Created
September 26, 2017 23:06
-
-
Save khakieconomics/d61e3c1be07a05361cdffca2d2fb4166 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(rstan); library(dplyr); library(ggplot2); library(reshape2) | |
options(mc.cores = parallel::detectCores()) | |
set.seed(49) | |
# Observations | |
N <- 2000 | |
# Draw errors | |
rho <- 0.5 | |
Sigma <- matrix(c(1, rho, rho, 1), 2, 2) | |
errors <- MASS::mvrnorm(N, c(0, 0), Sigma) | |
# Draw some fake covariates | |
P <- 5 | |
P2 <- 3 | |
X <- cbind(1, matrix(rnorm((P-1)*N), N, P-1)) | |
Z <- matrix(rnorm(P2*N), N, P2) | |
# Some fake parameters | |
beta <- rnorm(P + P2) | |
gamma <- rnorm(P + 1) | |
# Make Y | |
Ystar1 <- cbind(X, Z) %*% beta + errors[,1] | |
Y1 = as.numeric(Ystar1 > 0 ) | |
# Make covariates for second stage | |
X2 <- cbind(Y1, X) | |
# Make outcome | |
Ystar2 <- X2 %*% gamma + errors[,2] | |
Y2 <- as.numeric(Ystar2 > 0) | |
# Create data | |
Y <- cbind(Y1, Y2) | |
cor(Y) | |
# Does regular old probit work? | |
estimates <- coef(glm(Y[,2] ~ . - 1, data = as.data.frame(X2), family = binomial(link = "probit"))) | |
# let's look at the estimates | |
data.frame(gamma, estimates) %>% | |
mutate(endo_regressor = 1:n()==1) %>% | |
ggplot(aes(gamma, estimates, colour = endo_regressor)) + | |
geom_point() + | |
labs(title = "There's pretty clearly some bias") | |
# Pretty clearly there's a bias! | |
# Stan time --------------------------------------------------------------- | |
# Let's run Stan | |
data_list <- list(N = N, P = P, P2 = P2, X = X, Z = Z, Y = as.data.frame(Y)) | |
compiled_model <- stan_model("biprobit.stan") | |
estimated_model <- sampling(compiled_model, data = data_list, iter = 500) | |
# Look at the estimates relative to the actuals (gamma[1] was biased) | |
estimated_model | |
gamma | |
# Let's look at the estimates | |
as.data.frame(estimated_model, pars = c("gamma","beta")) %>% | |
melt() %>% | |
group_by(variable) %>% | |
summarise(median = median(value), | |
lower = quantile(value, .025), | |
upper = quantile(value, .975)) %>% | |
mutate(true_values = c(gamma, beta), | |
size = ifelse(1:n()==1, 3, 1)) %>% | |
ggplot(aes(x = median)) + | |
geom_linerange(aes(ymin = lower, ymax = upper), colour = "red") + | |
geom_point(aes(y = median), colour = "red") + | |
geom_point(aes(y = true_values, colour = size)) + | |
labs(title = "Muuuuch better") | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment