Created
July 21, 2017 14:23
-
-
Save kris-singh/8e6b0afd01d303e1b75eae04b90b82a9 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include <mlpack/core.hpp> | |
#include <mlpack/core/optimizers/rmsprop/rmsprop.hpp> | |
#include <mlpack/methods/ann/init_rules/gaussian_init.hpp> | |
#include <mlpack/methods/rbm/binary_layer.hpp> | |
#include <mlpack/methods/rbm/spike_slab_layer.hpp> | |
#include <mlpack/methods/rbm/rbm.hpp> | |
#include <mlpack/methods/rbm/binary_rbm.hpp> | |
#include <mlpack/methods/rbm/ssRBM.hpp> | |
#include <mlpack/methods/softmax_regression/softmax_regression.hpp> | |
#include <mlpack/core/optimizers/minibatch_sgd/minibatch_sgd.hpp> | |
#include <mlpack/core/optimizers/sgd/sgd.hpp> | |
#include <mlpack/core/optimizers/lbfgs/lbfgs.hpp> | |
using namespace mlpack; | |
using namespace mlpack::rbm; | |
using namespace mlpack::optimization; | |
using namespace mlpack::regression; | |
int main() | |
{ | |
// Hidden layer size 192 | |
int hiddenLayerSize = 100; | |
arma::mat trainData; | |
trainData.load("batch1patches.txt"); | |
trainData.resize(192, 800); | |
std::cout << "batch rows = " << trainData.n_rows << std::endl; | |
std::cout << "batch columns = " << trainData.n_cols << std::endl; | |
// Intialise weight 10^-4 | |
GaussianInitialization gaussian(0, 1e-4); | |
double radius = 0; | |
double tempRadius = 0; | |
for (size_t i = 0; i < trainData.n_cols; i++) | |
{ | |
tempRadius = arma::norm(trainData.col(i)); | |
if (radius < tempRadius) | |
radius = tempRadius; | |
} | |
// Set pool size | |
size_t poolSize = 1; | |
std::cout << "n rows = " << trainData.n_rows << std::endl; | |
std::cout << "poolSize = " << poolSize << std::endl; | |
BinaryLayer<> visible(64, 100, 1); | |
BinaryLayer<> hidden(100, 64, 0); | |
BinaryRBM binary_rbm(visible, hidden); | |
SpikeSlabLayer<> spikeVisible(64, 100, 3, radius, | |
1); | |
SpikeSlabLayer<> spikeHidden(100, 64, 3, radius, 0); | |
ssRBM ss_rbm(spikeVisible, spikeHidden); | |
trainData = trainData.rows(0, 99); | |
std::cout << arma::size(trainData) << std::endl; | |
// ssRBM Policy | |
RBM<GaussianInitialization, ssRBM> modelssRBM(trainData, gaussian, ss_rbm, | |
2, true, true); | |
MiniBatchSGD msgd(10, 0.06, trainData.n_cols * 20, 0, true); | |
std::cout << "Here" << std::endl; | |
modelssRBM.Reset(); | |
/* | |
// Lambda bias = 0 | |
modelssRBM.Policy().VisibleLayer().LambdaBias().fill(0); | |
// Spike Bias = -1 | |
modelssRBM.Policy().VisibleLayer().SpikeBias().fill(-1); | |
// slab bias fixed at 1.5 | |
modelssRBM.Policy().VisibleLayer().SlabBias().fill(1.5); | |
// Train the models | |
std::cout << "Train" << std::endl; | |
modelssRBM.Train(trainData, msgd); | |
*/ | |
return 0; | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment