Created
August 15, 2019 02:12
-
-
Save komasaru/1a21421eaf0502c096940819295ee1e0 to your computer and use it in GitHub Desktop.
Fortran 95 source code to compute multiple regression equations.(2d)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
!**************************************************** | |
! 重回帰式計算(説明(独立)変数2個、2次多項式モデル) | |
! * y = b0 + b1x1 + b2x2 + b3x1x2 + b4x1^2 + b5x2^2 | |
! * y = b0 + b1x1 + b2x2 + b3x3 + b4x4 + b5x5 | |
! (x3 = x1x2, x4 = x1^2, x5 = x2^2) | |
! ということ。 | |
! date name version | |
! 2019.06.27 mk-mode.com 1.00 新規作成 | |
! | |
! Copyright(C) 2019 mk-mode.com All Rights Reserved. | |
!**************************************************** | |
! | |
module const | |
! SP: 単精度(4), DP: 倍精度(8) | |
integer, parameter :: SP = kind(1.0) | |
integer(SP), parameter :: DP = selected_real_kind(2 * precision(1.0_SP)) | |
end module const | |
module comp | |
use const | |
implicit none | |
private | |
public :: calc_reg_multi_2d | |
contains | |
! 重回帰式計算 | |
! * 説明変数2個、2次多項式モデル | |
! * y = b0 + b1x1 + b2x2 + b3x1x2 + b4x1^2 + b5x2^2 | |
! * y = b0 + b1x1 + b2x2 + b3x3 + b4x4 + b5x5 | |
! (x3 = x1x2, x4 = x1^2, x5 = x2^2) | |
! | |
! :param(in) real(8) x(:, 2): 説明変数配列 | |
! :param(in) real(8) y(:): 目的変数配列 | |
! :param(out) real(8) c: 定数 | |
! :param(out) real(8) v(5): 係数 | |
subroutine calc_reg_multi_2d(x, y, c, v) | |
implicit none | |
real(DP), intent(in) :: x(:, :), y(:) | |
real(DP), intent(out) :: c, v(5) | |
integer(SP) :: s_x1, s_x2, s_y | |
real(DP) :: mtx(6, 7) | |
real(DP), allocatable :: x1(:), x2(:), x3(:), x4(:), x5(:) | |
s_x1 = size(x(:, 1)) | |
s_x2 = size(x(:, 2)) | |
s_y = size(y) | |
if (s_x1 == 0 .or. s_x2 == 0 .or. s_y == 0) then | |
print *, "[ERROR] array size == 0" | |
stop | |
end if | |
if (s_x1 /= s_y .or. s_x2 /= s_y) then | |
print *, "[ERROR] size(X) != size(Y)" | |
stop | |
end if | |
allocate(x1(s_x1)) | |
allocate(x2(s_x1)) | |
allocate(x3(s_x1)) | |
allocate(x4(s_x1)) | |
allocate(x5(s_x1)) | |
x1 = x(:, 1) | |
x2 = x(:, 2) | |
x3 = x1 * x2 | |
x4 = x1 * x1 | |
x5 = x2 * x2 | |
! 左辺・対角成分 | |
mtx(1, 1) = s_x1 | |
mtx(2, 2) = sum(x1 * x1) | |
mtx(3, 3) = sum(x2 * x2) | |
mtx(4, 4) = sum(x3 * x3) | |
mtx(5, 5) = sum(x4 * x4) | |
mtx(6, 6) = sum(x5 * x5) | |
! 左辺・右上成分 | |
mtx(1, 2) = sum(x1) | |
mtx(1, 3) = sum(x2) | |
mtx(1, 4) = sum(x3) | |
mtx(1, 5) = sum(x4) | |
mtx(1, 6) = sum(x5) | |
mtx(2, 3) = sum(x1 * x2) | |
mtx(2, 4) = sum(x1 * x3) | |
mtx(2, 5) = sum(x1 * x4) | |
mtx(2, 6) = sum(x1 * x5) | |
mtx(3, 4) = sum(x2 * x3) | |
mtx(3, 5) = sum(x2 * x4) | |
mtx(3, 6) = sum(x2 * x5) | |
mtx(4, 5) = sum(x3 * x4) | |
mtx(4, 6) = sum(x3 * x5) | |
mtx(5, 6) = sum(x4 * x5) | |
! 左辺・左下成分 | |
mtx(2, 1) = mtx(1, 2) | |
mtx(3, 1) = mtx(1, 3) | |
mtx(3, 2) = mtx(2, 3) | |
mtx(4, 1) = mtx(1, 4) | |
mtx(4, 2) = mtx(2, 4) | |
mtx(4, 3) = mtx(3, 4) | |
mtx(5, 1) = mtx(1, 5) | |
mtx(5, 2) = mtx(2, 5) | |
mtx(5, 3) = mtx(3, 5) | |
mtx(5, 4) = mtx(4, 5) | |
mtx(6, 1) = mtx(1, 6) | |
mtx(6, 2) = mtx(2, 6) | |
mtx(6, 3) = mtx(3, 6) | |
mtx(6, 4) = mtx(4, 6) | |
mtx(6, 5) = mtx(5, 6) | |
! 右辺 | |
mtx(1, 7) = sum( y) | |
mtx(2, 7) = sum(x1 * y) | |
mtx(3, 7) = sum(x2 * y) | |
mtx(4, 7) = sum(x3 * y) | |
mtx(5, 7) = sum(x4 * y) | |
mtx(6, 7) = sum(x5 * y) | |
deallocate(x1) | |
deallocate(x2) | |
deallocate(x3) | |
deallocate(x4) | |
deallocate(x5) | |
call gauss_e(6, mtx) | |
c = mtx(1, 7) | |
v = mtx(2:6, 7) | |
end subroutine calc_reg_multi_2d | |
! Gaussian elimination | |
! | |
! :param(in) integer(4) n: 元数 | |
! :param(inout) real(8) a(n,n+1): 係数配列 | |
subroutine gauss_e(n, a) | |
implicit none | |
integer(SP), intent(in) :: n | |
real(DP), intent(inout) :: a(n, n + 1) | |
integer(SP) :: i, j | |
real(DP) :: d | |
! 前進消去 | |
do j = 1, n - 1 | |
do i = j + 1, n | |
d = a(i, j) / a(j, j) | |
a(i, j+1:n+1) = a(i, j+1:n+1) - a(j, j+1:n+1) * d | |
end do | |
end do | |
! 後退代入 | |
do i = n, 1, -1 | |
d = a(i, n + 1) | |
do j = i + 1, n | |
d = d - a(i, j) * a(j, n + 1) | |
end do | |
a(i, n + 1) = d / a(i, i) | |
end do | |
end subroutine gauss_e | |
end module comp | |
program regression_multi_2d | |
use const | |
use comp | |
implicit none | |
character(9), parameter :: F_INP = "input.txt" | |
integer(SP), parameter :: UID = 10 | |
real(DP) :: c, v(5) | |
integer(SP) :: n, i | |
character(20) :: f | |
real(DP), allocatable :: x(:, :), y(:) | |
! IN ファイル OPEN | |
open (UID, file = F_INP, status = "old") | |
! データ数読み込み | |
read (UID, *) n | |
! 配列用メモリ確保 | |
allocate(x(n, 2)) | |
allocate(y(n)) | |
! データ読み込み | |
do i = 1, n | |
read (UID, *) x(i, :), y(i) | |
end do | |
write (f, '("(A, ", I0, "F8.2, A)")') n | |
print f, "説明変数 X(1) = (", x(:, 1), ")" | |
print f, "説明変数 X(2) = (", x(:, 2), ")" | |
print f, "目的変数 Y = (", y, ")" | |
print '(A)', "---" | |
! IN ファイル CLOSE | |
close (UID) | |
call calc_reg_multi_2d(x, y, c, v) | |
print '(A, F14.8)', "定数項 = ", c | |
print '(A, F14.8)', "係数-1 = ", v(1) | |
print '(A, F14.8)', "係数-2 = ", v(2) | |
print '(A, F14.8)', "係数-3 = ", v(3) | |
print '(A, F14.8)', "係数-4 = ", v(4) | |
print '(A, F14.8)', "係数-5 = ", v(5) | |
! 配列用メモリ解放 | |
deallocate(x) | |
deallocate(y) | |
end program regression_multi_2d |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment