keras grid job
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import uuid | |
import json | |
import random | |
import keras | |
import numpy as np | |
import tensorflow as tf | |
import click | |
def build_model(blob): | |
inputs = keras.Input(shape=(blob['num_columns'],), name='img') | |
x = keras.layers.Dense(blob['num_columns'], activation='sigmoid')(inputs) | |
for i in range(blob['num_layers']-1): | |
x = keras.layers.Dense(blob['num_columns'], activation='sigmoid')(x) | |
outputs = keras.layers.Dense(blob['num_columns'], activation='sigmoid')(x) | |
model = keras.Model(inputs=inputs, outputs=outputs, name='mnist_model') | |
model.compile(loss='binary_crossentropy', optimizer=keras.optimizers.Adam(learning_rate=0.1)) | |
return model | |
def train_model(mod, blob): | |
np.random.seed(42) | |
train = np.random.randint(0, 2, (blob['rows'], blob['num_columns'])) | |
mod.compile(loss=blob['loss_func'], optimizer=keras.optimizers.Adam(learning_rate=0.1)) | |
return mod.fit(train, train, | |
validation_split=0.2, | |
epochs=blob['epochs'], | |
verbose=0, | |
callbacks=[keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.5, | |
patience=15, verbose=2, | |
mode='auto', min_delta=0.01)]) | |
def build_train(blob): | |
tf.set_random_seed(blob['tf_seed']) | |
model = build_model(blob) | |
hist = train_model(model, blob) | |
blob.update(hist.history) | |
blob['lr'] = [float(i) for i in blob['lr']] | |
return blob | |
if __name__ == "__main__": | |
res = build_train({'num_columns': random.choice([10, 11, 12]), 'num_layers': random.choice([1, 3, 2, 3, 4, 4, 5, 5]), | |
'loss_func': 'binary_crossentropy', 'tf_seed': random.randint(1, 4200), | |
'epochs': 300, 'rows': random.choice([2000, 3000, 4000])}) | |
with open(f"/Users/vincent/Development/grid/logs/{str(uuid.uuid4())[:14]}.jsonl", "w") as f: | |
json.dump(res, f) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment