Created
July 30, 2019 11:19
-
-
Save laifi/e5975b9cc55240efc65cba56560bf3f3 to your computer and use it in GitHub Desktop.
extract features with pretrained Bert Pytorch
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# coding=utf-8 | |
# Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Extract pre-computed feature vectors from a PyTorch BERT model.""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import argparse | |
import collections | |
import logging | |
import json | |
import re | |
import torch | |
from torch.utils.data import TensorDataset, DataLoader, SequentialSampler | |
from torch.utils.data.distributed import DistributedSampler | |
from pytorch_pretrained_bert.tokenization import BertTokenizer | |
from pytorch_pretrained_bert.modeling import BertModel | |
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s', | |
datefmt = '%m/%d/%Y %H:%M:%S', | |
level = logging.INFO) | |
logger = logging.getLogger(__name__) | |
class InputExample(object): | |
def __init__(self, unique_id, text_a, text_b): | |
self.unique_id = unique_id | |
self.text_a = text_a | |
self.text_b = text_b | |
class InputFeatures(object): | |
"""A single set of features of data.""" | |
def __init__(self, unique_id, tokens, input_ids, input_mask, input_type_ids): | |
self.unique_id = unique_id | |
self.tokens = tokens | |
self.input_ids = input_ids | |
self.input_mask = input_mask | |
self.input_type_ids = input_type_ids | |
def convert_examples_to_features(examples, seq_length, tokenizer): | |
"""Loads a data file into a list of `InputBatch`s.""" | |
features = [] | |
for (ex_index, example) in enumerate(examples): | |
tokens_a = tokenizer.tokenize(example.text_a) | |
tokens_b = None | |
if example.text_b: | |
tokens_b = tokenizer.tokenize(example.text_b) | |
if tokens_b: | |
# Modifies `tokens_a` and `tokens_b` in place so that the total | |
# length is less than the specified length. | |
# Account for [CLS], [SEP], [SEP] with "- 3" | |
_truncate_seq_pair(tokens_a, tokens_b, seq_length - 3) | |
else: | |
# Account for [CLS] and [SEP] with "- 2" | |
if len(tokens_a) > seq_length - 2: | |
tokens_a = tokens_a[0:(seq_length - 2)] | |
# The convention in BERT is: | |
# (a) For sequence pairs: | |
# tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] | |
# type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 | |
# (b) For single sequences: | |
# tokens: [CLS] the dog is hairy . [SEP] | |
# type_ids: 0 0 0 0 0 0 0 | |
# | |
# Where "type_ids" are used to indicate whether this is the first | |
# sequence or the second sequence. The embedding vectors for `type=0` and | |
# `type=1` were learned during pre-training and are added to the wordpiece | |
# embedding vector (and position vector). This is not *strictly* necessary | |
# since the [SEP] token unambigiously separates the sequences, but it makes | |
# it easier for the model to learn the concept of sequences. | |
# | |
# For classification tasks, the first vector (corresponding to [CLS]) is | |
# used as as the "sentence vector". Note that this only makes sense because | |
# the entire model is fine-tuned. | |
tokens = [] | |
input_type_ids = [] | |
tokens.append("[CLS]") | |
input_type_ids.append(0) | |
for token in tokens_a: | |
tokens.append(token) | |
input_type_ids.append(0) | |
tokens.append("[SEP]") | |
input_type_ids.append(0) | |
if tokens_b: | |
for token in tokens_b: | |
tokens.append(token) | |
input_type_ids.append(1) | |
tokens.append("[SEP]") | |
input_type_ids.append(1) | |
input_ids = tokenizer.convert_tokens_to_ids(tokens) | |
# The mask has 1 for real tokens and 0 for padding tokens. Only real | |
# tokens are attended to. | |
input_mask = [1] * len(input_ids) | |
# Zero-pad up to the sequence length. | |
while len(input_ids) < seq_length: | |
input_ids.append(0) | |
input_mask.append(0) | |
input_type_ids.append(0) | |
assert len(input_ids) == seq_length | |
assert len(input_mask) == seq_length | |
assert len(input_type_ids) == seq_length | |
if ex_index < 5: | |
logger.info("*** Example ***") | |
logger.info("unique_id: %s" % (example.unique_id)) | |
logger.info("tokens: %s" % " ".join([str(x) for x in tokens])) | |
logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) | |
logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask])) | |
logger.info( | |
"input_type_ids: %s" % " ".join([str(x) for x in input_type_ids])) | |
features.append( | |
InputFeatures( | |
unique_id=example.unique_id, | |
tokens=tokens, | |
input_ids=input_ids, | |
input_mask=input_mask, | |
input_type_ids=input_type_ids)) | |
return features | |
def _truncate_seq_pair(tokens_a, tokens_b, max_length): | |
"""Truncates a sequence pair in place to the maximum length.""" | |
# This is a simple heuristic which will always truncate the longer sequence | |
# one token at a time. This makes more sense than truncating an equal percent | |
# of tokens from each, since if one sequence is very short then each token | |
# that's truncated likely contains more information than a longer sequence. | |
while True: | |
total_length = len(tokens_a) + len(tokens_b) | |
if total_length <= max_length: | |
break | |
if len(tokens_a) > len(tokens_b): | |
tokens_a.pop() | |
else: | |
tokens_b.pop() | |
def read_examples(input_file): | |
"""Read a list of `InputExample`s from an input file.""" | |
examples = [] | |
unique_id = 0 | |
with open(input_file, "r", encoding='utf-8') as reader: | |
while True: | |
line = reader.readline() | |
if not line: | |
break | |
line = line.strip() | |
text_a = None | |
text_b = None | |
m = re.match(r"^(.*) \|\|\| (.*)$", line) | |
if m is None: | |
text_a = line | |
else: | |
text_a = m.group(1) | |
text_b = m.group(2) | |
examples.append( | |
InputExample(unique_id=unique_id, text_a=text_a, text_b=text_b)) | |
unique_id += 1 | |
return examples | |
def main(): | |
parser = argparse.ArgumentParser() | |
## Required parameters | |
parser.add_argument("--input_file", default=None, type=str, required=True) | |
parser.add_argument("--output_file", default=None, type=str, required=True) | |
parser.add_argument("--bert_model", default=None, type=str, required=True, | |
help="Bert pre-trained model selected in the list: bert-base-uncased, " | |
"bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.") | |
## Other parameters | |
parser.add_argument("--do_lower_case", action='store_true', help="Set this flag if you are using an uncased model.") | |
parser.add_argument("--layers", default="-1,-2,-3,-4", type=str) | |
parser.add_argument("--max_seq_length", default=128, type=int, | |
help="The maximum total input sequence length after WordPiece tokenization. Sequences longer " | |
"than this will be truncated, and sequences shorter than this will be padded.") | |
parser.add_argument("--batch_size", default=32, type=int, help="Batch size for predictions.") | |
parser.add_argument("--local_rank", | |
type=int, | |
default=-1, | |
help = "local_rank for distributed training on gpus") | |
parser.add_argument("--no_cuda", | |
action='store_true', | |
help="Whether not to use CUDA when available") | |
args = parser.parse_args() | |
if args.local_rank == -1 or args.no_cuda: | |
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") | |
n_gpu = torch.cuda.device_count() | |
else: | |
device = torch.device("cuda", args.local_rank) | |
n_gpu = 1 | |
# Initializes the distributed backend which will take care of sychronizing nodes/GPUs | |
torch.distributed.init_process_group(backend='nccl') | |
logger.info("device: {} n_gpu: {} distributed training: {}".format(device, n_gpu, bool(args.local_rank != -1))) | |
layer_indexes = [int(x) for x in args.layers.split(",")] | |
tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case) | |
examples = read_examples(args.input_file) | |
features = convert_examples_to_features( | |
examples=examples, seq_length=args.max_seq_length, tokenizer=tokenizer) | |
unique_id_to_feature = {} | |
for feature in features: | |
unique_id_to_feature[feature.unique_id] = feature | |
model = BertModel.from_pretrained(args.bert_model) | |
model.to(device) | |
if args.local_rank != -1: | |
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], | |
output_device=args.local_rank) | |
elif n_gpu > 1: | |
model = torch.nn.DataParallel(model) | |
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) | |
all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long) | |
all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long) | |
eval_data = TensorDataset(all_input_ids, all_input_mask, all_example_index) | |
if args.local_rank == -1: | |
eval_sampler = SequentialSampler(eval_data) | |
else: | |
eval_sampler = DistributedSampler(eval_data) | |
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.batch_size) | |
model.eval() | |
with open(args.output_file, "w", encoding='utf-8') as writer: | |
for input_ids, input_mask, example_indices in eval_dataloader: | |
input_ids = input_ids.to(device) | |
input_mask = input_mask.to(device) | |
all_encoder_layers, _ = model(input_ids, token_type_ids=None, attention_mask=input_mask) | |
all_encoder_layers = all_encoder_layers | |
for b, example_index in enumerate(example_indices): | |
feature = features[example_index.item()] | |
unique_id = int(feature.unique_id) | |
# feature = unique_id_to_feature[unique_id] | |
output_json = collections.OrderedDict() | |
output_json["linex_index"] = unique_id | |
all_out_features = [] | |
for (i, token) in enumerate(feature.tokens): | |
all_layers = [] | |
for (j, layer_index) in enumerate(layer_indexes): | |
layer_output = all_encoder_layers[int(layer_index)].detach().cpu().numpy() | |
layer_output = layer_output[b] | |
layers = collections.OrderedDict() | |
layers["index"] = layer_index | |
layers["values"] = [ | |
round(x.item(), 6) for x in layer_output[i] | |
] | |
all_layers.append(layers) | |
out_features = collections.OrderedDict() | |
out_features["token"] = token | |
out_features["layers"] = all_layers | |
all_out_features.append(out_features) | |
output_json["features"] = all_out_features | |
writer.write(json.dumps(output_json) + "\n") | |
if __name__ == "__main__": | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment