist to angular distance in radians
brng = brng.toRad(); //
var lat1 = this._lat.toRad(), lon1 = this._lon.toRad();
var lat2 = Math.asin( Math.sin(lat1)*Math.cos(dist) +
Math.cos(lat1)*Math.sin(dist)*Math.cos(brng) );
var lon2 = lon1 + Math.atan2(Math.sin(brng)*Math.sin(dist)*Math.cos(lat1),
Math.cos(dist)-Math.sin(lat1)*Math.sin(lat2));
lon2 = (lon2+3*Math.PI) % (2*Math.PI) - Math.PI; // normalise to -180..+180�
return new LatLon(lat2.toDeg(), lon2.toDeg());
}
/**
* Returns the point of intersection of two paths defined by point and bearing
*
* see http://williams.best.vwh.net/avform.htm#Intersection
*
* @param {LatLon} p1: First point
* @param {Number} brng1: Initial bearing from first point
* @param {LatLon} p2: Second point
* @param {Number} brng2: Initial bearing from second point
* @returns {LatLon} Destination point (null if no unique intersection defined)
*/
LatLon.intersection = function(p1, brng1, p2, brng2) {
brng1 = typeof brng1 == 'number' ? brng1 : typeof brng1 == 'string' && trim(brng1)!='' ? +brng1 : NaN;
brng2 = typeof brng2 == 'number' ? brng2 : typeof brng2 == 'string' && trim(brng2)!='' ? +brng2 : NaN;
lat1 = p1._lat.toRad(), lon1 = p1._lon.toRad();
lat2 = p2._lat.toRad(), lon2 = p2._lon.toRad();
brng13 = brng1.toRad(), brng23 = brng2.toRad();
dLat = lat2-lat1, dLon = lon2-lon1;
dist12 = 2*Math.asin( Math.sqrt( Math.sin(dLat/2)*Math.sin(dLat/2) +
Math.cos(lat1)*Math.cos(lat2)*Math.sin(dLon/2)*Math.sin(dLon/2) ) );
if (dist12 == 0) return null;
// initial/final bearings between points
brngA = Math.acos( ( Math.sin(lat2) - Math.sin(lat1)*Math.cos(dist12) ) /
( Math.sin(dist12)*Math.cos(lat1) ) );
if (isNaN(brngA)) brngA = 0; // protect against rounding
brngB = Math.acos( ( Math.sin(lat1) - Math.sin(lat2)*Math.cos(dist12) ) /
( Math.sin(dist12)*Math.cos(lat2) ) );
if (Math.sin(lon2-lon1) > 0) {
brng12 = brngA;
brng21 = 2*Math.PI - brngB;
} else {
brng12 = 2*Math.PI - brngA;
brng21 = brngB;
}
alpha1 = (brng13 - brng12 + Math.PI) % (2*Math.PI) - Math.PI; // angle 2-1-3
alpha2 = (brng21 - brng23 + Math.PI) % (2*Math.PI) - Math.PI; // angle 1-2-3
if (Math.sin(alpha1)==0 && Math.sin(alpha2)==0) return null; // infinite intersections
if (Math.sin(alpha1)*Math.sin(alpha2) < 0) return null; // ambiguous intersection
//alpha1 = Math.abs(alpha1);
//alpha2 = Math.abs(alpha2);
// ... Ed Williams takes abs of alpha1/alpha2, but seems to break calculation?
alpha3 = Math.acos( -Math.cos(alpha1)*Math.cos(alpha2) +
Math.sin(alpha1)*Math.sin(alpha2)*Math.cos(dist12) );
dist13 = Math.atan2( Math.sin(dist12)*Math.sin(alpha1)*Math.sin(alpha2),
Math.cos(alpha2)+Math.cos(alpha1)*Math.cos(alpha3) )
lat3 = Math.asin( Math.sin(lat1)*Math.cos(dist13) +
Math.cos(lat1)*Math.sin(dist13)*Math.cos(brng13) );
dLon13 = Math.atan2( Math.sin(brng13)*Math.sin(dist13)*Math.cos(lat1),
Math.cos(dist13)-Math.sin(lat1)*Math.sin(lat3) );
lon3 = lon1+dLon13;
lon3 = (lon3+3*Math.PI) % (2*Math.PI) - Math.PI; // normalise to -180..+180�
return new LatLon(lat3.toDeg(), lon3.toDeg());
}
/**
* Calculates distance of a point from a great-circle path (also called cross-track distance or cross-track error)
*
* Formula: dxt = asin(sin(d13/R)*sin(b13-b12)) * R
* where
* d13 is distance from start point to third point
* b13 is (initial) bearing from start point to third point
* b12 is (initial) bearing from start point to end point
* R is the earth's radius
*
* @param {LatLon} startPoint - Point denoting the start of the great-circle path
* @param {LatLon} endPoint - Point denoting the end of the great-circle path
* @param {Number} [precision=4] - no of significant digits to use for calculations and returned value
* @return {Number} - distance in km from third point to great-circle path
*/
LatLon.prototype.crossTrackDistance = function(startPoint, endPoint, precision){
var R = this._radius;
var d13 = startPoint.distanceTo(this, 10);
var b13 = startPoint.bearingTo(this).toRad();
var b12 = startPoint.bearingTo(endPoint).toRad();
var d = Math.asin(Math.sin(d13/R)*Math.sin(b13-b12)) * R;
return d.toPrecisionFixed(precision);
}
/**
* Calculates distance of a point from a great-circle path if the point is within the bounding box defined by the path.
* Otherwise, it returns the distance from the point to the closet end of the great-circle path.
*
* @param {LatLon} startPoint - Point denoting the start of the great-circle path
* @param {LatLon} endPoint - Point denoting the end of the great-circle path
* @param {Number} [precision=4] - no of significant digits to use for calculations and returned value
* @return {Number} - distance in km from third point to great-circle path
*/
LatLon.prototype.constrainedCrossTrackDistance = function(startPoint, endPoint, precision){
var bAB = startPoint.bearingTo(endPoint);
var bAB_plus_90 = Geo.adjustBearing(bAB, 90);
var bAB_minus_90 = Geo.adjustBearing(bAB, -90);
var bAC = startPoint.bearingTo(this);
var bBC = endPoint.bearingTo(this);
var bAB = startPoint.bearingTo(endPoint);
var dAB = startPoint.distanceTo(endPoint, 10);
var dAC = startPoint.distanceTo(this, 10);
var dBC = endPoint.distanceTo(this, 10);
if((bBC > bAB_plus_90 && bAC < bAB_plus_90) || (bAC > bAB_minus_90 && bBC < bAB_minus_90)){
return Math.abs(this.crossTrackDistance(startPoint, endPoint, precision));
}else if((bBC < bAB_plus_90 && bAC < bAB_plus_90) || (bBC > bAB_minus_90 && bAC > bAB_minus_90)){
return Math.abs(dBC);
}else if((bBC > bAB_plus_90 && bAC > bAB_plus_90) || (bBC < bAB_minus_90 && bAC < bAB_minus_90)){
return Math.abs(dAC);
}else{
throw "Error when calculating constrainedCrossTrackDistance";
}
}
/**
* Calculates minimum distance of a point from a great-circle path or its end points.
*
* @param {LatLon} startPoint - Point denoting the start of the great-circle path
* @param {LatLon} endPoint - Point denoting the end of the great-circle path
* @param {Number} [precision=4] - no of significant digits to use for calculations and returned value
* @return {Number} - minumum distance in km from third point to great-circle path
*/
LatLon.prototype.minimumCrossTrackDistance = function(startPoint, endPoint, precision){
var ct = Math.abs(this.constrainedCrossTrackDistance(startPoint, endPoint, precision));
var dAC = startPoint.distanceTo(this, 10);
var dBC = endPoint.distanceTo(this, 10);
return Math.min(ct, dAC, dBC);
}
/**
* Returns a flag indicating if a point is within the bounding box defined by the two boundary points
*
* @param {LatLon} tl - Point denoting the top-left corner of a bounding box
* @param {LatLon} br - Point denoting bottom-right corner of a bounding box
* @returns {Boolean} Flag indicating if point is within bounds
*/
LatLon.prototype.isBounded = function(tl, br) {
/* Check latitude bounds first. */
if(tl.lat() >= this.lat() && this.lat() >= br.lat()){
/* If your bounding box doesn't wrap the date line the valuemust be between the bounds.
If your bounding box does wrap the date line it only needs to be higher than the left bound or lower than the right bound. */
if(tl.lon() <= br.lon() && tl.lon() <= this.lon() && this.lon() <= br.lon()){
return true;
} else if(br.lon() > tl.lon() && (tl.lon() <= this.lon() && this.lon() <= br.lon())) {
return true;
}
}
return false;
}
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/**
* Returns the distance from this point to the supplied point, in km, travelling along a rhumb line
*
* see http://williams.best.vwh.net/avform.htm#Rhumb
*
* @param {LatLon} point: Latitude/longitude of destination point
* @returns {Number} Distance in km between this point and destination point
*/
LatLon.prototype.rhumbDistanceTo = function(point) {
var R = this._radius;
var lat1 = this._lat.toRad(), lat2 = point._lat.toRad();
var dLat = (point._lat-this._lat).toRad();
var dLon = Math.abs(point._lon-this._lon).toRad();
var dPhi = Math.log(Math.tan(lat2/2+Math.PI/4)/Math.tan(lat1/2+Math.PI/4));
var q = (!isNaN(dLat/dPhi)) ? dLat/dPhi : Math.cos(lat1); // E-W line gives dPhi=0
// if dLon over 180� take shorter rhumb across 180� meridian:
if (Math.abs(dLon) > Math.PI) {
dLon = dLon>0 ? -(2*Math.PI-dLon) : (2*Math.PI+dLon);
}
var dist = Math.sqrt(dLat*dLat + q*q*dLon*dLon) * R;
return dist.toPrecisionFixed(4); // 4 sig figs reflects typical 0.3% accuracy of spherical model
}
/**
* Returns the bearing from this point to the supplied point along a rhumb line, in degrees
*
* @param {LatLon} point: Latitude/longitude of destination point
* @returns {Number} Bearing in degrees from North
*/
LatLon.prototype.rhumbBearingTo = function(point) {
var lat1 = this._lat.toRad(), lat2 = point._lat.toRad();
var dLon = (point._lon-this._lon).toRad();
var dPhi = Math.log(Math.tan(lat2/2+Math.PI/4)/Math.tan(lat1/2+Math.PI/4));
if (Math.abs(dLon) > Math.PI) dLon = dLon>0 ? -(2*Math.PI-dLon) : (2*Math.PI+dLon);
var brng = Math.atan2(dLon, dPhi);
return (brng.toDeg()+360) % 360;
}
/**
* Returns the destination point from this point having travelled the given distance (in km) on the
* given bearing along a rhumb line
*
* @param {Number} brng: Bearing in degrees from North
* @param {Number} dist: Distance in km
* @returns {LatLon} Destination point
*/
LatLon.prototype.rhumbDestinationPoint = function(brng, dist) {
var R = this._radius;
var d = parseFloat(dist)/R; // d = angular distance covered on earth�s surface
var lat1 = this._lat.toRad(), lon1 = this._lon.toRad();
brng = brng.toRad();
var lat2 = lat1 + d*Math.cos(brng);
var dLat = lat2-lat1;
var dPhi = Math.log(Math.tan(lat2/2+Math.PI/4)/Math.tan(lat1/2+Math.PI/4));
var q = (!isNaN(dLat/dPhi)) ? dLat/dPhi : Math.cos(lat1); // E-W line gives dPhi=0
var dLon = d*Math.sin(brng)/q;
// check for some daft bugger going past the pole
if (Math.abs(lat2) > Math.PI/2) lat2 = lat2>0 ? Math.PI-lat2 : -Math.PI-lat2;
lon2 = (lon1+dLon+3*Math.PI)%(2*Math.PI) - Math.PI;
return new LatLon(lat2.toDeg(), lon2.toDeg());
}
/**
* Returns the loxodromic midpoint (along a rhumb line) between this point and the supplied point.
* see http://mathforum.org/kb/message.jspa?messageID=148837
*
* @param {LatLon} point: Latitude/longitude of destination point
* @returns {LatLon} Midpoint between this point and the supplied point
*/
LatLon.prototype.rhumbMidpointTo = function(point) {
lat1 = this._lat.toRad(), lon1 = this._lon.toRad();
lat2 = point._lat.toRad(), lon2 = point._lon.toRad();
var lat3 = (lat1+lat2)/2;
var f1 = Math.tan(Math.PI/4 + lat1/2);
var f2 = Math.tan(Math.PI/4 + lat2/2);
var f3 = Math.tan(Math.PI/4 + lat3/2);
var lon3 = ( (lon2-lon1)*Math.log(f3) + lon1*Math.log(f2) - lon2*Math.log(f1) ) / Math.log(f2/f1);
if (isNaN(lon3)) lon3 = (lon1+lon2)/2; // parallel of latitude
lon3 = (lon3+3*Math.PI) % (2*Math.PI) - Math.PI; // normalise to -180..+180�
return new LatLon(lat3.toDeg(), lon3.toDeg());
}
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/**
* Returns the latitude of this point; signed numeric degrees if no format, otherwise format & dp
* as per Geo.toLat()
*
* @param {String} [format]: Return value as 'd', 'dm', 'dms'
* @param {Number} [dp=0|2|4]: No of decimal places to display
* @returns {Number|String} Numeric degrees if no format specified, otherwise deg/min/sec
*
* @requires Geo
*/
LatLon.prototype.lat = function(format, dp) {
if (typeof format == 'undefined') return this._lat;
return Geo.toLat(this._lat, format, dp);
}
/**
* Returns the longitude of this point; signed numeric degrees if no format, otherwise format & dp
* as per Geo.toLon()
*
* @param {String} [format]: Return value as 'd', 'dm', 'dms'
* @param {Number} [dp=0|2|4]: No of decimal places to display
* @returns {Number|String} Numeric degrees if no format specified, otherwise deg/min/sec
*
* @requires Geo
*/
LatLon.prototype.lon = function(format, dp) {
if (typeof format == 'undefined') return this._lon;
return Geo.toLon(this._lon, format, dp);
}
/**
* Returns a string representation of this point; format and dp as per lat()/lon()
*
* @param {String} [format]: Return value as 'd', 'dm', 'dms'
* @param {Number} [dp=0|2|4]: No of decimal places to display
* @returns {String} Comma-separated latitude/longitude
*
* @requires Geo
*/
LatLon.prototype.toString = function(format, dp) {
if (typeof format == 'undefined') format = 'dms';
if (isNaN(this._lat) || isNaN(this._lon)) return '-,-';
return Geo.toLat(this._lat, format, dp) + ', ' + Geo.toLon(this._lon, format, dp);
}
/*
* Extend Number object with methods for converting degrees/radians
*/
/** Converts numeric degrees to radians */
if (typeof Number.prototype.toRad == 'undefined') {
Number.prototype.toRad = function() {
return this * Math.PI / 180;
}
}
/** Converts radians to numeric (signed) degrees */
if (typeof Number.prototype.toDeg == 'undefined') {
Number.prototype.toDeg = function() {
return this * 180 / Math.PI;
}
}
/**
* Formats the significant digits of a number, using only fixed-point notation (no exponential)
*
* @param {Number} precision: Number of significant digits to appear in the returned string
* @returns {String} A string representation of number which contains precision significant digits
*/
if (typeof Number.prototype.toPrecisionFixed == 'undefined') {
Number.prototype.toPrecisionFixed = function(precision) {
// use standard toPrecision method
var n = this.toPrecision(precision);
// ... but replace +ve exponential format with trailing zeros
n = n.replace(/(.+)e\+(.+)/, function(n, sig, exp) {
sig = sig.replace(/\./, ''); // remove decimal from significand
l = sig.length - 1;
while (exp-- > l) sig = sig + '0'; // append zeros from exponent
return sig;
});
// ... and replace -ve exponential format with leading zeros
n = n.replace(/(.+)e-(.+)/, function(n, sig, exp) {
sig = sig.replace(/\./, ''); // remove decimal from significand
while (exp-- > 1) sig = '0' + sig; // prepend zeros from exponent
return '0.' + sig;
});
return n;
}
}
/** Trims whitespace from string (q.v. blog.stevenlevithan.com/archives/faster-trim-javascript) */
if (typeof String.prototype.trim == 'undefined') {
String.prototype.trim = function() {
return String(this).replace(/^\s\s*/, '').replace(/\s\s*$/, '');
}
}
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/* Geodesy representation conversion functions (c) Chris Veness 2002-2011 */
/* - www.movable-type.co.uk/scripts/latlong.html */
/* */
/* Sample usage: */
/* var lat = Geo.parseDMS('51� 28' 40.12? N'); */
/* var lon = Geo.parseDMS('000� 00' 05.31? W'); */
/* var p1 = new LatLon(lat, lon); */
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
var Geo = {}; // Geo namespace, representing static class
/**
* Parses string representing degrees/minutes/seconds into numeric degrees
*
* This is very flexible on formats, allowing signed decimal degrees, or deg-min-sec optionally
* suffixed by compass direction (NSEW). A variety of separators are accepted (eg 3� 37' 09"W)
* or fixed-width format without separators (eg 0033709W). Seconds and minutes may be omitted.
* (Note minimal validation is done).
*
* @param {String|Number} dmsStr: Degrees or deg/min/sec in variety of formats
* @returns {Number} Degrees as decimal number
* @throws {TypeError} dmsStr is an object, perhaps DOM object without .value?
*/
Geo.parseDMS = function(dmsStr) {
if (typeof deg == 'object') throw new TypeError('Geo.parseDMS - dmsStr is [DOM?] object');
// check for signed decimal degrees without NSEW, if so return it directly
if (typeof dmsStr === 'number' && isFinite(dmsStr)) return Number(dmsStr);
// strip off any sign or compass dir'n & split out separate d/m/s
var dms = String(dmsStr).trim().replace(/^-/,'').replace(/[NSEW]$/i,'').split(/[^0-9.,]+/);
if (dms[dms.length-1]=='') dms.splice(dms.length-1); // from trailing symbol
if (dms == '') return NaN;
// and convert to decimal degrees...
switch (dms.length) {
case 3: // interpret 3-part result as d/m/s
var deg = dms[0]/1 + dms[1]/60 + dms[2]/3600;
break;
case 2: // interpret 2-part result as d/m
var deg = dms[0]/1 + dms[1]/60;
break;
case 1: // just d (possibly decimal) or non-separated dddmmss
var deg = dms[0];
// check for fixed-width unseparated format eg 0033709W
//if (/[NS]/i.test(dmsStr)) deg = '0' + deg; // - normalise N/S to 3-digit degrees
//if (/[0-9]{7}/.test(deg)) deg = deg.slice(0,3)/1 + deg.slice(3,5)/60 + deg.slice(5)/3600;
break;
default:
return NaN;
}
if (/^-|[WS]$/i.test(dmsStr.trim())) deg = -deg; // take '-', west and south as -ve
return Number(deg);
}
/**
* Convert decimal degrees to deg/min/sec format
* - degree, prime, double-prime symbols are added, but sign is discarded, though no compass
* direction is added
*
* @private
* @param {Number} deg: Degrees
* @param {String} [format=dms]: Return value as 'd', 'dm', 'dms'
* @param {Number} [dp=0|2|4]: No of decimal places to use - default 0 for dms, 2 for dm, 4 for d
* @returns {String} deg formatted as deg/min/secs according to specified format
* @throws {TypeError} deg is an object, perhaps DOM object without .value?
*/
Geo.toDMS = function(deg, format, dp) {
if (typeof deg == 'object') throw new TypeError('Geo.toDMS - deg is [DOM?] object');
if (isNaN(deg)) return 'NaN'; // give up here if we can't make a number from deg
// default values
if (typeof format == 'undefined') format = 'dms';
if (typeof dp == 'undefined') {
switch (format) {
case 'd': dp = 4; break;
case 'dm': dp = 2; break;
case 'dms': dp = 0; break;
default: format = 'dms'; dp = 0; // be forgiving on invalid format
}
}
deg = Math.abs(deg); // (unsigned result ready for appending compass dir'n)
switch (format) {
case 'd':
d = deg.toFixed(dp); // round degrees
if (d<100) d = '0' + d; // pad with leading zeros
if (d<10) d = '0' + d;
dms = d + '\u00B0'; // add � symbol
break;
case 'dm':
var min = (deg*60).toFixed(dp); // convert degrees to minutes & round
var d = Math.floor(min / 60); // get component deg/min
var m = (min % 60).toFixed(dp); // pad with trailing zeros
if (d<100) d = '0' + d; // pad with leading zeros
if (d<10) d = '0' + d;
if (m<10) m = '0' + m;
dms = d + '\u00B0' + m + '\u2032'; // add �, ' symbols
break;
case 'dms':
var sec = (deg*3600).toFixed(dp); // convert degrees to seconds & round
var d = Math.floor(sec / 3600); // get component deg/min/sec
var m = Math.floor(sec/60) % 60;
var s = (sec % 60).toFixed(dp); // pad with trailing zeros
if (d<100) d = '0' + d; // pad with leading zeros
if (d<10) d = '0' + d;
if (m<10) m = '0' + m;
if (s<10) s = '0' + s;
dms = d + '\u00B0' + m + '\u2032' + s + '\u2033'; // add �, ', " symbols
break;
}
return dms;
}
/**
* Convert numeric degrees to deg/min/sec latitude (suffixed with N/S)
*
* @param {Number} deg: Degrees
* @param {String} [format=dms]: Return value as 'd', 'dm', 'dms'
* @param {Number} [dp=0|2|4]: No of decimal places to use - default 0 for dms, 2 for dm, 4 for d
* @returns {String} Deg/min/seconds
*/
Geo.toLat = function(deg, format, dp) {
var lat = Geo.toDMS(deg, format, dp);
return lat=='' ? '' : lat.slice(1) + (deg<0 ? 'S' : 'N'); // knock off initial '0' for lat!
}
/**
* Convert numeric degrees to deg/min/sec longitude (suffixed with E/W)
*
* @param {Number} deg: Degrees
* @param {String} [format=dms]: Return value as 'd', 'dm', 'dms'
* @param {Number} [dp=0|2|4]: No of decimal places to use - default 0 for dms, 2 for dm, 4 for d
* @returns {String} Deg/min/seconds
*/
Geo.toLon = function(deg, format, dp) {
var lon = Geo.toDMS(deg, format, dp);
return lon=='' ? '' : lon + (deg<0 ? 'W' : 'E');
}
/**
* Convert numeric degrees to deg/min/sec as a bearing (0�..360�)
*
* @param {Number} deg: Degrees
* @param {String} [format=dms]: Return value as 'd', 'dm', 'dms'
* @param {Number} [dp=0|2|4]: No of decimal places to use - default 0 for dms, 2 for dm, 4 for d
* @returns {String} Deg/min/seconds
*/
Geo.toBrng = function(deg, format, dp) {
deg = (Number(deg)+360) % 360; // normalise -ve values to 180�..360�
var brng = Geo.toDMS(deg, format, dp);
return brng.replace('360', '0'); // just in case rounding took us up to 360�!
}
/**
* Given a bearing in degrees and +/- adjustment in degrees, returns new bearing in degrees
*
* @param {Number} bearing - bearing to adjust in degrees
* @param {Number} adjustment - adjustment to apply to bearing in degrees
* @return {Number} - New bearing in degrees
*/
Geo.adjustBearing = function(bearing, adjustment){
var b = (bearing + adjustment) % 360;
if(b < 0) b = 360 + b;
if(b >= 360) b=-360;
return b;
}
/**
* Given a pair of bearings in degrees, returns the difference in degrees between the two bearings
*
* @param {Number} bearingA - first bearing in degrees
* @param {Number} bearingB - second bearing in degrees
* @return {Number} - Difference between bearings in degrees
*/
Geo.differenceInBearings = function(bearingA, bearingB){
var a = bearingA;
var b = bearingB;
if(bearingA < bearingB){
a = bearingB;
b = bearingA;
}
var diff = bearingB - bearingA;
if(diff > 180) diff = 360 - diff;
if(diff < 0) diff += 360;
return diff;
}
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment