Skip to content

Instantly share code, notes, and snippets.

@kidpixo
Last active November 24, 2021 13:20
Show Gist options
  • Star 1 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save kidpixo/549fd1c95956166855431cc81e141626 to your computer and use it in GitHub Desktop.
Save kidpixo/549fd1c95956166855431cc81e141626 to your computer and use it in GitHub Desktop.
Read binary data from Lunar Prospector Reduced Spectrometer Data Special Products (how to read binary data from [PDS Geosciences Node Data and Services)
data/
# Created by https://www.toptal.com/developers/gitignore/api/python
# Edit at https://www.toptal.com/developers/gitignore?templates=python
### Python ###
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
cover/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
.pybuilder/
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# pyenv
# For a library or package, you might want to ignore these files since the code is
# intended to run in multiple environments; otherwise, check them in:
# .python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
__pypackages__/
# Celery stuff
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/
# pytype static type analyzer
.pytype/
# Cython debug symbols
cython_debug/
# End of https://www.toptal.com/developers/gitignore/api/python
# Created by https://www.toptal.com/developers/gitignore/api/vim
# Edit at https://www.toptal.com/developers/gitignore?templates=vim
### Vim ###
# Swap
[._]*.s[a-v][a-z]
!*.svg # comment out if you don't need vector files
[._]*.sw[a-p]
[._]s[a-rt-v][a-z]
[._]ss[a-gi-z]
[._]sw[a-p]
# Session
Session.vim
Sessionx.vim
# Temporary
.netrwhist
*~
# Auto-generated tag files
tags
# Persistent undo
[._]*.un~
# End of https://www.toptal.com/developers/gitignore/api/vim
# Created by https://www.toptal.com/developers/gitignore/api/jupyternotebooks
# Edit at https://www.toptal.com/developers/gitignore?templates=jupyternotebooks
### JupyterNotebooks ###
# gitignore template for Jupyter Notebooks
# website: http://jupyter.org/
.ipynb_checkpoints
*/.ipynb_checkpoints/*
# IPython
profile_default/
ipython_config.py
# Remove previous ipynb_checkpoints
# git rm -r .ipynb_checkpoints/
# End of https://www.toptal.com/developers/gitignore/api/jupyternotebooks
Bin Size Units Std. Dev. References ASCII_data_url Binary_data_url ASCII_data Binary_data Data Name Pixels Size scaling factor
60km x 60km Counts per 32 sec Yes Feldman et al., 1999, 2000a, 2001a; Elphic et al., 2000; Maurice et al., 2001a https://pds-geosciences.wustl.edu/missions/lunarp/reduced/therms.txt https://pds-geosciences.wustl.edu/missions/lunarp/reduced/therms.dat therms.txt therms.dat Thermal Neutrons 2 degree 10.0
60km x 60km Counts per 32 sec Yes Feldman et al., 1999, 2000b, 2001a, 2001c; Maurice et al., 2000, 2001a https://pds-geosciences.wustl.edu/missions/lunarp/reduced/epis.txt https://pds-geosciences.wustl.edu/missions/lunarp/reduced/epis.dat epis.txt epis.dat Epithermal Neutrons 2 degree 10.0
60km x 60km Counts per 32 sec Yes Feldman et al., 1999, 2001b; Maurice et al., 2000, 2001a https://pds-geosciences.wustl.edu/missions/lunarp/reduced/fast.txt https://pds-geosciences.wustl.edu/missions/lunarp/reduced/fast.dat fast.txt fast.dat Fast Neutrons 2 degree 10.0
60km x 60km Counts per 32 sec Yes Maurice et al., 2000, 2001b https://pds-geosciences.wustl.edu/missions/lunarp/reduced/fastspectra.txt https://pds-geosciences.wustl.edu/missions/lunarp/reduced/fastspectra.dat fastspectra.txt fastspectra.dat Fast Neutron Spectra 2 degree 10.0
150km x 150km Al wt. % No Prettyman et al., 2002 https://pds-geosciences.wustl.edu/missions/lunarp/reduced/aluminum5d.txt https://pds-geosciences.wustl.edu/missions/lunarp/reduced/aluminum5d.dat aluminum5d.txt aluminum5d.dat Aluminum 5 degree 10.0
150km x 150km Ca wt. % No Prettyman et al., 2002 https://pds-geosciences.wustl.edu/missions/lunarp/reduced/calcium5d.txt https://pds-geosciences.wustl.edu/missions/lunarp/reduced/calcium5d.dat calcium5d.txt calcium5d.dat Calcium 5 degree 10.0
60km x 60km ppm No Feldman et al., 2001c https://pds-geosciences.wustl.edu/missions/lunarp/reduced/hydrogenlow.txt https://pds-geosciences.wustl.edu/missions/lunarp/reduced/hydrogenlow.dat hydrogenlow.txt hydrogenlow.dat Hydrogen 2 degree 10.0
0.5° x 0.5° ppm No Feldman et al., 2001c https://pds-geosciences.wustl.edu/missions/lunarp/reduced/hydrogenhd.txt https://pds-geosciences.wustl.edu/missions/lunarp/reduced/hydrogenhd.dat hydrogenhd.txt hydrogenhd.dat Hydrogen half degree 10.0
150km x 150km Fe wt. % No Prettyman et al., 2002 https://pds-geosciences.wustl.edu/missions/lunarp/reduced/iron5d.txt https://pds-geosciences.wustl.edu/missions/lunarp/reduced/iron5d.dat iron5d.txt iron5d.dat Iron 5 degree 10.0
0.5° x 0.5° FeO wt. % No Lawrence et al., 2001c https://pds-geosciences.wustl.edu/missions/lunarp/reduced/ironhd.txt https://pds-geosciences.wustl.edu/missions/lunarp/reduced/ironhd.dat ironhd.txt ironhd.dat Iron half degree 10.0
150km x 150km Mg wt. % No Prettyman et al., 2002 https://pds-geosciences.wustl.edu/missions/lunarp/reduced/magnesium5d.txt https://pds-geosciences.wustl.edu/missions/lunarp/reduced/magnesium5d.dat magnesium5d.txt magnesium5d.dat Magnesium 5 degree 10.0
150km x 150km O wt. % No Prettyman et al., 2002 https://pds-geosciences.wustl.edu/missions/lunarp/reduced/oxygen5d.txt https://pds-geosciences.wustl.edu/missions/lunarp/reduced/oxygen5d.dat oxygen5d.txt oxygen5d.dat Oxygen 5 degree 10.0
300km lon. x 450km lat. Counts per sec No Lawson et al., 2002 https://pds-geosciences.wustl.edu/missions/lunarp/reduced/polonium210.txt https://pds-geosciences.wustl.edu/missions/lunarp/reduced/polonium210.dat polonium210.txt polonium210.dat Polonium-210 equal-area pixels 1000.0
150km x 150km ppm No Prettyman et al., 2002 https://pds-geosciences.wustl.edu/missions/lunarp/reduced/potassium5d.txt https://pds-geosciences.wustl.edu/missions/lunarp/reduced/potassium5d.dat potassium5d.txt potassium5d.dat Potassium 5 degree 1.0
60km x 60km ppm No Prettyman et al., 2002 https://pds-geosciences.wustl.edu/missions/lunarp/reduced/potassium2d.txt https://pds-geosciences.wustl.edu/missions/lunarp/reduced/potassium2d.dat potassium2d.txt potassium2d.dat Potassium 2 degree 1.0
300km lon. x 450km lat. Counts per sec No Lawson et al., 2002 https://pds-geosciences.wustl.edu/missions/lunarp/reduced/radon222.txt https://pds-geosciences.wustl.edu/missions/lunarp/reduced/radon222.dat radon222.txt radon222.dat Radon-222 equal-area pixels 1000.0
60km x 60km μg/g No Elphic et al., 2000 https://pds-geosciences.wustl.edu/missions/lunarp/reduced/samarium2d.txt https://pds-geosciences.wustl.edu/missions/lunarp/reduced/samarium2d.dat samarium2d.txt samarium2d.dat Samarium 2 degree 10.0
150km x 150km Si wt. % No Prettyman et al., 2002 https://pds-geosciences.wustl.edu/missions/lunarp/reduced/silicon5d.txt https://pds-geosciences.wustl.edu/missions/lunarp/reduced/silicon5d.dat silicon5d.txt silicon5d.dat Silicon 5 degree 10.0
60km x 60km μg/g Yes Lawrence et al., 2000 https://pds-geosciences.wustl.edu/missions/lunarp/reduced/thoriumhigh.txt https://pds-geosciences.wustl.edu/missions/lunarp/reduced/thoriumhigh.dat thoriumhigh.txt thoriumhigh.dat Thorium high-altitude 10.0
60km x 60km μg/g Yes Lawrence et al., 2000 https://pds-geosciences.wustl.edu/missions/lunarp/reduced/thoriumlow.txt https://pds-geosciences.wustl.edu/missions/lunarp/reduced/thoriumlow.dat thoriumlow.txt thoriumlow.dat Thorium low-altitude 10.0
0.5° x 0.5° ppm No Lawrence et al., 2002a, 2002b https://pds-geosciences.wustl.edu/missions/lunarp/reduced/thoriumhd.txt https://pds-geosciences.wustl.edu/missions/lunarp/reduced/thoriumhd.dat thoriumhd.txt thoriumhd.dat Thorium half degree 10.0
150km x 150km ppm No Prettyman et al., 2002 https://pds-geosciences.wustl.edu/missions/lunarp/reduced/thorium5d.txt https://pds-geosciences.wustl.edu/missions/lunarp/reduced/thorium5d.dat thorium5d.txt thorium5d.dat Thorium 5 degree 10.0
150km x 150km Ti wt. % No Prettyman et al., 2002 https://pds-geosciences.wustl.edu/missions/lunarp/reduced/titanium5d.txt https://pds-geosciences.wustl.edu/missions/lunarp/reduced/titanium5d.dat titanium5d.txt titanium5d.dat Titanium 5 degree 10.0
60km x 60km Ti wt. % No Prettyman et al., 2002 https://pds-geosciences.wustl.edu/missions/lunarp/reduced/titanium2d.txt https://pds-geosciences.wustl.edu/missions/lunarp/reduced/titanium2d.dat titanium2d.txt titanium2d.dat Titanium 2 degree 10.0
150km x 150km ppm No Prettyman et al., 2002 https://pds-geosciences.wustl.edu/missions/lunarp/reduced/uranium5d.txt https://pds-geosciences.wustl.edu/missions/lunarp/reduced/uranium5d.dat uranium5d.txt uranium5d.dat Uranium 5 degree 10.0
Display the source blob
Display the rendered blob
Raw
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
# -*- coding: utf-8 -*-
# ---
# jupyter:
# jupytext:
# formats: ipynb,py:percent
# text_representation:
# extension: .py
# format_name: percent
# format_version: '1.3'
# jupytext_version: 1.13.1
# kernelspec:
# display_name: Python 3 (ipykernel)
# language: python
# name: python3
# ---
# %% [markdown] tags=[]
# ## Read Lunar Psospector Data
#
# Alissa Madera asked on [OpenPlanetary](https://www.openplanetary.org/) ([Forum](https://forum.openplanetary.org/)) how to read binary data from [PDS Geosciences Node Data and Services: Lunar Prospector Reduced Spectrometer Data Special Products](https://pds-geosciences.wustl.edu/missions/lunarp/reduced_special.html).
#
# This generated several answer, some of them are summarised by June Wang here : [Convert LP NS data from ASCII format to Geotif with a ArcGIS Pro Tool - For data users - PDS Geosciences Node Community](https://geoweb.rsl.wustl.edu/community/index.php?/topic/3426-convert-lp-ns-data-from-ascii-format-to-geotif-with-a-arcgis-pro-tool/&_fromLogin=1).
#
# The gist of it is to read carefulli the instruction :
# > Each binary file is formatted as an image covering the entire planet with an array of 720 samples and 360 lines. Data values are scaled as integers in the image array with two bytes per pixel in IEEE order. For all binary files except the potassium, radon, and polonium, image values are ten times the values given in the ASCII files. The binary files for potassium abundances have integer values that are the same as values given in the corresponding ASCII file. The binary files for the radon and polonium data have integer values that are 1000 times the values given in the corresponding ASCII file. The binary image is a simple cylindrical map projection with 0.5° pixel size. The first image line corresponds to the south pole and the last image line corresponds to the north pole of the moon. The first sample corresponds to -180° East longitude and the last sample corresponds to 180° East longitude. Binary file names have the form <name>.dat and are about 0.5 MB in size.
#
# One caveat raised from June Wang
# > But one thing need to notice is that all the binary data values are scaled to integers. After reading the data and scaling back to its original value, you will find there is slightly difference in the the accuracy of decimal points between ASCII and binary for all the data products if they have non-integer values in the ASCII files initially.
#
# ## Instruction
#
# - The first part of this notebook shows how to quickly read the data in python.
# - The second create a list of all datafiles and download them locally.
#
# %% tags=[]
import numpy as np
import pandas as pd
import matplotlib
from matplotlib import pyplot as plt
# %matplotlib inline
# %% [markdown] tags=[]
# ## Read using numpy
#
# ```data = np.fromfile('therms.dat',dtype=np.dtype('>h'),)/10```
#
# 10 scaling is from the documentation, changes for each file.
# %% tags=[]
# read using numpy
data = np.fromfile('therms.dat',dtype=np.dtype('>h')).reshape([360,720])/10
# 10 scaling is from the documentation, changes for each file.
# %% tags=[]
# 360,720 is from the documentation, changes for each file.
plt.figure(figsize=[8,3.5])
plt.imshow(data,origin='lower',cmap=plt.cm.inferno_r)
plt.colorbar(fraction=0.025)
plt.title('therms with numpy')
# %% [markdown] tags=[]
# ## Convert to geo-image with rasterio
#
# Just an initial try following [Writing Datasets — rasterio documentation](https://rasterio.readthedocs.io/en/latest/topics/writing.html).
# %% tags=[]
import rasterio
defaults = {
'driver': 'GTiff',
'interleave': 'band',
'tiled': False,
'height': int(data.shape[1]),
'width': int(data.shape[0]),
'compress': 'JPEG',
'nodata': 0,
'dtype': data.dtype.__str__(),
'count':1
}
profile = rasterio.profiles.DefaultGTiffProfile(defaults)
profile
with rasterio.open('therms.tif','w',**profile) as dst_dataset:
dst_dataset.write(data, 1)
# %% [markdown]
# ## Read using pandas
#
# %% tags=[]
# read using pandas
df = pd.read_csv('therms.txt',skiprows=12,sep=',',
names=['Lat_min','Lat_max',
'Lon_min','Lon_max',
'Counts' ,'Std' ]
)
df.plot.scatter(x='Lon_min',y='Lat_min',c='Counts',
cmap=plt.cm.inferno_r,figsize=[8,4],
title='therms with pandas')
# %% [markdown] tags=[]
# ## Generate data table
#
# Read the cleaned up version of `reduced_special.html` and exctract all datafile information.
#
# Save the table to `data_list.csv`.
# %% jupyter={"outputs_hidden": true} tags=[]
base_url = 'https://pds-geosciences.wustl.edu/missions/lunarp/reduced/'
html_ls = pd.read_html('reduced_special.html')
data_df = html_ls[-1]
data_df.columns=data_df.loc[0].values
data_df = data_df.drop(index=[0])
data_df['ASCII_data_url'] = data_df['File Name'].map(lambda x: base_url+x.split()[0] )
data_df['Binary_data_url'] = data_df['File Name'].map(lambda x: base_url+x.split()[1] )
data_df['ASCII_data'] = data_df['File Name'].map(lambda x: x.split()[0] )
data_df['Binary_data'] = data_df['File Name'].map(lambda x: x.split()[1] )
data_df=data_df.drop(columns=['File Name'])
data_df['Data Name']=data_df['Data Type'].map(lambda x: x.split(',')[0])
data_df['Pixels Size'] = data_df['Data Type'].map(lambda x: x.split(',')[1] if len(x.split(',')) > 1 else 'equal-area pixels' )
data_df=data_df.drop(columns=['Data Type'])
data_df['scaling factor'] = 10.
data_df.loc[data_df['Data Name'].str.contains('Potassium'),'scaling factor'] = 1
data_df.loc[data_df['Data Name'].str.contains('Radon'),'scaling factor'] = 1000
data_df.loc[data_df['Data Name'].str.contains('Polonium'),'scaling factor'] = 1000
data_df[['Data Name', 'Pixels Size','Bin Size', 'Units','scaling factor', 'Std. Dev.']].sort_values(['Pixels Size','Data Name'])
# %%
data_df.to_csv('data_list.csv',index=None)
# %% [markdown] jp-MarkdownHeadingCollapsed=true tags=[]
# ## Download all data
# %%
import requests
import pathlib
from urllib.parse import urlparse
datadir = pathlib.Path('data')
datadir.mkdir(exist_ok=True)
# %% [markdown] jp-MarkdownHeadingCollapsed=true tags=[]
# ### Warning
#
# This uses pure python and it works, but it is __**extremely slow**__. I suggest to skip to the next cell if you are using Linux/Mac and use native tools.
# %%
for tup in data_df.itertuples():
url = tup.ASCII_data
url_parsed = urlparse(url)
print(f'Downloading {url_parsed.path}')
r = requests.get(url)
with open('data/'+pathlib.Path(url_parsed.path).name, 'wb') as f:
f.write(r.content)
url = tup.Binary_data
url_parsed = urlparse(url)
print(f'Downloading {url_parsed.path}')
r = requests.get(url)
with open('data/'+pathlib.Path(url_parsed.path).name, 'wb') as f:
f.write(r.content)
# %% tags=[]
filelist = data_df[['ASCII_data','Binary_data']].values.flatten()
np.savetxt('urls.txt',filelist, fmt='%s')
# %% [markdown]
# for this paralle download, you will need:
# - gnu parallel
# - wget
#
#
# Please refer to your OS to install them (mac > homebrew/macports, linux > whatever package manage you use.)
# %%
# !parallel -j 15 wget --directory-prefix=data < urls.txt
# %% [markdown]
# ## Read using numpy from local files
#
# %%
data_table = pd.read_csv('data_list.csv')
data_table[['Data Name', 'Pixels Size','Bin Size', 'Units','scaling factor', 'Std. Dev.']].sort_values(['Pixels Size','Data Name'])
# %% tags=[]
def get_data_file(data=None,
search=None,
column='Data Name'):
return data.loc[data[column].str.contains(search, case=False),['ASCII_data', 'Binary_data','scaling factor']].rename(
columns=dict(zip(['ASCII_data', 'Binary_data','scaling factor'],['ascii','binary','scale'])))
aluminum_datafiles = get_data_file(data_table,'aluminum')
aluminum_datafiles
# %% tags=[]
data = np.fromfile('data/'+aluminum_datafiles['binary'].values[0],dtype=np.dtype('>h')).reshape([360,720])/aluminum_datafiles['scale'].values[0]
data
# %% tags=[]
pd.read_csv('data/'+aluminum_datafiles['ascii'].values[0],skiprows=12,sep=',',
names=['Lat_min','Lat_max',
'Lon_min','Lon_max',
'Counts' ,'Std' ]
)
# %%
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta name="keywords" content="Planetary Data System Geosciences Node">
<meta name="GENERATOR" content="Microsoft FrontPage 12.0">
<meta name="ProgId" content="FrontPage.Editor.Document">
<title>PDS Geosciences Node Data and Services: Lunar Prospector Reduced
Spectrometer Data Special Products</title>
<meta name="description" content="This site provides planetary science data, tools, and documentation from the PDS Geosciences Node.">
<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
<style>
* {
color: black;
background-color:white ;
}
</style> </head>
<body>
<p>Lunar
Prospector Reduced Spectrometer Data - Special Products</p>
<p>These Lunar Prospector (LP) gamma ray and neutron
spectrometer special products and associated documentation have been prepared by the LP Spectrometer
Team as part of a NASA Lunar Data
Analysis Program. These spectrometer data products integrate data collected between
January 16, 1998 and July 31, 1999. The data file descriptions for these
products were provided by: </p>
<center>
<p>William C. Feldman, Tom H. Prettyman, Richard D. Belian, Richard C. Elphic, <br>
Olivier Gasnault, David J. Lawrence, Stefanie L. Lawson, and Kurt R. Moore
<br>Los Alamos National Laboratory, Los Alamos, NM </p>
<p>Alan B. Binder
<br>Lunar Research Institute, Tuscon, AZ
<p>Sylvestre Maurice
<br>Observatoire Midi-Pyrenees, Toulouse, France
</center>
<p><strong>IMPORTANT: The data on this page
are special products that may be of interest to the geoscience community. They do not represent a PDS peer-reviewed
archive. Please contact <a href="mailto:wfeldman@lanl.gov">William Feldman</a>
or <a href="mailto:djlawrence@lanl.gov">David Lawrence</a> of LANL for more
information.&nbsp; Please report any
other anomalies in the data or documentation to
<a href="mailto:geosci@wunder.wustl.edu">geosci@wunder.wustl.edu</a>.</strong></p>
<p><strong style="font-weight: 400"><i><a href="reduced.html">Back to Lunar
Prospector Reduced Spectrometer Data</a></i></strong></p>
<h2>Introduction</h2>
<p>These Lunar Prospector (LP) spectrometer special products contain data from
the neutron and gamma ray spectrometers. All data
products are provided in two formats: an ASCII table and a binary image.</p>
<p>Each ASCII file contains header information followed by column formatted data separated
by commas. Header records begin with a '#' character in the first column. The first four
columns of the ASCII version contain the minimum and maximum latitude and longitude values
for each pixels. East longitudes are
positive. The remaining columns give the parameter value, and, if available, standard
deviation values. The ASCII format files are named &lt;<i>name</i>&gt;.txt. File
sizes of the ASCII versions vary depending of the bin size.</p>
<p>Each binary file is formatted as an image covering the entire planet with an
array of 720 samples and 360 lines. Data values are scaled as integers in the image array
with two bytes per pixel in IEEE order. For all binary files except the potassium, radon, and polonium, image values are ten times the values given in the ASCII
files. The binary files for potassium abundances have integer values that are the same
as values given in the corresponding ASCII file. The binary files for the radon
and polonium data have integer values that are 1000 times the values given in
the corresponding ASCII file. The binary image is a simple cylindrical map
projection with 0.5&deg; pixel size. The first image line corresponds to the south pole and
the last image line corresponds to the north pole of the moon.
The first sample corresponds to -180&deg; East longitude and the last sample
corresponds to 180° East longitude. Binary file names have the form &lt;<i>name</i>&gt;.dat and are about
0.5 MB in size.</p>
<h2>Neutron Counting Rate Data Products</h2>
<h3>Thermal Neutron Counting Rate</h3>
<p>The thermal neutron counting rate data product contains data from the LP neutron spectrometer
Sn and Cd covered <sup>3</sup>He detectors [Feldman
<i>et al.</i>, 1999, 2001a]. The thermal neutron counting rate is defined as the counting rate
difference per 32 seconds between the two detectors and corresponds to neutrons having energies
ranging from 0 to 0.4 eV. This data
product has been described by Feldman <i>et al.</i> [2000a] and Elphic <i>et al.</i> [2000]. A
detailed description of the data reduction for this data
product is given by Maurice <i>et al.</i> [2001a]. The map bin size is 60 km by 60 km.</p>
<table border=1 cellpadding=4 cellspacing=1>
<tr>
<td width=140>ASCII File:</td>
<td width=140><a href="reduced/therms.txt">therms.txt</a></td>
<td width=140>(0.74 MB file size)</td>
<td width=140>Version: Nov. 3, 2000</td>
</tr><tr>
<td width=140>Binary Image File:</td>
<td width=140><a href="reduced/therms.dat">therms.dat</a></td>
<td width=140>(0.51 MB file size)</td>
<td width=140>Version: Nov. 3, 2000</td>
</tr>
</table>
<h3>Epithermal Neutron Counting Rate</h3>
<p>The epithermal neutron counting rate data product contains data from the LP neutron
spectrometer Cd covered <sup>3</sup>He detector [Feldman
<i>et al.</i>, 1999, 2001a]. The epithermal neutron counting rate is defined as the
counting rate per 32 seconds from the Cd covered detector and corresponds to neutrons
having energies ranging from 0.4 to about 100 eV. The data
product has been described by Feldman <i>et al.</i> [2000b, 2001c] and Maurice
<i>et al.</i> [2001b]. A detailed description of the data reduction for this data
product is given by Maurice <i>et al.</i> [2001a]. The map bin size is 60 km by 60 km.</p>
<table border=1 cellpadding=4 cellspacing=1>
<tr>
<td width=140>ASCII File:</td>
<td width=140><a href="reduced/epis.txt">epis.txt</a></td>
<td width=140>(0.74 MB file size)</td>
<td width=140>Version: Nov. 3, 2000</td>
</tr><tr>
<td width=140>Binary Image File:</td>
<td width=140><a href="reduced/epis.dat">epis.dat</a></td>
<td width=140>(0.51 MB file size)</td>
<td width=140>Version: Nov. 3, 2000</td>
</tr>
</table>
<h3>Fast Neutron Counting Rate</h3>
<p>The fast neutron counting rate data product contains data from the LP gamma ray spectrometer [Feldman
<i>et al.</i>, 1999, 2001b]. The fast neutron counting rate is defined as the counting
rate per 32 seconds of fast neutrons having energies from 0.6 to about 9 MeV. The data
product has been described by Maurice <i>et al.</i> [2000]. A detailed description of the
data reduction for this data
product is given by Maurice <i>et al.</i> [2001a]. The map bin size is 60 km by 60 km.</p>
<table border=1 cellpadding=4 cellspacing=1>
<tr>
<td width=140>ASCII File:</td>
<td width=140><a href="reduced/fast.txt">fast.txt</a></td>
<td width=140>(0.74 MB file size)</td>
<td width=140>Version: Nov. 3, 2000</td>
</tr><tr>
<td width=140>Binary Image File:</td>
<td width=140><a href="reduced/fast.dat">fast.dat</a></td>
<td width=140>(0.51 MB file size)</td>
<td width=140>Version: Nov. 3, 2000</td>
</tr>
</table>
<h3>Fast Neutron Spectra Counting Rate</h3>
<p>The fast neutron spectra counting rate data product contains data from the LP gamma ray
spectrometer [Feldman
<i>et al.</i>, 1999, 2001b]. The fast neutron spectra counting rate is defined as the counting
rate per 32 seconds of fast neutrons having energies from 0.6 to about 9 MeV. These energies
are then divided into 16 channels having midpoint energies of 0.743, 1.40, 2.09, 2.67, 3.24,
3.75, 4.23, 4.70, 5.18, 5.65, 6.11, 6.55, 6.98, 7.41, 7.82, and 8.24 MeV. This data
product has been described by Maurice <i>et al</i>. [2000]. A detailed description of the data
reduction for this data
product is given by Maurice <i>et al.</i> [2001a]. Furthermore, a description of how the counting
rates can be converted into fluxes is given by Maurice
<i>et al.</i> [2000] and Byrd and Urban
[1994]. The map bin size is 60 km by 60 km. For the binary image file, the
channels are stored in band sequential order.</p>
<table border=1 cellpadding=4 cellspacing=1>
<tr>
<td width=140>ASCII File:</td>
<td width=140><a href="reduced/fastspectra.txt">fastspectra.txt</a></td>
<td width=140>(4.8 MB file size)</td>
<td width=140>Version: July 6, 2001</td>
</tr><tr>
<td width=140>Binary Image File:</td>
<td width=140><a href="reduced/fastspectra.dat">fastspectra.dat</a></td>
<td width=140>(8.1 MB file size)</td>
<td width=140>Version: July 6, 2001</td>
</tr>
</table>
<h2>5 Degree Elemental Abundance Data Products</h2>
<p>Elemental abundance values for O, Si, Ti, Al, Fe, Mg, Ca, U, and K were
derived from LP gamma ray spectrometer [Feldman <i>et al.</i>, 1999]
observations acquired during the high-altitude portion of the LP mission. For
the elements O, Si, Ti, Al, Fe, Mg, and Ca, the data are given in units of
elemental weight percent. For the elements U and K, the data are given in units
of ppm. A description of the reduction of these data products is given by
Prettyman <i>et al.</i> [2002]. The Thorium data has been calculated using full
modeling and response function analysis [Prettyman <i>et al.,</i> 2002]. The map bin size is 150 km by 150 km.</p>
<table border=1 cellpadding=4 cellspacing=1>
<tr>
<td>Oxygen</td>
<td>ASCII File:<br>Binary Image File:</td>
<td><a href="reduced/oxygen5d.txt">
oxygen5d.txt</a><br>
<a href="reduced/oxygen5d.dat">oxygen5d.dat</a></td>
<td>(0.1 MB file size)<br>(0.51 MB file size)</td>
<td>Version: June 15, 2002</td>
</tr><tr>
<td>Silicon</td>
<td>ASCII File:<br>Binary Image File:</td>
<td><a href="reduced/silicon5d.txt">
silicon5d.txt</a><br>
<a href="reduced/silicon5d.dat">silicon5d.dat</a></td>
<td>(0.1 MB file size)<br>(0.51 MB file size)</td>
<td>Version: June 15, 2002</td>
</tr><tr>
<td>Titanium</td>
<td>ASCII File:<br>Binary Image File:</td>
<td><a href="reduced/titanium5d.txt">
titanium5d.txt</a><br>
<a href="reduced/titanium5d.dat">titanium5d.dat</a></td>
<td>(0.1 MB file size)<br>(0.51 MB file size)</td>
<td>Version: June 15, 2002</td>
</tr><tr>
<td>Aluminum</td>
<td>ASCII File:<br>Binary Image File:</td>
<td><a href="reduced/aluminum5d.txt">
aluminum5d.txt</a><br>
<a href="reduced/aluminum5d.dat">aluminum5d.dat</a></td>
<td>(0.1 MB file size)<br>(0.51 MB file size)</td>
<td>Version: June 15, 2002</td>
</tr><tr>
<td>Iron</td>
<td>ASCII File:<br>Binary Image File:</td>
<td><a href="reduced/iron5d.txt">iron5d.txt</a><br>
<a href="reduced/iron5d.dat">iron5d.dat</a></td>
<td>(0.1 MB file size)<br>(0.51 MB file size)</td>
<td>Version: June 15, 2002</td>
</tr><tr>
<td>Magnesium</td>
<td>ASCII File:<br>Binary Image File:</td>
<td><a href="reduced/magnesium5d.txt">
magnesium5d.txt</a><br>
<a href="reduced/magnesium5d.dat">magnesium5d.dat</a></td>
<td>(0.1 MB file size)<br>(0.51 MB file size)</td>
<td>Version: June 15, 2002</td>
</tr><tr>
<td>Calcium</td>
<td>ASCII File:<br>Binary Image File:</td>
<td><a href="reduced/calcium5d.txt">
calcium5d.txt</a><br>
<a href="reduced/calcium5d.dat">calcium5d.dat</a></td>
<td>(0.1 MB file size)<br>(0.51 MB file size)</td>
<td>Version: June 15, 2002</td>
</tr><tr>
<td>Uranium</td>
<td>ASCII File:<br>Binary Image File:</td>
<td><a href="reduced/uranium5d.txt">
uranium5d.txt</a><br>
<a href="reduced/uranium5d.dat">urnaium5d.dat</a></td>
<td>(0.1 MB file size)<br>(0.51 MB file size)</td>
<td>Version: June 15, 2002</td>
</tr><tr>
<td>Potassium</td>
<td>ASCII File:<br>Binary Image File:</td>
<td><a href="reduced/potassium5d.txt">
potassium5d.txt</a><br>
<a href="reduced/potassium5d.dat">potassium5d.dat</a></td>
<td>(0.1 MB file size)<br>(0.51 MB file size)</td>
<td>Version: June 15, 2002</td>
</tr>
<tr>
<td>Thorium</td>
<td>ASCII File:<br>
Binary Image File:</td>
<td><a href="reduced/thorium5d.txt">
thorium5d.txt</a><br>
<a href="reduced/thorium5d.dat">thorium5d.dat</a></td>
<td>(0.1 MB file size)<br>(0.51 MB file size)</td>
<td>Version: June 15, 2002</td>
</tr>
</table>
<h2>2 Degree Elemental Abundance Data Products</h2>
<h3>Samarium Abundance Data Product</h3>
<p>The samarium abundance data product contains data from the LP neutron and gamma ray
spectrometers [Feldman
<i>et al.</i> 1999, 2001a] taken during the low-altitude portion of the LP mission. This data
product is given in units of microgram/gram. A detailed description of the data reduction of
this data type is given by Elphic
<i>et al.</i> [2000]. The map bin size is 60 km x 60 km.</p>
<table border=1 cellpadding=4 cellspacing=1>
<tr>
<td width=140>ASCII File:</td>
<td width=140><a href="reduced/samarium2d.txt">samarium2d.txt</a></td>
<td width=140>(0.61 MB file size)</td>
<td width=140>Version: July 6, 2001</td>
</tr><tr>
<td width=140>Binary Image File:</td>
<td width=140><a href="reduced/samarium2d.dat">samarium2d.dat</a></td>
<td width=140>(0.51 MB file size)</td>
<td width=140>Version: July 6, 2001</td>
</tr>
</table>
<h3>Titanium and Potassium Abundance Data Products</h3>
<p>These data products contain elemental abundances values for Ti and K derived
from LP gamma ray spectrometer [Feldman <i>et al.</i>, 1999] observations
acquired during the high- and low-altitude portions of the LP mission. For Ti,
the data are given in units of elemental weight percent. For K, the data are
given in units of ppm. A description of the reduction of these data products is
given by Prettyman <i>et al.</i> [2002]. The map bin size is 60 km by 60 km.</p>
<table border=1 cellpadding=4 cellspacing=1>
<tr>
<td>Titanium</td>
<td>ASCII File:<br>Binary Image File:</td>
<td><a href="reduced/titanium2d.txt">
titanium2d.txt</a><br>
<a href="reduced/titanium2d.dat">titanium2d.dat</a></td>
<td>(0.61 MB file size)<br>(0.51 MB file size)</td>
<td>Version: June 15, 2002</td>
</tr><tr>
<td>Potassium</td>
<td>ASCII File:<br>Binary Image File:</td>
<td><a href="reduced/potassium2d.txt">
potassium2d.txt</a><br>
<a href="reduced/potassium2d.dat">potassium2d.dat</a></td>
<td>(0.61 MB file size)<br>(0.51 MB file size)</td>
<td>Version: June 15, 2002</td>
</tr>
</table>
<h3>Hydrogen Abundance Data</h3>
<p>The hydrogen abundance data product contains data from the LP neutron spectrometer [Feldman
<i>et al.</i>, 1999,
2001a] acquired during the low-altitude portion of the LP mission. Hydrogen abundances are derived from epithermal neutron data that has been corrected by
thermal neutron data [Feldman <i>et al.</i>, 2001c]. Equations 3 and 4 of Feldman
<i>et al.</i> [2001c] show how
the corrected epithermal data is converted into hydrogen abundances as parts per million (ppm).
Note, however, that these abundances are not necessarily reliable in regions of high thorium and
rare-earth element abundances [Maurice <i>et al.</i>, 2001a]. The map bin size is 60 km
x 60 km.</p>
<table border=1 cellpadding=4 cellspacing=1>
<tr>
<td width=140>ASCII File:</td>
<td width=140><a href="reduced/hydrogenlow.txt">hydrogenlow.txt</a></td>
<td width=140>(0.61 MB file size)</td>
<td width=140>Version: July 6, 2001</td>
</tr><tr>
<td width=140>Binary Image File:</td>
<td width=140><a href="reduced/hydrogenlow.dat">hydrogenlow.dat</a></td>
<td width=140>(0.51 MB file size)</td>
<td width=140>Version: July 6, 2001</td>
</tr>
</table>
<h3>Thorium Abundance Data</h3>
<p>The 2 degree thorium abundance data products contains data from the LP gamma ray spectrometer [Feldman
<i>et al.</i>,
1999, 2001b]. These absolute abundances are given in units of microgram/gram. There are two
versions containing data taken from the high- and low-altitude portions of the LP mission
[Lawrence <i>et al.</i>, 2000]. These data have been described by Lawrence <i>et al.</i> [2000]. A
detailed
description of the data reduction for these data is given by Lawrence <i>et al.</i> [2001b]. The map
bin size is 60 km x 60 km.</p>
<table border=1 cellpadding=4 cellspacing=1>
<tr>
<td width=200>High Altitude Version</td>
<td width=140>ASCII File:</td>
<td width=140><a href="reduced/thoriumhigh.txt">thoriumhigh.txt</a></td>
<td width=140>(0.74 MB file size)</td>
<td width=140>Version: July 6, 2001</td>
</tr><tr>
<td width=200>&nbsp;</td>
<td width=140>Binary Image File:</td>
<td width=140><a href="reduced/thoriumhigh.dat">thoriumhigh.dat</a></td>
<td width=140>(0.51 MB file size)</td>
<td width=140>Version: July 6, 2001</td>
</tr><tr>
<td width=200>Low Altitude Version</td>
<td width=140>ASCII File:</td>
<td width=140><a href="reduced/thoriumlow.txt">thoriumlow.txt</a></td>
<td width=140>(0.74 MB file size)</td>
<td width=140>Version: July 6, 2001</td>
</tr><tr>
<td width=200>&nbsp;</td>
<td width=140>Binary Image File:</td>
<td width=140><a href="reduced/thoriumlow.dat">thoriumlow.dat</a></td>
<td width=140>(0.51 MB file size)</td>
<td width=140>Version: July 6, 2001</td>
</tr>
</table>
<h2>Half Degree Abundance Data Products</h2>
<h3>Thorium Abundance Data</h3>
<p>The half degree thorium abundance data product contains data from the LP
gamma ray spectrometer [Feldman <i>et al.</i>, 1999]. The absolute abundances
are given in units of ppm. These data are taken from the low-altitude portion of
the LP mission. A description of the reduction of these data products
is given by Lawrence <i>et al.</i> [2002a, 2002b]. The map bin size is 0.5&deg; by
0.5&deg;.</p>
<table border=1 cellpadding=4 cellspacing=1>
<tr>
<td width=140>ASCII File:</td>
<td width=140><a href="reduced/thoriumhd.txt">thoriumhd.txt</a></td>
<td width=140>(13.9 MB file size)</td>
<td width=140>Version: Jan. 3, 2002</td>
</tr><tr>
<td width=140>Binary Image File:</td>
<td width=140><a href="reduced/thoriumhd.dat">thoriumhd.dat</a></td>
<td width=140>(0.51 MB file size)</td>
<td width=140>Version: Jan. 3, 2002</td>
</tr>
</table>
<h3>Iron Abundance Data</h3>
<p>The half degree iron abundance data product contains data from the LP
gamma ray spectrometer [Feldman <i>et al.</i>, 1999] acquired during the
low-altitude portion of the LP mission. The absolute abundances are given in
units of FeO weight percent. A description of the reduction of these data products
is given by Lawrence <i>et al.</i> [2002a, 2002b]. The map bin size is 0.5&deg; by
0.5&deg;.</p>
<table border=1 cellpadding=4 cellspacing=1>
<tr>
<td width=140>ASCII File:</td>
<td width=140><a href="reduced/ironhd.txt">ironhd.txt</a></td>
<td width=140>(13.9 MB file size)</td>
<td width=140>Version: Jan. 3, 2002</td>
</tr><tr>
<td width=140>Binary Image File:</td>
<td width=140><a href="reduced/ironhd.dat">ironhd.dat</a></td>
<td width=140>(0.51 MB file size)</td>
<td width=140>Version: Jan. 3, 2002</td>
</tr>
</table>
<h3>Hydrogen Abundance Data</h3>
<p>The half degree hydrogen abundance data product contains data from the LP
neutron spectrometer [Feldman <i>et al.</i>, 1999]. Hydrogen abundances are
derived from epithermal neutron data that has been corrected by thermal neutron
data [Feldman <i>et al.</i>, 2001c]. Equations 3 and 4 of Feldman
<i>et al.</i> [2001c] show how
the corrected epithermal data is converted into hydrogen abundances as parts per million (ppm).
Note, however, that these abundances are not necessarily reliable in regions of high thorium and
rare-earth element abundances [Maurice <i>et al.</i>, 2001a]. The map bin size is 0.5&deg; by
0.5&deg;.</p>
<table border=1 cellpadding=4 cellspacing=1>
<tr>
<td width=140>ASCII File:</td>
<td width=140><a href="reduced/hydrogenhd.txt">hydrogenhd.txt</a></td>
<td width=140>(13.9 MB file size)</td>
<td width=140>Version: Jan. 3, 2002</td>
</tr><tr>
<td width=140>Binary Image File:</td>
<td width=140><a href="reduced/hydrogenhd.dat">hydrogenhd.dat</a></td>
<td width=140>(0.51 MB file size)</td>
<td width=140>Version: Jan. 3, 2002</td>
</tr>
</table>
<h2>Radon-222 and Polonium-210 Relative Count Rate Data Products</h2>
<p>Relative count rate data products for radon-222 and polonium-210 contain data
from the LP alpha particle spectrometer acquired during the high- and
low-altitude portions of the LP mission. These data are given in units of counts
per second. A description of the reduction of these data products is given by
Lawson <i>et al.</i> [2002]. The data are mapped onto equal-area pixels having
an approximate size at the equator of 300 km in the longitude direction and 450
km in the latitude direction.</p>
<table border=1 cellpadding=4 cellspacing=1>
<tr>
<td>Radon-222</td>
<td>ASCII File:<br>Binary Image File:</td>
<td><a href="reduced/radon222.txt">
radon222.txt</a><br>
<a href="reduced/radon222.dat">radon222.dat</a></td>
<td>(19 KB file size)<br>(0.51 MB file size)</td>
<td>Version: Jan. 3, 2002</td>
</tr><tr>
<td>Polonium-210</td>
<td>ASCII File:<br>Binary Image File:</td>
<td><a href="reduced/polonium210.txt">
polonium210.txt</a><br>
<a href="reduced/polonium210.dat">polonium210.dat</a></td>
<td>(19 KB file size)<br>(0.51 MB file size)</td>
<td>Version: Jan. 3, 2002</td>
</tr>
</table>
<h2>Data Product Summary</h2>
<table border=2 cellpadding=2>
<tr>
<td><b>Data Type</b></td>
<td><b>File Name</b></td>
<td><b>Bin Size</b></td>
<td><b>Units</b></td>
<td><b>Std. Dev.</b></td>
<td width=150><b>References</b></td>
</tr><tr>
<td><b>Thermal Neutrons, 2 degree</b></td>
<td><a href="reduced/therms.txt">therms.txt</a><br>
<a href="reduced/therms.dat">therms.dat</a></td>
<td>60km x 60km</td>
<td>Counts per 32 sec</td>
<td>Yes</td>
<td width=150>Feldman <i>et al.</i>, 1999, 2000a, 2001a; Elphic
<i>et al.</i>, 2000; Maurice <i>et al.</i>, 2001a</td>
</tr><tr>
<td><b>Epithermal Neutrons, 2 degree</b></td>
<td><a href="reduced/epis.txt">epis.txt</a><br>
<a href="reduced/epis.dat">epis.dat</a></td>
<td>60km x 60km</td>
<td>Counts per 32 sec</td>
<td>Yes</td>
<td width=150>Feldman <i>et al.</i>, 1999, 2000b, 2001a, 2001c; Maurice
<i>et al.</i>,
2000, 2001a</td>
</tr><tr>
<td><b>Fast Neutrons, 2 degree</b></td>
<td><a href="reduced/fast.txt">fast.txt</a><br>
<a href="reduced/fast.dat">fast.dat</a></td>
<td>60km x 60km</td>
<td>Counts per 32 sec</td>
<td>Yes</td>
<td width=150>Feldman <i>et al.</i>, 1999, 2001b; Maurice <i>et al.</i>, 2000, 2001a</td>
</tr><tr>
<td><b>Fast Neutron Spectra, 2 degree</b></td>
<td><a href="reduced/fastspectra.txt">fastspectra.txt</a><br>
<a href="reduced/fastspectra.dat">fastspectra.dat</a></td>
<td>60km x 60km</td>
<td>Counts per 32 sec</td>
<td>Yes</td>
<td width=150>Maurice <i>et al.</i>, 2000, 2001b</td>
</tr><tr>
<td><b>Aluminum, 5 degree</b></td>
<td><a href="reduced/aluminum5d.txt">aluminum5d.txt</a><br>
<a href="reduced/aluminum5d.dat">aluminum5d.dat</a></td>
<td>150km x 150km</td>
<td>Al wt. %</td>
<td>No</td>
<td width=150>Prettyman <i>et al.</i>, 2002</td>
</tr><tr>
<td><b>Calcium, 5 degree</b></td>
<td><a href="reduced/calcium5d.txt">calcium5d.txt</a><br>
<a href="reduced/calcium5d.dat">calcium5d.dat</a></td>
<td>150km x 150km</td>
<td>Ca wt. %</td>
<td>No</td>
<td width=150>Prettyman <i>et al.</i>, 2002</td>
</tr><tr>
<td><b>Hydrogen, 2 degree</b></td>
<td><a href="reduced/hydrogenlow.txt">hydrogenlow.txt</a><br>
<a href="reduced/hydrogenlow.dat">hydrogenlow.dat</a></td>
<td>60km x 60km</td>
<td>ppm</td>
<td>No</td>
<td width=150>Feldman <i>et al.</i>, 2001c</td>
</tr><tr>
<td><b>Hydrogen, half degree</b></td>
<td><a href="reduced/hydrogenhd.txt">hydrogenhd.txt</a><br>
<a href="reduced/hydrogenhd.dat">hydrogenhd.dat</a></td>
<td>0.5&deg; x 0.5&deg;</td>
<td>ppm</td>
<td>No</td>
<td width=150>Feldman <i>et al.</i>, 2001c</td>
</tr><tr>
<td><b>Iron, 5 degree</b></td>
<td><a href="reduced/iron5d.txt">iron5d.txt</a><br>
<a href="reduced/iron5d.dat">iron5d.dat</a></td>
<td>150km x 150km</td>
<td>Fe wt. %</td>
<td>No</td>
<td width=150>Prettyman <i>et al.</i>, 2002</td>
</tr><tr>
<td><b>Iron, half degree</b></td>
<td><a href="reduced/ironhd.txt">ironhd.txt</a><br>
<a href="reduced/ironhd.dat">ironhd.dat</a></td>
<td>0.5&deg; x 0.5&deg;</td>
<td>FeO wt. %</td>
<td>No</td>
<td width=150>Lawrence <i>et al.</i>, 2001c</td>
</tr><tr>
<td><b>Magnesium, 5 degree</b></td>
<td><a href="reduced/magnesium5d.txt">magnesium5d.txt</a><br>
<a href="reduced/magnesium5d.dat">magnesium5d.dat</a></td>
<td>150km x 150km</td>
<td>Mg wt. %</td>
<td>No</td>
<td width=150>Prettyman <i>et al.</i>, 2002</td>
</tr><tr>
<td><b>Oxygen, 5 degree</b></td>
<td><a href="reduced/oxygen5d.txt">oxygen5d.txt</a><br>
<a href="reduced/oxygen5d.dat">oxygen5d.dat</a></td>
<td>150km x 150km</td>
<td>O wt. %</td>
<td>No</td>
<td width=150>Prettyman <i>et al.</i>, 2002</td>
</tr><tr>
<td><b>Polonium-210</b></td>
<td><a href="reduced/polonium210.txt">polonium210.txt</a><br>
<a href="reduced/polonium210.dat">polonium210.dat</a></td>
<td>300km lon. x 450km lat.</td>
<td>Counts per sec</td>
<td>No</td>
<td width=150>Lawson <i>et al.</i>, 2002</td>
</tr><tr>
<td><b>Potassium, 5 degree</b></td>
<td><a href="reduced/potassium5d.txt">potassium5d.txt</a><br>
<a href="reduced/potassium5d.dat">potassium5d.dat</a></td>
<td>150km x 150km</td>
<td>ppm</td>
<td>No</td>
<td width=150>Prettyman <i>et al.</i>, 2002</td>
</tr><tr>
<td><b>Potassium, 2 degree</b></td>
<td><a href="reduced/potassium2d.txt">potassium2d.txt</a><br>
<a href="reduced/potassium2d.dat">potassium2d.dat</a></td>
<td>60km x 60km</td>
<td>ppm</td>
<td>No</td>
<td width=150>Prettyman <i>et al.</i>, 2002</td>
</tr><tr>
<td><b>Radon-222</b></td>
<td><a href="reduced/radon222.txt">radon222.txt</a><br>
<a href="reduced/radon222.dat">radon222.dat</a></td>
<td>300km lon. x 450km lat.</td>
<td>Counts per sec</td>
<td>No</td>
<td width=150>Lawson <i>et al., 2002</i></td>
</tr><tr>
<td><b>Samarium, 2 degree</b></td>
<td><a href="reduced/samarium2d.txt">samarium2d.txt</a><br>
<a href="reduced/samarium2d.dat">samarium2d.dat</a></td>
<td>60km x 60km</td>
<td>&mu;g/g</td>
<td>No</td>
<td width=150>Elphic <i>et al.</i>, 2000</td>
</tr><tr>
<td><b>Silicon, 5 degree</b></td>
<td><a href="reduced/silicon5d.txt">silicon5d.txt</a><br>
<a href="reduced/silicon5d.dat">silicon5d.dat</a></td>
<td>150km x 150km</td>
<td>Si wt. %</td>
<td>No</td>
<td width=150>Prettyman <i>et al.</i>, 2002</td>
</tr><tr>
<td><b>Thorium, high-altitude</b></td>
<td><a href="reduced/thoriumhigh.txt">thoriumhigh.txt<br>
</a><a href="reduced/thoriumhigh.dat">thoriumhigh.dat</a></td>
<td>60km x 60km</td>
<td>&mu;g/g</td>
<td>Yes</td>
<td width=150>Lawrence <i>et al.</i>, 2000</td>
</tr><tr>
<td><b>Thorium, low-altitude</b></td>
<td><a href="reduced/thoriumlow.txt">thoriumlow.txt<br>
</a><a href="reduced/thoriumlow.dat">thoriumlow.dat</a></td>
<td>60km x 60km</td>
<td>&mu;g/g</td>
<td>Yes</td>
<td width=150>Lawrence <i>et al.</i>, 2000</td>
</tr><tr>
<td><b>Thorium, half degree</b></td>
<td><a href="reduced/thoriumhd.txt">thoriumhd.txt</a><br>
<a href="reduced/thoriumhd.dat">thoriumhd.dat</a></td>
<td>0.5&deg; x 0.5&deg;</td>
<td>ppm</td>
<td>No</td>
<td width=150>Lawrence <i>et al.</i>, 2002a, 2002b</td>
</tr><tr>
<td><b>Thorium, 5 degree</b></td>
<td><a href="reduced/thorium5d.txt">thorium5d.txt</a><br>
<a href="reduced/thorium5d.dat">thorium5d.dat</a></td>
<td>150km x 150km</td>
<td>ppm</td>
<td>No</td>
<td width=150>Prettyman <i>et al.</i>, 2002</td>
</tr><tr>
<td><b>Titanium, 5 degree</b></td>
<td><a href="reduced/titanium5d.txt">titanium5d.txt</a><br>
<a href="reduced/uranium5d.dat">titanium5d.dat</a></td>
<td>150km x 150km</td>
<td>Ti wt. %</td>
<td>No</td>
<td width=150>Prettyman <i>et al.</i>, 2002</td>
</tr><tr>
<td><b>Titanium, 2 degree</b></td>
<td><a href="reduced/titanium2d.txt">titanium2d.txt</a><br>
<a href="reduced/titanium2d.dat">titanium2d.dat</a></td>
<td>60km x 60km</td>
<td>Ti wt. %</td>
<td>No</td>
<td width=150>Prettyman <i>et al.</i>, 2002</td>
</tr><tr>
<td><b>Uranium, 5 degree</b></td>
<td><a href="reduced/uranium5d.txt">uranium5d.txt</a><br>
<a href="reduced/uranium5d.dat">uranium5d.dat</a></td>
<td>150km x 150km</td>
<td>ppm</td>
<td>No</td>
<td width=150>Prettyman <i>et al.</i>, 2002</td>
</tr>
</table>
<h2>References</h2>
<p>(<i>Contact <a href="mailto:djlawrence@lanl.gov">David Lawrence</a> of Los
Alamos National Laboratory for information on references that are in preparation
or in press</i>).</p>
<p>Byrd, R. C., and W. T. Urban, Calculation of the neutron response of
Boron-loaded scintillators, LAUR-12833-MS, Los Alamos, National Laboratory, Los
Alamos, NM, 1994.</p>
<p>Elphic, R. C., D. J. Lawrence, W. C. Feldman, B. L. Barraclough, S. Maurice,
A. B. Binder, and P. G. Lucey, Determination of lunar global rare earth element
abundances using Lunar Prospector neutron spectrometer observations, <i>J. Geophys.
Res., 105</i>, 20,333-20,346, 2000.</p>
<p>Feldman W. C., B. L. Barraclough, K. R. Fuller, D. J. Lawrence, S. Maurice,
M. C. Miller, T. H. Prettyman, and A. B. Binder, the Lunar Prospector Gamma-Ray
and Neutron Spectrometers, <i>Nuclear Instruments and Methods in Physics Research
A, 422</i>, 562-566, 1999.</p>
<p>Feldman, W. C., D. J. Lawrence, R. C. Elphic, D. T. Vaniman, D. R. Thomsen,
B. L. Barraclough, S. Maurice, and A. B. Binder, The chemical information
content of lunar thermal and epithermal neutrons, <i>J. Geophys. Res., 105</i>,
20,347-20,363, 2000a.</p>
<p>Feldman, W. C., D. J. Lawrence, R. C. Elphic, B. L. Barraclough, S. Maurice,
I. Genetay, and A. B. Binder, Polar hydrogen deposits on the Moon, <i>J. Geophys.
Res., 105</i>, 4175-4195, 2000b.</p>
<p>Feldman, W. C., et al., Instrument description of the Lunar Prospector
Neutron Spectrometer, in preparation, 2001a.</p>
<p>Feldman, W. C., et al., Instrument description of the Lunar Prospector
Gamma-ray Spectrometer, in preparation, 2001b.</p>
<p>Feldman, W. C., S. Maurice, D. J. Lawrence, R. C. Little, S. L. Lawson, O.
Gasnault, R. C. Wiens, B. L. Barraclough, R. C. Elphic, T. H. Prettyman, J. T.
Steinberg, and A. B. Binder, Evidence for water ice near lunar poles, <i>J. Geophys.
Res.</i>, in press, 2001c.</p>
<p>Lawrence, D. J., W. C. Feldman, B. L. Barraclough, R. C. Elphic, T. H.
Prettyman, S. Maurice, A. B. Binder, and M. C. Miller, Thorium abundances on the
lunar surface, <i>J. Geophys. Res., 105</i>, 20,307-20,331, 2000.</p>
<p>Lawrence, D. J., W. C. Feldman, R. C. Elphic, S. Maurice, T. H. Prettyman,
and A.&nbsp; B. Binder, Iron abundances on the lunar surface as measured by the
Lunar Prospector Gamma-Ray Spectrometer, <i>32nd Lunar and Planetary Science
Conference, Abstract #1830</i>, 2001a.</p>
<p>Lawrence D. J., et al., Data reduction procedures for the Lunar Prospector
Gamma-ray Spectrometer, in preparation, 2001b.</p>
<p>Lawrence, D. J., W. C. Feldman, R. C. Elphic, R. C. Little, T. H. Prettyman,
S. Maurice, P. G. Lucey, and A. B. Binder, Iron abundances on the lunar surface
as measured by the Lunar Prospector Gamma-Ray and Neutron Spectrometers, <i>J.
Geophys. Res.</i>, submitted, 2001c.</p>
<p>Lawrence, D. J., R. C. Elphic, W. C. Feldman, O. Gasnault, I. Genetay, S.
Maurice, and T. H. Prettyman, Optimizing the spatial resolution for gamma-ray
measurements of thorium abundances on the lunar surface, <i>New Views of the
Moon, Europe</i>, 12-14 Jan., 2002a.</p>
<p>Lawrence, D. J., R. C. Elphic, W. C. Feldman, O. Gasnault, I. Genetay, S.
Maurice, and T. H. Prettyman, Small-area thorium enhancements on the lunar
surface, <i>33rd Lunar and Planetary Science Conference, Abstract #1970</i>,
2002b</p>
<p>Lawson, S. L., W. C. Feldman, D. J. Lawrence, K. R. Moore, S. Maurice, R. D.
Belian, and A. B. Binder, Maps of lunar radon-222 and polonium-210, <i>33rd
Lunar and Planetary Science Conference, Abstract #1835</i>, 2002.</p>
<p>Maurice, S., W. C. Feldman, D. J. Lawrence, O. Gasnault, C. d'Uston, and P.
G. Lucey, High-energy neutrons from the Moon, <i>J. Geophys. Res., 105</i>,
20,365-20,375, 2000.</p>
<p>Maurice, S., et al., Data reduction procedures for the Lunar Prospector
Neutron Spectrometer, in preparation, 2001a.</p>
<p>Maurice, S., R. C. Elphic, W. C. Feldman, R. Little, D. J. Lawrence, I.
Genetay, C. d'Uston, O. Gasnault, S. Chevrel, and A. B. Binder, Rare-earth
elements on the Moon from epithermal neutrons, <i>J. Geophys. Res.</i>, submitted,
2001b.</p>
<p>Prettyman, T. H., W. C. Feldman, D. J. Lawrence, G. W. McKinney, A. B.
Binder, R. C. Elphic, O. M. Gasnault, S. Maurice, and K. R. Moore, Library least
squares analysis of Lunar Prospector gamma-ray spectra, <i>33rd Lunar and
Planetary Science Conference, Abstract #2012</i>, 2002.</p>
</body>
</html>

[TABLE]

[TABLE]

[TABLE]

Services

Geosciences Node Data

Help

Scheduled Maintenance

This site may be down on Thursdays between 7:00 and 9:30 pm Central Time for maintenance.

Lunar Prospector Reduced Spectrometer Data - Special Products

These Lunar Prospector (LP) gamma ray and neutron spectrometer special products and associated documentation have been prepared by the LP Spectrometer Team as part of a NASA Lunar Data Analysis Program. These spectrometer data products integrate data collected between January 16, 1998 and July 31, 1999. The data file descriptions for these products were provided by:

William C. Feldman, Tom H. Prettyman, Richard D. Belian, Richard C. Elphic,
Olivier Gasnault, David J. Lawrence, Stefanie L. Lawson, and Kurt R. Moore
Los Alamos National Laboratory, Los Alamos, NM

Alan B. Binder
Lunar Research Institute, Tuscon, AZ

Sylvestre Maurice
Observatoire Midi-Pyrenees, Toulouse, France

IMPORTANT: The data on this page are special products that may be of interest to the geoscience community. They do not represent a PDS peer-reviewed archive. Please contact William Feldman or David Lawrence of LANL for more information.  Please report any other anomalies in the data or documentation to geosci@wunder.wustl.edu.

Back to Lunar Prospector Reduced Spectrometer Data


Introduction

These Lunar Prospector (LP) spectrometer special products contain data from the neutron and gamma ray spectrometers. All data products are provided in two formats: an ASCII table and a binary image.

Each ASCII file contains header information followed by column formatted data separated by commas. Header records begin with a '#' character in the first column. The first four columns of the ASCII version contain the minimum and maximum latitude and longitude values for each pixels. East longitudes are positive. The remaining columns give the parameter value, and, if available, standard deviation values. The ASCII format files are named <name>.txt. File sizes of the ASCII versions vary depending of the bin size.

Each binary file is formatted as an image covering the entire planet with an array of 720 samples and 360 lines. Data values are scaled as integers in the image array with two bytes per pixel in IEEE (MSB first) order. For all binary files except the potassium, radon, and polonium, image values are ten times the values given in the ASCII files. The binary files for potassium abundances have integer values that are the same as values given in the corresponding ASCII file. The binary files for the radon and polonium data have integer values that are 1000 times the values given in the corresponding ASCII file. The binary image is a simple cylindrical map projection with 0.5° pixel size. The first image line corresponds to the south pole and the last image line corresponds to the north pole of the moon. The first sample corresponds to -180° East longitude and the last sample corresponds to 180° East longitude. Binary file names have the form <name>.dat and are about 0.5 MB in size.


Neutron Counting Rate Data Products

Thermal Neutron Counting Rate

The thermal neutron counting rate data product contains data from the LP neutron spectrometer Sn and Cd covered ³He detectors [Feldman et al., 1999, 2001a]. The thermal neutron counting rate is defined as the counting rate difference per 32 seconds between the two detectors and corresponds to neutrons having energies ranging from 0 to 0.4 eV. This data product has been described by Feldman et al. [2000a] and Elphic et al. [2000]. A detailed description of the data reduction for this data product is given by Maurice et al. [2001a]. The map bin size is 60 km by 60 km.

[TABLE]

Epithermal Neutron Counting Rate

The epithermal neutron counting rate data product contains data from the LP neutron spectrometer Cd covered ³He detector [Feldman et al., 1999, 2001a]. The epithermal neutron counting rate is defined as the counting rate per 32 seconds from the Cd covered detector and corresponds to neutrons having energies ranging from 0.4 to about 100 eV. The data product has been described by Feldman et al. [2000b, 2001c] and Maurice et al. [2001b]. A detailed description of the data reduction for this data product is given by Maurice et al. [2001a]. The map bin size is 60 km by 60 km.

[TABLE]

Fast Neutron Counting Rate

The fast neutron counting rate data product contains data from the LP gamma ray spectrometer [Feldman et al., 1999, 2001b]. The fast neutron counting rate is defined as the counting rate per 32 seconds of fast neutrons having energies from 0.6 to about 9 MeV. The data product has been described by Maurice et al. [2000]. A detailed description of the data reduction for this data product is given by Maurice et al. [2001a]. The map bin size is 60 km by 60 km.

[TABLE]

Fast Neutron Spectra Counting Rate

The fast neutron spectra counting rate data product contains data from the LP gamma ray spectrometer [Feldman et al., 1999, 2001b]. The fast neutron spectra counting rate is defined as the counting rate per 32 seconds of fast neutrons having energies from 0.6 to about 9 MeV. These energies are then divided into 16 channels having midpoint energies of 0.743, 1.40, 2.09, 2.67, 3.24, 3.75, 4.23, 4.70, 5.18, 5.65, 6.11, 6.55, 6.98, 7.41, 7.82, and 8.24 MeV. This data product has been described by Maurice et al. [2000]. A detailed description of the data reduction for this data product is given by Maurice et al. [2001a]. Furthermore, a description of how the counting rates can be converted into fluxes is given by Maurice et al. [2000] and Byrd and Urban [1994]. The map bin size is 60 km by 60 km. For the binary image file, the channels are stored in band sequential order.

[TABLE]


5 Degree Elemental Abundance Data Products

Elemental abundance values for O, Si, Ti, Al, Fe, Mg, Ca, U, and K were derived from LP gamma ray spectrometer [Feldman et al., 1999] observations acquired during the high-altitude portion of the LP mission. For the elements O, Si, Ti, Al, Fe, Mg, and Ca, the data are given in units of elemental weight percent. For the elements U and K, the data are given in units of ppm. A description of the reduction of these data products is given by Prettyman et al. [2002]. The Thorium data has been calculated using full modeling and response function analysis [Prettyman et al., 2002]. The map bin size is 150 km by 150 km.

[TABLE]


2 Degree Elemental Abundance Data Products

Samarium Abundance Data Product

The samarium abundance data product contains data from the LP neutron and gamma ray spectrometers [Feldman et al. 1999, 2001a] taken during the low-altitude portion of the LP mission. This data product is given in units of microgram/gram. A detailed description of the data reduction of this data type is given by Elphic et al. [2000]. The map bin size is 60 km x 60 km.

[TABLE]

Titanium and Potassium Abundance Data Products

These data products contain elemental abundances values for Ti and K derived from LP gamma ray spectrometer [Feldman et al., 1999] observations acquired during the high- and low-altitude portions of the LP mission. For Ti, the data are given in units of elemental weight percent. For K, the data are given in units of ppm. A description of the reduction of these data products is given by Prettyman et al. [2002]. The map bin size is 60 km by 60 km.

[TABLE]

Hydrogen Abundance Data

The hydrogen abundance data product contains data from the LP neutron spectrometer [Feldman et al., 1999, 2001a] acquired during the low-altitude portion of the LP mission. Hydrogen abundances are derived from epithermal neutron data that has been corrected by thermal neutron data [Feldman et al., 2001c]. Equations 3 and 4 of Feldman et al. [2001c] show how the corrected epithermal data is converted into hydrogen abundances as parts per million (ppm). Note, however, that these abundances are not necessarily reliable in regions of high thorium and rare-earth element abundances [Maurice et al., 2001a]. The map bin size is 60 km x 60 km.

[TABLE]

Thorium Abundance Data

The 2 degree thorium abundance data products contains data from the LP gamma ray spectrometer [Feldman et al., 1999, 2001b]. These absolute abundances are given in units of microgram/gram. There are two versions containing data taken from the high- and low-altitude portions of the LP mission [Lawrence et al., 2000]. These data have been described by Lawrence et al. [2000]. A detailed description of the data reduction for these data is given by Lawrence et al. [2001b]. The map bin size is 60 km x 60 km.

[TABLE]


Half Degree Abundance Data Products

Thorium Abundance Data

The half degree thorium abundance data product contains data from the LP gamma ray spectrometer [Feldman et al., 1999]. The absolute abundances are given in units of ppm. These data are taken from the low-altitude portion of the LP mission. A description of the reduction of these data products is given by Lawrence et al. [2002a, 2002b]. The map bin size is 0.5° by 0.5°.

[TABLE]

Iron Abundance Data

The half degree iron abundance data product contains data from the LP gamma ray spectrometer [Feldman et al., 1999] acquired during the low-altitude portion of the LP mission. The absolute abundances are given in units of FeO weight percent. A description of the reduction of these data products is given by Lawrence et al. [2002a, 2002b]. The map bin size is 0.5° by 0.5°.

[TABLE]

Hydrogen Abundance Data

The half degree hydrogen abundance data product contains data from the LP neutron spectrometer [Feldman et al., 1999]. Hydrogen abundances are derived from epithermal neutron data that has been corrected by thermal neutron data [Feldman et al., 2001c]. Equations 3 and 4 of Feldman et al. [2001c] show how the corrected epithermal data is converted into hydrogen abundances as parts per million (ppm). Note, however, that these abundances are not necessarily reliable in regions of high thorium and rare-earth element abundances [Maurice et al., 2001a]. The map bin size is 0.5° by 0.5°.

[TABLE]


Radon-222 and Polonium-210 Relative Count Rate Data Products

Relative count rate data products for radon-222 and polonium-210 contain data from the LP alpha particle spectrometer acquired during the high- and low-altitude portions of the LP mission. These data are given in units of counts per second. A description of the reduction of these data products is given by Lawson et al. [2002]. The data are mapped onto equal-area pixels having an approximate size at the equator of 300 km in the longitude direction and 450 km in the latitude direction.

[TABLE]


Data Product Summary

[TABLE]

References

(Contact David Lawrence of Los Alamos National Laboratory for information on references that are in preparation or in press).

Byrd, R. C., and W. T. Urban, Calculation of the neutron response of Boron-loaded scintillators, LAUR-12833-MS, Los Alamos, National Laboratory, Los Alamos, NM, 1994.

Elphic, R. C., D. J. Lawrence, W. C. Feldman, B. L. Barraclough, S. Maurice, A. B. Binder, and P. G. Lucey, Determination of lunar global rare earth element abundances using Lunar Prospector neutron spectrometer observations, J. Geophys. Res., 105, 20,333-20,346, 2000.

Feldman W. C., B. L. Barraclough, K. R. Fuller, D. J. Lawrence, S. Maurice, M. C. Miller, T. H. Prettyman, and A. B. Binder, the Lunar Prospector Gamma-Ray and Neutron Spectrometers, Nuclear Instruments and Methods in Physics Research A, 422, 562-566, 1999.

Feldman, W. C., D. J. Lawrence, R. C. Elphic, D. T. Vaniman, D. R. Thomsen, B. L. Barraclough, S. Maurice, and A. B. Binder, The chemical information content of lunar thermal and epithermal neutrons, J. Geophys. Res., 105, 20,347-20,363, 2000a.

Feldman, W. C., D. J. Lawrence, R. C. Elphic, B. L. Barraclough, S. Maurice, I. Genetay, and A. B. Binder, Polar hydrogen deposits on the Moon, J. Geophys. Res., 105, 4175-4195, 2000b.

Feldman, W. C., et al., Instrument description of the Lunar Prospector Neutron Spectrometer, in preparation, 2001a.

Feldman, W. C., et al., Instrument description of the Lunar Prospector Gamma-ray Spectrometer, in preparation, 2001b.

Feldman, W. C., S. Maurice, D. J. Lawrence, R. C. Little, S. L. Lawson, O. Gasnault, R. C. Wiens, B. L. Barraclough, R. C. Elphic, T. H. Prettyman, J. T. Steinberg, and A. B. Binder, Evidence for water ice near lunar poles, J. Geophys. Res., in press, 2001c.

Lawrence, D. J., W. C. Feldman, B. L. Barraclough, R. C. Elphic, T. H. Prettyman, S. Maurice, A. B. Binder, and M. C. Miller, Thorium abundances on the lunar surface, J. Geophys. Res., 105, 20,307-20,331, 2000.

Lawrence, D. J., W. C. Feldman, R. C. Elphic, S. Maurice, T. H. Prettyman, and A.  B. Binder, Iron abundances on the lunar surface as measured by the Lunar Prospector Gamma-Ray Spectrometer, 32nd Lunar and Planetary Science Conference, Abstract #1830, 2001a.

Lawrence D. J., et al., Data reduction procedures for the Lunar Prospector Gamma-ray Spectrometer, in preparation, 2001b.

Lawrence, D. J., W. C. Feldman, R. C. Elphic, R. C. Little, T. H. Prettyman, S. Maurice, P. G. Lucey, and A. B. Binder, Iron abundances on the lunar surface as measured by the Lunar Prospector Gamma-Ray and Neutron Spectrometers, J. Geophys. Res., submitted, 2001c.

Lawrence, D. J., R. C. Elphic, W. C. Feldman, O. Gasnault, I. Genetay, S. Maurice, and T. H. Prettyman, Optimizing the spatial resolution for gamma-ray measurements of thorium abundances on the lunar surface, New Views of the Moon, Europe, 12-14 Jan., 2002a.

Lawrence, D. J., R. C. Elphic, W. C. Feldman, O. Gasnault, I. Genetay, S. Maurice, and T. H. Prettyman, Small-area thorium enhancements on the lunar surface, 33rd Lunar and Planetary Science Conference, Abstract #1970, 2002b

Lawson, S. L., W. C. Feldman, D. J. Lawrence, K. R. Moore, S. Maurice, R. D. Belian, and A. B. Binder, Maps of lunar radon-222 and polonium-210, 33rd Lunar and Planetary Science Conference, Abstract #1835, 2002.

Maurice, S., W. C. Feldman, D. J. Lawrence, O. Gasnault, C. d'Uston, and P. G. Lucey, High-energy neutrons from the Moon, J. Geophys. Res., 105, 20,365-20,375, 2000.

Maurice, S., et al., Data reduction procedures for the Lunar Prospector Neutron Spectrometer, in preparation, 2001a.

Maurice, S., R. C. Elphic, W. C. Feldman, R. Little, D. J. Lawrence, I. Genetay, C. d'Uston, O. Gasnault, S. Chevrel, and A. B. Binder, Rare-earth elements on the Moon from epithermal neutrons, J. Geophys. Res., submitted, 2001b.

Prettyman, T. H., W. C. Feldman, D. J. Lawrence, G. W. McKinney, A. B. Binder, R. C. Elphic, O. M. Gasnault, S. Maurice, and K. R. Moore, Library least squares analysis of Lunar Prospector gamma-ray spectra, 33rd Lunar and Planetary Science Conference, Abstract #2012, 2002.

 

[TABLE]

[TABLE]

therms.txt
therms.dat
epis.txt
epis.dat
fast.txt
fast.dat
fastspectra.txt
fastspectra.dat
aluminum5d.txt
aluminum5d.dat
calcium5d.txt
calcium5d.dat
hydrogenlow.txt
hydrogenlow.dat
hydrogenhd.txt
hydrogenhd.dat
iron5d.txt
iron5d.dat
ironhd.txt
ironhd.dat
magnesium5d.txt
magnesium5d.dat
oxygen5d.txt
oxygen5d.dat
polonium210.txt
polonium210.dat
potassium5d.txt
potassium5d.dat
potassium2d.txt
potassium2d.dat
radon222.txt
radon222.dat
samarium2d.txt
samarium2d.dat
silicon5d.txt
silicon5d.dat
thoriumhigh.txt
thoriumhigh.dat
thoriumlow.txt
thoriumlow.dat
thoriumhd.txt
thoriumhd.dat
thorium5d.txt
thorium5d.dat
titanium5d.txt
titanium5d.dat
titanium2d.txt
titanium2d.dat
uranium5d.txt
uranium5d.dat
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment