Skip to content

Instantly share code, notes, and snippets.

@kg583
Last active June 28, 2021 01:16
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save kg583/ed0911aea395690c7dbe87e14ad55616 to your computer and use it in GitHub Desktop.
Save kg583/ed0911aea395690c7dbe87e14ad55616 to your computer and use it in GitHub Desktop.
Supersingular loci from traces of Hecke Operators
# Cache to accelerate calculation of traces
from functools import cache
# Default power series ring and precision
# May need to increase for large weight traces
R.<q> = PowerSeriesRing(QQ)
PREC = 200
# Gets the coefficient of q^n in f
def coeff(f, n):
return dict(zip(f.exponents(), f.coefficients())).get(n, 0)
# Common sqrt bound
def bound(n):
return int(sqrt(n)) + 1
# The Eisenstein series normalized with constant Fourier coefficient 1
def Eis(k):
return eisenstein_series_qexp(k, normalization='constant', prec=PREC)
# Delta and the j-function as q-expansions
Delta = (Eis(4)^3 - Eis(6)^2) / 1728
j = j_invariant_qexp(prec=PREC)
# Extraneous Sp factors as defined by Kaneko-Zagier
def delta(k):
return k % 3
def epsilon(k):
return (k % 4) / 2
# Space dimensions
def dimM(k):
return dimS(k) + 1
def dimS(k):
return max(k // 12 - (k % 12 == 2), 0)
# The divisor polynomial of f of weight k, modulo p if given
def divisor_polynomial(f, k, p=None):
return poly_in_j(f / (Delta ^ dimS(k) * Eis(4) ^ delta(k) * Eis(6) ^ epsilon(k)), p).factor()
# Expresses f as a polynomial in j, modulo p if given
def poly_in_j(P, p=None):
e = 1 - P.exponents()[0]
coeffs = [0] * e
while e:
e -= 1
coeffs[e] = coeff(P, -e)
P -= coeffs[e] * j^e
if p is not None:
T.<x> = PolynomialRing(GF(p))
else:
T.<x> = PolynomialRing(QQ)
return T(coeffs)
# Hurwitz-Kroncecker class numbers stored in a dictionary
# Requires the b-table of A259825 on the OEIS downloaded locally
H = {}
with open('b259825.txt') as file:
for line in file:
index, value = map(int, line.split())
H.update({index: value / 12})
# Second-order recurrence component for the Eichler-Selberg trace formula
# Returns a functor which is called with the desired weight
@cache
def P(t, n):
def adjust_index(k):
return BinaryRecurrenceSequence(t, -n)(k - 1)
return adjust_index
# Divisor sum in the Eichler-Selberg trace formula
def l(k, n):
return 1/2 * sum(min(d, n // d)^(k - 1) for d in range(1, n + 1) if n % d == 0)
# Left-hand sum in the Eichler-Selberg trace formula
def s(k, n):
bound = int(sqrt(n)) + 1
return sum(P(t, n)(k) * H.get(4 * n - t^2, 0) for t in range(-2 * bound, 2 * bound))
# The trace of T(n) for weight k eigenforms using the Eichler-Selberg trace formula
def trace(k, n):
return -1/2 * s(k, n) - l(k, n)
# T_k as a q-expansion
def trace_form(k):
return R([trace(k, n) for n in range(1, PREC)]) * q
# T_k-hat as a q-expansion
def modified_trace_form(k, p):
return R([trace(k, n) % p if n % p else 0 for n in range(1, PREC)]) * q
# Example 5.2 (other examples are computed similarly)
f = 3 * trace_form(28)
g = trace_form(76)
n = (76 - 28) / (5 - 1)
S5 = 1
f % 5
g % 5
divisor_polynomial(g, 76, 5) / divisor_polynomial(g, 28, 5)
x^(n // 3) * S5
# Cache to accelerate calculation of traces
from functools import cache
# Space dimensions
def dimM(k):
return dimS(k) + 1
def dimS(k):
return max(k // 12 - (k % 12 == 2), 0)
# Maximum power of q required to verify the equivalence of two modular forms of weight k
# Given by Sturm's theorem
def max_coeff(k):
return k // 12 + 1
# Hurwitz-Kroncecker class numbers stored in a dictionary
# Requires the b-table of A259825 on the OEIS downloaded locally
H = {}
with open('b259825.txt') as file:
for line in file:
index, value = map(int, line.split())
H.update({index: value / 12})
# Second-order recurrence component for the Eichler-Selberg trace formula
# Returns a functor which is called with the desired weight
@cache
def P(t, n):
def adjust_index(k):
return BinaryRecurrenceSequence(t, -n)(k - 1)
return adjust_index
# Divisor sum in the Eichler-Selberg trace formula
def l(k, n):
return 1/2 * sum(min(d, n // d)^(k - 1) for d in range(1, n + 1) if n % d == 0)
# Left-hand sum in the Eichler-Selberg trace formula
def s(k, n):
bound = int(sqrt(n)) + 1
return sum(P(t, n)(k) * H.get(4 * n - t^2, 0) for t in range(-2 * bound, 2 * bound))
# The trace of T(n) for weight k eigenforms using the Eichler-Selberg trace formula
def trace(k, n):
return -1/2 * s(k, n) - l(k, n)
# Verification of Theorem 2.1 (ii) and (iii) for p = 5
def prover5():
max_ = 136
for k in range(12, 136, 2):
tk = [trace(k, n) % 5 for n in range(2, max_coeff(max_) + 1)]
for c in range(1, 4):
# (iii)
if dimS(k) == dimS(l := k + 4 * c):
assert(all(tk[n - 2] == trace(l, n) % 5 for n in range(2, max_coeff(l) + 1)))
# (ii)
if k - 24 in [0, 4, 6, 8, 10, 14]:
l = k + 24 * c
assert(all((c + 1) * tk[n - 2] % 5 == trace(l, n) % 5 for n in range(2, max_coeff(l) + 1)))
# k % 20 or print(k)
return True
# Verification of Theorem 2.1 (ii) and (iii) for p = 7
def prover7():
max_ = 352
for k in (i for i in range(12, max_, 2)):
tk = [trace(k, n) % 7 for n in range(2, max_coeff(max_) + 1)]
for c in range(1, 6):
# (iii)
if dimS(k) == dimS(l := k + 6 * c):
assert(all(tk[n - 2] == trace(l, n) % 7 for n in range(2, max_coeff(l) + 1)))
# (ii)
if k - 48 in [0, 4, 6, 8, 10, 14]:
l = k + 48 * c
assert(all((c + 1) * tk[n - 2] % 7 == trace(l, n) % 7 for n in range(2, max_coeff(l) + 1)))
# k % 20 or print(k)
return True
# Verification of Theorem 2.1 (ii) and (iii) for p = 11
def prover11():
max_ = 1336
for k in (i for i in range(12, max_, 2)):
tk = [trace(k, n) % 11 for n in range(2, max_coeff(max_) + 1)]
for c in range(1, 10):
# (iii)
if dimS(k) == dimS(l := k + 10 * c):
assert(all(tk[n - 2] == trace(l, n) % 11 for n in range(2, max_coeff(l) + 1)))
# (ii)
if k - 120 in [0, 4, 6, 8, 10, 14]:
l = k + 120 * c
assert(all((c + 1) * tk[n - 2] % 11 == trace(l, n) % 11 for n in range(2, max_coeff(l) + 1)))
# k % 20 or print(k)
return True
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment