Skip to content

Instantly share code, notes, and snippets.

@ktorn
Created April 4, 2014 09:27
Show Gist options
  • Save ktorn/9971162 to your computer and use it in GitHub Desktop.
Save ktorn/9971162 to your computer and use it in GitHub Desktop.
Arduino RFID reading code, adapted for USJ
/*
* Source : rfid_serial.pde
* Author : Daniel Filipe Farinha
* Date : 2014.04.04
* Sketch : Mifare1 RFID reading code, adapted for USJ
* Based on code by: Dr.Leung
* Code comments translated by: David Grieshammer
*/
// the sensor communicates using SPI, so include the library:
#include <SPI.h>
/////////////////////////////////////////////////////////////////////
// RFID stuff
/////////////////////////////////////////////////////////////////////
#define uchar unsigned char
#define uint unsigned int
//Array of maximum length
#define MAX_LEN 16
/////////////////////////////////////////////////////////////////////
//set the pin
/////////////////////////////////////////////////////////////////////
const int NRSTPD = 5;
// The DPI SS pins in use. Only one can be LOW at any one time, which selects the active slave.
// These should only be changed by the spiSwitch() function.
const int SS_RFID = 9;
//MF522 Command words
#define PCD_IDLE 0x00 //NO action / Cancel the current command
#define PCD_AUTHENT 0x0E //Authentication key
#define PCD_RECEIVE 0x08 //Receive Data
#define PCD_TRANSMIT 0x04 //Send data
#define PCD_TRANSCEIVE 0x0C //Sending and receiving data
#define PCD_RESETPHASE 0x0F //Reset
#define PCD_CALCCRC 0x03 //CRC - Calculate
//Mifare_One | Card command word
#define PICC_REQIDL 0x26 //Find the antenna region not go to sleep
#define PICC_REQALL 0x52 //Alerts antenna region all card
#define PICC_ANTICOLL 0x93 //Anti-collision
#define PICC_SElECTTAG 0x93 //Election cards
#define PICC_AUTHENT1A 0x60 //Verify A key
#define PICC_AUTHENT1B 0x61 //Verify the B key
#define PICC_READ 0x30 //Read block
#define PICC_WRITE 0xA0 //Copy chunks
#define PICC_DECREMENT 0xC0 //Debit
#define PICC_INCREMENT 0xC1 //Recharge
#define PICC_RESTORE 0xC2 //The adjustable block of data to buffer
#define PICC_TRANSFER 0xB0 //To save the data in the buffer
#define PICC_HALT 0x50 //Dormancy
//And MF522 Communication error code is returned
#define MI_OK 0
#define MI_NOTAGERR 1
#define MI_ERR 2
//------------------MFRC522 Register---------------
//Page 0:Command and Status
#define Reserved00 0x00
#define CommandReg 0x01
#define CommIEnReg 0x02
#define DivlEnReg 0x03
#define CommIrqReg 0x04
#define DivIrqReg 0x05
#define ErrorReg 0x06
#define Status1Reg 0x07
#define Status2Reg 0x08
#define FIFODataReg 0x09
#define FIFOLevelReg 0x0A
#define WaterLevelReg 0x0B
#define ControlReg 0x0C
#define BitFramingReg 0x0D
#define CollReg 0x0E
#define Reserved01 0x0F
//Page 1:Command
#define Reserved10 0x10
#define ModeReg 0x11
#define TxModeReg 0x12
#define RxModeReg 0x13
#define TxControlReg 0x14
#define TxAutoReg 0x15
#define TxSelReg 0x16
#define RxSelReg 0x17
#define RxThresholdReg 0x18
#define DemodReg 0x19
#define Reserved11 0x1A
#define Reserved12 0x1B
#define MifareReg 0x1C
#define Reserved13 0x1D
#define Reserved14 0x1E
#define SerialSpeedReg 0x1F
//Page 2:CFG
#define Reserved20 0x20
#define CRCResultRegM 0x21
#define CRCResultRegL 0x22
#define Reserved21 0x23
#define ModWidthReg 0x24
#define Reserved22 0x25
#define RFCfgReg 0x26
#define GsNReg 0x27
#define CWGsPReg 0x28
#define ModGsPReg 0x29
#define TModeReg 0x2A
#define TPrescalerReg 0x2B
#define TReloadRegH 0x2C
#define TReloadRegL 0x2D
#define TCounterValueRegH 0x2E
#define TCounterValueRegL 0x2F
//Page 3:TestRegister
#define Reserved30 0x30
#define TestSel1Reg 0x31
#define TestSel2Reg 0x32
#define TestPinEnReg 0x33
#define TestPinValueReg 0x34
#define TestBusReg 0x35
#define AutoTestReg 0x36
#define VersionReg 0x37
#define AnalogTestReg 0x38
#define TestDAC1Reg 0x39
#define TestDAC2Reg 0x3A
#define TestADCReg 0x3B
#define Reserved31 0x3C
#define Reserved32 0x3D
#define Reserved33 0x3E
#define Reserved34 0x3F
//-----------------------------------------------
struct Card {
uchar serNum[5];
};
// White-list
Card whiteList[] = {
{210,185,219,80,224} // Test #1
};
//4 Bytes card serial number, First 5 Byte checksum byte
uchar serNum[5];
uchar writeData[16]={0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 100}; //Initialization 100 Dollars
uchar moneyConsume = 18 ; //Consumption 18 Yuan
uchar moneyAdd = 10 ; //Recharge 10 Yuan
//Sector A Passwor, 16 Sector, Each Sector Password 6Byte
uchar sectorKeyA[16][16] = {{0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF},
{0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF},
//{0x19, 0x84, 0x07, 0x15, 0x76, 0x14},
{0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF},
};
uchar sectorNewKeyA[16][16] = {{0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF},
{0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xff,0x07,0x80,0x69, 0x19,0x84,0x07,0x15,0x76,0x14},
//you can set another ket , such as " 0x19, 0x84, 0x07, 0x15, 0x76, 0x14 "
//{0x19, 0x84, 0x07, 0x15, 0x76, 0x14, 0xff,0x07,0x80,0x69, 0x19,0x84,0x07,0x15,0x76,0x14},
// but when loop, please set the sectorKeyA, the same key, so that RFID module can read the card
{0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xff,0x07,0x80,0x69, 0x19,0x33,0x07,0x15,0x34,0x14},
};
int unitId = 1;
void setup()
{
Serial.begin(9600); // RFID reader SOUT pin connected to Serial RX pin at 2400bps
Serial.print("INIT:");
// start the SPI library:
SPI.begin();
spiSwitchToRFID();
pinMode(SS_RFID,OUTPUT); // Set digital pin 10 as OUTPUT to connect it to the RFID /ENABLE pin
pinMode(NRSTPD,OUTPUT); // Set digital pin 10 , Not Reset and Power-down
digitalWrite(NRSTPD, HIGH);
MFRC522_Init();
Serial.println("OK");
}
void loop()
{
checkCard();
}
void checkCard() {
uchar i,tmp;
uchar status;
uchar str[MAX_LEN];
uchar RC_size;
uchar blockAddr; //Block adress selecting operation 0���63
String mynum = "";
//Find card, return card type
status = MFRC522_Request(PICC_REQIDL, str);
if (status == MI_OK)
{
// Serial.print("Card detected.");
}
//Anti-collision and return the card serial number 4-byte
status = MFRC522_Anticoll(str);
memcpy(serNum, str, 5);
if (status == MI_OK)
{
Serial.print("SERIAL:");
Serial.print(serNum[0]);
Serial.print(",");
Serial.print(serNum[1]);
Serial.print(",");
Serial.print(serNum[2]);
Serial.print(",");
Serial.print(serNum[3]);
Serial.print(",");
Serial.print(serNum[4]);
Serial.println("");
playToneDetected();
delay(1000);
}
//Serial.println(" ");
MFRC522_Halt(); //Command card into hibernation
}
void spiSwitchToRFID() {
digitalWrite(SS_RFID, LOW);
}
void playToneDetected() {
int noteDuration = 150;
int note1 = 500;
tone(8, note1, noteDuration);
// to distinguish the notes, set a minimum time between them.
// the note's duration + 30% seems to work well:
int pauseBetweenNotes = noteDuration * 1.30;
delay(pauseBetweenNotes);
// stop the tone playing:
noTone(8);
}
void playToneDenied() {
int noteDuration = 250;
int pauseBetweenNotes = noteDuration * 1.30;
int note1 = 150;
tone(8, note1, noteDuration);
delay(pauseBetweenNotes);
// stop the tone playing:
noTone(8);
}
void playToneAllowed() {
int noteDuration = 150;
int note1 = 600;
tone(8, note1, noteDuration);
// to distinguish the notes, set a minimum time between them.
// the note's duration + 30% seems to work well:
int pauseBetweenNotes = noteDuration * 1.30;
delay(pauseBetweenNotes);
// stop the tone playing:
noTone(8);
}
/**
* Returns the whitecard index, or -1 if the card is not white listed.
*/
int getCardAccess(uchar serNumb[]) {
for (int i=0; i < sizeof(whiteList)-1; i++) {
if ( serNumb[0] == whiteList[i].serNum[0] &&
serNumb[1] == whiteList[i].serNum[1] &&
serNumb[2] == whiteList[i].serNum[2] &&
serNumb[3] == whiteList[i].serNum[3] &&
serNumb[4] == whiteList[i].serNum[4]) {
return i;
}
}
return -1;
}
/*
* Function Name:Write_MFRC5200
* Description: to MFRC522 a register to write byte of data
* Input parameters: addr - the register address; val - value to be written
* Return value: None
*/
void Write_MFRC522(uchar addr, uchar val)
{
digitalWrite(SS_RFID, LOW);
//Adress Format:0XXXXXX0
SPI.transfer((addr<<1)&0x7E);
SPI.transfer(val);
digitalWrite(SS_RFID, HIGH);
}
/*
* Function Name:Read_MFRC522
* Description: read a byte of data from a register of MFRC522
* Input parameters: addr - register address
* Return Value: Returns a byte of data read
*/
uchar Read_MFRC522(uchar addr)
{
uchar val;
digitalWrite(SS_RFID, LOW);
//Adress Format:1XXXXXX0
SPI.transfer(((addr<<1)&0x7E) | 0x80);
val =SPI.transfer(0x00);
digitalWrite(SS_RFID, HIGH);
return val;
}
/*
* Function Name:SetBitMask
* Function Description: Set RC522 register bit
* Input parameters: reg - register address; mask - set value
* Return value : none
*/
void SetBitMask(uchar reg, uchar mask)
{
uchar tmp;
tmp = Read_MFRC522(reg);
Write_MFRC522(reg, tmp | mask); // set bit mask
}
/*
* Function Name:ClearBitMask
* Functional Description: clear RC522 register bit
* Input parameters: reg - register address; mask - Ching-bit value
* Return value : none
*/
void ClearBitMask(uchar reg, uchar mask)
{
uchar tmp;
tmp = Read_MFRC522(reg);
Write_MFRC522(reg, tmp & (~mask)); // clear bit mask
}
/*
* Function name:AntennaOn
* Description: Turn antenna every time you start or close a natural barrier between the emission should be at least 1ms intervals
* Input : None
* Return Value : None
*/
void AntennaOn(void)
{
uchar temp;
temp = Read_MFRC522(TxControlReg);
if (!(temp & 0x03))
{
SetBitMask(TxControlReg, 0x03);
}
}
/*
* Function Name:AntennaOff
* Description: Close antenna, each time you start or close a natural barrier between the emission should be at least 1ms intervals
* Input:None
* Return value : None
*/
void AntennaOff(void)
{
ClearBitMask(TxControlReg, 0x03);
}
/*
* Function Name:ResetMFRC522
* Functional Description: Reset RC522
* Input None:None
* Return Value:None
*/
void MFRC522_Reset(void)
{
Write_MFRC522(CommandReg, PCD_RESETPHASE);
}
/*
* Function Name:InitMFRC522
* Description: initialization RC522
* Input Value:None
* Return Value:None
*/
void MFRC522_Init(void)
{
digitalWrite(NRSTPD,HIGH);
MFRC522_Reset();
//Timer: TPrescaler*TreloadVal/6.78MHz = 24ms
Write_MFRC522(TModeReg, 0x8D); //Tauto=1; f(Timer) = 6.78MHz/TPreScaler
Write_MFRC522(TPrescalerReg, 0x3E); //TModeReg[3..0] + TPrescalerReg
Write_MFRC522(TReloadRegL, 30);
Write_MFRC522(TReloadRegH, 0);
Write_MFRC522(TxAutoReg, 0x40); //100%ASK
Write_MFRC522(ModeReg, 0x3D); //CRC Initial Value 0x6363 ???
//ClearBitMask(Status2Reg, 0x08); //MFCrypto1On=0
//Write_MFRC522(RxSelReg, 0x86); //RxWait = RxSelReg[5..0]
//Write_MFRC522(RFCfgReg, 0x7F); //RxGain = 48dB
AntennaOn(); //Open the antenna
}
/*
* Function Name:MFRC522_Request
* Description: Find cards, read the card type number
* Input parameters: reqMode - find cards way
* Return value: the successful return MI_OK
*/
uchar MFRC522_Request(uchar reqMode, uchar *TagType)
{
uchar status;
uint backBits; //The received data bits
Write_MFRC522(BitFramingReg, 0x07); //TxLastBists = BitFramingReg[2..0] ???
TagType[0] = reqMode;
status = MFRC522_ToCard(PCD_TRANSCEIVE, TagType, 1, TagType, &backBits);
if ((status != MI_OK) || (backBits != 0x10))
{
status = MI_ERR;
}
return status;
}
/*
* Function Name:MFRC522_ToCard
* Description: RC522 ISO14443 card communication
* Input parameters: command - MF522 command wor,
* sendData--RC522 card is sent to the data.,
* sendLen--The length of the data transmitted
* backData--Receiving the card returns the dat,
* backLen--Back to the bit length of the data
* Return value: the successful return MI_OK
*/
uchar MFRC522_ToCard(uchar command, uchar *sendData, uchar sendLen, uchar *backData, uint *backLen)
{
uchar status = MI_ERR;
uchar irqEn = 0x00;
uchar waitIRq = 0x00;
uchar lastBits;
uchar n;
uint i;
switch (command)
{
case PCD_AUTHENT: //Certification cards close
{
irqEn = 0x12;
waitIRq = 0x10;
break;
}
case PCD_TRANSCEIVE: //Transmit FIFO data
{
irqEn = 0x77;
waitIRq = 0x30;
break;
}
default:
break;
}
Write_MFRC522(CommIEnReg, irqEn|0x80); //Interrupt request
ClearBitMask(CommIrqReg, 0x80); //Clear all interrupt request bit
SetBitMask(FIFOLevelReg, 0x80); //FlushBuffer=1, FIFO Initialization
Write_MFRC522(CommandReg, PCD_IDLE); //NO action;Cancel the current command ???
//Data is written to the FIFO
for (i=0; i<sendLen; i++)
{
Write_MFRC522(FIFODataReg, sendData[i]);
}
//Execute commands
Write_MFRC522(CommandReg, command);
if (command == PCD_TRANSCEIVE)
{
SetBitMask(BitFramingReg, 0x80); //StartSend=1,transmission of data starts
}
//Waiting for the completion of the reception data
i = 2000; //i - According to the maximum waiting time of the clock frequency adjustment, operation M1 card 25ms ???
do
{
//CommIrqReg[7..0]
//Set1 TxIRq RxIRq IdleIRq HiAlerIRq LoAlertIRq ErrIRq TimerIRq
n = Read_MFRC522(CommIrqReg);
i--;
}
while ((i!=0) && !(n&0x01) && !(n&waitIRq));
ClearBitMask(BitFramingReg, 0x80); //StartSend=0
if (i != 0)
{
if(!(Read_MFRC522(ErrorReg) & 0x1B)) //BufferOvfl Collerr CRCErr ProtecolErr
{
status = MI_OK;
if (n & irqEn & 0x01)
{
status = MI_NOTAGERR; //??
}
if (command == PCD_TRANSCEIVE)
{
n = Read_MFRC522(FIFOLevelReg);
lastBits = Read_MFRC522(ControlReg) & 0x07;
if (lastBits)
{
*backLen = (n-1)*8 + lastBits;
}
else
{
*backLen = n*8;
}
if (n == 0)
{
n = 1;
}
if (n > MAX_LEN)
{
n = MAX_LEN;
}
//The received data in the read FIFO
for (i=0; i<n; i++)
{
backData[i] = Read_MFRC522(FIFODataReg);
}
}
}
else
{
status = MI_ERR;
}
}
//SetBitMask(ControlReg,0x80); //timer stops
//Write_MFRC522(CommandReg, PCD_IDLE);
return status;
}
/*
* Function Name:MFRC522_Anticoll
* Description: Anti-collision detection, read the card serial number of the selected card
* Input parameters: serNum - returns 4 bytes card serial number, the 5-byte checksum byte
* Return value: the successful return MI_OK
*/
uchar MFRC522_Anticoll(uchar *serNum)
{
uchar status;
uchar i;
uchar serNumCheck=0;
uint unLen;
//ClearBitMask(Status2Reg, 0x08); //TempSensclear
//ClearBitMask(CollReg,0x80); //ValuesAfterColl
Write_MFRC522(BitFramingReg, 0x00); //TxLastBists = BitFramingReg[2..0]
serNum[0] = PICC_ANTICOLL;
serNum[1] = 0x20;
status = MFRC522_ToCard(PCD_TRANSCEIVE, serNum, 2, serNum, &unLen);
if (status == MI_OK)
{
//Check card serial number
for (i=0; i<4; i++)
{
serNumCheck ^= serNum[i];
}
if (serNumCheck != serNum[i])
{
status = MI_ERR;
}
}
//SetBitMask(CollReg, 0x80); //ValuesAfterColl=1
return status;
}
/*
* Function Name:CalulateCRC
* Function Description: MF522 calculated CRC
* Input parameters: pIndata - to be reading the CRC data, len - the length of the data, pOutData - calculate CRC result
* Return value : none
*/
void CalulateCRC(uchar *pIndata, uchar len, uchar *pOutData)
{
uchar i, n;
ClearBitMask(DivIrqReg, 0x04); //CRCIrq = 0
SetBitMask(FIFOLevelReg, 0x80); //Clear FIFO Pointer
//Write_MFRC522(CommandReg, PCD_IDLE);
//Data is written to the FIFO
for (i=0; i<len; i++)
{
Write_MFRC522(FIFODataReg, *(pIndata+i));
}
Write_MFRC522(CommandReg, PCD_CALCCRC);
//Wait for the CRC calculation is complete
i = 0xFF;
do
{
n = Read_MFRC522(DivIrqReg);
i--;
}
while ((i!=0) && !(n&0x04)); //CRCIrq = 1
//To read CRC calculation results
pOutData[0] = Read_MFRC522(CRCResultRegL);
pOutData[1] = Read_MFRC522(CRCResultRegM);
}
/*
* Function Name:MFRC522_SelectTag
* Description: election card, read the card memory capacity
* Input parameters: serNum - incoming card serial number
* Return value: the successful return of the card capacity
*/
uchar MFRC522_SelectTag(uchar *serNum)
{
uchar i;
uchar status;
uchar size;
uint recvBits;
uchar buffer[9];
//ClearBitMask(Status2Reg, 0x08); //MFCrypto1On=0
buffer[0] = PICC_SElECTTAG;
buffer[1] = 0x70;
for (i=0; i<5; i++)
{
buffer[i+2] = *(serNum+i);
}
CalulateCRC(buffer, 7, &buffer[7]); //??
status = MFRC522_ToCard(PCD_TRANSCEIVE, buffer, 9, buffer, &recvBits);
if ((status == MI_OK) && (recvBits == 0x18))
{
size = buffer[0];
}
else
{
size = 0;
}
return size;
}
/*
* Function name: MFRC522_Auth
* Description: Verify card password
* Input: authMode - password authentication mode
* 0x60 = Verify A key
* 0x61 = B key validation
* BlockAddr - block address
* Sectorkey - Sector password
* serNum - card serial number, 4 bytes
* Return value: the successful return MI_OK
*/
uchar MFRC522_Auth(uchar authMode, uchar BlockAddr, uchar *Sectorkey, uchar *serNum)
{
uchar status;
uint recvBits;
uchar i;
uchar buff[12];
//Verify instructions + block address + sectors password + card serial number
buff[0] = authMode;
buff[1] = BlockAddr;
for (i=0; i<6; i++)
{
buff[i+2] = *(Sectorkey+i);
}
for (i=0; i<4; i++)
{
buff[i+8] = *(serNum+i);
}
status = MFRC522_ToCard(PCD_AUTHENT, buff, 12, buff, &recvBits);
if ((status != MI_OK) || (!(Read_MFRC522(Status2Reg) & 0x08)))
{
status = MI_ERR;
}
return status;
}
/*
* Function name: MFRC522_Read
* Description: Read block data
* Input parameters: blockAddr - block address; recvData - read out blocks of data
* Return value: the successful return MI_OK
*/
uchar MFRC522_Read(uchar blockAddr, uchar *recvData)
{
uchar status;
uint unLen;
recvData[0] = PICC_READ;
recvData[1] = blockAddr;
CalulateCRC(recvData,2, &recvData[2]);
status = MFRC522_ToCard(PCD_TRANSCEIVE, recvData, 4, recvData, &unLen);
if ((status != MI_OK) || (unLen != 0x90))
{
status = MI_ERR;
}
return status;
}
/*
* Function name: MFRC522_Write
* Description: write block data
* Input parameters: blockAddr - block address; writeData - 16 bytes of data to write to the block
* Return value: the successful return MI_OK
*/
uchar MFRC522_Write(uchar blockAddr, uchar *writeData)
{
uchar status;
uint recvBits;
uchar i;
uchar buff[18];
buff[0] = PICC_WRITE;
buff[1] = blockAddr;
CalulateCRC(buff, 2, &buff[2]);
status = MFRC522_ToCard(PCD_TRANSCEIVE, buff, 4, buff, &recvBits);
if ((status != MI_OK) || (recvBits != 4) || ((buff[0] & 0x0F) != 0x0A))
{
status = MI_ERR;
}
if (status == MI_OK)
{
for (i=0; i<16; i++) //To FIFO Write 16Byte Data
{
buff[i] = *(writeData+i);
}
CalulateCRC(buff, 16, &buff[16]);
status = MFRC522_ToCard(PCD_TRANSCEIVE, buff, 18, buff, &recvBits);
if ((status != MI_OK) || (recvBits != 4) || ((buff[0] & 0x0F) != 0x0A))
{
status = MI_ERR;
}
}
return status;
}
/*
* Function: MFRC522_Halt
* Description: command card into hibernation
* Input: None
* Return value: no
*/
void MFRC522_Halt(void)
{
uchar status;
uint unLen;
uchar buff[4];
buff[0] = PICC_HALT;
buff[1] = 0;
CalulateCRC(buff, 2, &buff[2]);
status = MFRC522_ToCard(PCD_TRANSCEIVE, buff, 4, buff,&unLen);
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment