Python script to compute Pi with Klingenstierna's formula.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#! /usr/local/bin/python3.6 | |
""" | |
Computation of Pi with Klingenstierna's formula | |
""" | |
import sys | |
import time | |
import traceback | |
class CalcPiKlingenstierna: | |
L = 10000 # Digits of computation | |
FNAME = "pi_klingenstierna.txt" | |
def __init__(self): | |
self.l1 = int(self.L / 8) + 1 | |
self.n = int((self.L + 1) / 2) + 1 | |
def compute(self): | |
""" Computation of Pi """ | |
try: | |
t0 = time.time() | |
s = [0 for _ in range(self.l1 + 2)] | |
a = [0 for _ in range(self.l1 + 2)] | |
b = [0 for _ in range(self.l1 + 2)] | |
c = [0 for _ in range(self.l1 + 2)] | |
q = [0 for _ in range(self.l1 + 2)] | |
a[0] = 32 * 10 | |
b[0] = 4 * 239 | |
c[0] = 16 * 515 | |
for k in range(1, self.n + 1): | |
a = self.__long_div(a, 10 * 10) | |
b = self.__long_div(b, 239 * 239) | |
c = self.__long_div(c, 515 * 515) | |
q = self.__long_sub(a, b) | |
q = self.__long_sub(q, c) | |
q = self.__long_div(q, 2 * k - 1) | |
if k % 2 == 0: | |
s = self.__long_sub(s, q) | |
else: | |
s = self.__long_add(s, q) | |
t1 = time.time() | |
tt = t1 - t0 | |
self.__display(tt, s) | |
except Exception as e: | |
raise | |
def __long_add(self, a, b): | |
""" Computation of long + long | |
:param list a | |
:param list b | |
:return list z | |
""" | |
try: | |
z = [0 for _ in range(self.n)] | |
cr = 0 | |
for i in reversed(range(self.l1 + 2)): | |
z[i] = a[i] + b[i] + cr | |
if z[i] < 100000000: | |
cr = 0 | |
else: | |
z[i] -= 100000000 | |
cr = 1 | |
return z | |
except Exception as e: | |
raise | |
def __long_sub(self, a, b): | |
""" Computation of long - long | |
:param list a | |
:param list b | |
:return list z | |
""" | |
try: | |
z = [0 for _ in range(self.n)] | |
br = 0 | |
for i in reversed(range(self.l1 + 2)): | |
z[i] = a[i] - b[i] - br | |
if z[i] >= 0: | |
br = 0 | |
else: | |
z[i] += 100000000 | |
br = 1 | |
return z | |
except Exception as e: | |
raise | |
def __long_div(self, a, b): | |
""" Computation of long / short | |
:param list a | |
:param list b | |
:return list z | |
""" | |
try: | |
z = [0 for _ in range(self.n)] | |
r = 0 | |
for i in range(self.l1 + 2): | |
w = a[i] | |
z[i] = int((w + r) / b) | |
r = ((w + r) % b) * 100000000 | |
return z | |
except Exception as e: | |
raise | |
def __display(self, tt, s): | |
""" Display | |
:param float tt | |
:param list s | |
""" | |
try: | |
print("** Pi Computation with the Klingenstierna formula method **") | |
print(" Digits = {:d}.".format(self.L)) | |
print(" Time = {:f} seconds".format(tt)) | |
out_file = open(self.FNAME, "w") | |
out_file.write("** Pi Computation with the Klingenstierna formula method **\n") | |
out_file.write(" Digits = {:d}.\n".format(self.L)) | |
out_file.write(" Time = {:f} seconds.\n\n".format(tt)) | |
out_file.write(" {:d}.\n".format(s[0])) | |
for i in range(1, self.l1): | |
if i % 10 == 1: | |
out_file.write("{:08d}:".format((i - 1) * 8 + 1)) | |
out_file.write(" {:08d}".format(s[i])) | |
if i % 10 == 0: | |
out_file.write("\n") | |
out_file.close | |
except Exception as e: | |
raise | |
if __name__ == '__main__': | |
try: | |
obj = CalcPiKlingenstierna() | |
obj.compute() | |
except Exception as e: | |
traceback.print_exc() | |
sys.exit(1) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment