Last active
June 12, 2021 00:14
-
-
Save kevinwang09/cfbb5bcbc73f6d8970fa4499f2cc0621 to your computer and use it in GitHub Desktop.
We can make this file beautiful and searchable if this error is corrected: No commas found in this CSV file in line 0.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
rank airport1 airport2 distance passengers type | |
1 Jeju Seoul-Gimpo 449 14107414 Domestic | |
2 Sapporo Tokyo-Haneda 835 9698639 Domestic | |
3 Sydney Melbourne 705 9245392 Domestic | |
4 Fukuoka Tokyo-Haneda 889 8762547 Domestic | |
5 Mumbai Delhi 1150 7392155 Domestic | |
6 Hanoi Ho Chi Minh City 1171 6867114 Domestic | |
7 Beijing Shanghai-Hongqiao 1081 6518997 Domestic | |
8 Hong Kong Taipei-Taoyuan 802 6476268 International | |
9 Tokyo-Haneda Naha 1573 5829712 Domestic | |
10 Jakarta Surabaya 700 5649046 Domestic | |
11 Jakarta Denpasar 991 5535108 Domestic | |
12 Jeddah Riyadh 857 5526110 Domestic | |
13 Tokyo-Haneda Osaka-Itami 407 5131757 Domestic | |
14 Chengdu Beijing 1559 5092442 Domestic | |
15 Guangzhou Beijing 1898 5076229 Domestic | |
16 Cancun Mexico City 1294 4885602 Domestic | |
17 Beijing Shenzhen 1979 4853038 Domestic | |
18 Brisbane Sydney 756 4815609 Domestic | |
19 Jakarta Singapore 896 4812342 International | |
20 Guangzhou Shanghai-Hongqiao 1176 4724514 Domestic | |
21 Shanghai-Hongqiao Shenzhen 1217 4679294 Domestic | |
22 Bangalore Delhi 1717 4542638 Domestic | |
23 Jakarta Makassar 1439 4530428 Domestic | |
24 Jakarta Medan 1401 4512830 Domestic | |
25 Cape Town Johannesburg 1292 4508214 Domestic | |
26 Kuala Lumpur Singapore 296 4490463 International | |
27 São Paulo–Congonhas Rio de Janeiro-Santos Dumont 378 4234631 Domestic | |
28 Hong Kong Shanghai-Pudong 1247 4053909 International | |
29 New York-JFK Los Angeles 3982 3971922 Domestic | |
30 Bogot√° Medellin-Rionegro 239 3930332 Domestic | |
31 Bangalore Mumbai 834 3814494 Domestic | |
32 Los Angeles San Francisco 541 3635655 Domestic | |
33 Bangkok-Suvarnabhumi Phuket 685 3612373 Domestic | |
34 Brisbane Melbourne 1379 3565266 Domestic | |
35 Cebu Manila 570 3519525 Domestic | |
36 Hong Kong Bangkok-Suvarnabhumi 1694 3490988 International | |
37 Mexico City Monterrey 729 3474971 Domestic | |
38 Kolkata Delhi 1333 3431999 Domestic | |
39 Da Nang Ho Chi Minh City 617 3256718 Domestic | |
40 Chiang Mai Bangkok-Don Mueang 569 3212124 Domestic | |
41 Seoul-Incheon Osaka-Kansai 872 3210813 International | |
42 Cusco Lima 583 3201414 Domestic | |
43 New York-LaGuardia Chicago-O'Hare 1177 3198700 Domestic | |
44 Jakarta Kuala Lumpur 1142 3170193 International | |
45 Mexico City Guadalajara 466 3170177 Domestic | |
46 Jeju Gimhae 294 3106224 Domestic | |
47 İzmir Istanbul-Atatürk 348 3084250 Domestic | |
48 Hong Kong Seoul-Incheon 2080 3081942 International | |
49 Guangzhou Chengdu 1232 3044038 Domestic | |
50 Hong Kong Manila 1145 3008842 International |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment