Created
January 28, 2020 10:40
-
-
Save lakshay-arora/4d2c2226a5961544d2436ab4f062c1d1 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# training data with 7 most important features | |
train_x_if = train_x[['Item_MRP', | |
'Outlet_Type_Grocery Store', | |
'Item_Visibility', | |
'Outlet_Type_Supermarket Type3', | |
'Outlet_Identifier_OUT027', | |
'Outlet_Establishment_Year', | |
'Item_Weight']] | |
# test data with 7 most important features | |
test_x_if = test_x[['Item_MRP', | |
'Outlet_Type_Grocery Store', | |
'Item_Visibility', | |
'Outlet_Type_Supermarket Type3', | |
'Outlet_Identifier_OUT027', | |
'Outlet_Establishment_Year', | |
'Item_Weight']] | |
# create an object of the RandfomForestRegressor Model | |
model_RFR_with_if = RandomForestRegressor(max_depth=10,random_state=2) | |
# fit the model with the training data | |
model_RFR_with_if.fit(train_x_if, train_y) | |
# predict the target on the training and test data | |
predict_train_with_if = model_RFR_with_if.predict(train_x_if) | |
predict_test_with_if = model_RFR_with_if.predict(test_x_if) | |
# Root Mean Squared Error on the train and test data | |
print('RMSE on train data: ', mean_squared_error(train_y, predict_train_with_if)**(0.5)) | |
print('RMSE on test data: ', mean_squared_error(test_y, predict_test_with_if)**(0.5)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment