Created
April 6, 2022 06:36
-
-
Save lakshith-403/355e26f603b950db49ba1977dd5e6911 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import torchvision | |
from torch import nn | |
from torch import optim | |
import pandas as pd | |
import numpy as np | |
from torch.utils.data import Dataset | |
from sklearn.preprocessing import maxabs_scale | |
from torch.utils.tensorboard import SummaryWriter | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
print(f"Using {device} device") | |
print(torch.version.cuda) | |
class FeatureDataset(Dataset): | |
def __init__(self, file_name): | |
data_csv = pd.read_csv(file_name, header=0) | |
dataset = np.array(data_csv, dtype=float) | |
x = dataset[:, 1:785] | |
x = maxabs_scale(x, axis=1) | |
x = torch.tensor(x, dtype=float, device=device) | |
y = torch.ones((x.shape[0], 1), dtype=float, device=device) | |
self.x_train = x | |
self.y_train = y | |
def __len__(self): | |
return len(self.y_train) | |
def __getitem__(self, idx): | |
return self.x_train[idx], self.y_train[idx] | |
batch_size = 64 | |
epochs = 50 | |
learning_rate = 3e-4 | |
feature_set = FeatureDataset('data/mnist_train.csv') | |
data_loader = torch.utils.data.DataLoader(feature_set, batch_size=batch_size, shuffle=True, drop_last=True) | |
class Generator(nn.Module): | |
def __init__(self): | |
super(Generator, self).__init__() | |
self.linear_stack = nn.Sequential( | |
nn.Linear(64, 512), | |
nn.ReLU(), | |
nn.Linear(512, 1024), | |
nn.ReLU(), | |
nn.Linear(1024, 28 * 28), | |
nn.Tanh() | |
) | |
def forward(self, x): | |
logits = self.linear_stack(x) | |
return logits | |
class Discriminator(nn.Module): | |
def __init__(self): | |
super(Discriminator, self).__init__() | |
self.linear_stack = nn.Sequential( | |
nn.Linear(784, 512), | |
nn.ReLU(), | |
nn.Linear(512, 1024), | |
nn.ReLU(), | |
nn.Linear(1024, 1), | |
nn.Sigmoid() | |
) | |
def forward(self, x): | |
logits = self.linear_stack(x.float()) | |
return logits | |
disc = Discriminator().to(device) | |
gen = Generator().to(device) | |
opt_disc = optim.Adam(disc.parameters(), lr=learning_rate) | |
opt_gen = optim.Adam(gen.parameters(), lr=learning_rate) | |
fixed_noise = torch.randn((batch_size, 64), device=device) | |
criterian = nn.BCELoss() | |
scaler_writer = SummaryWriter(f"logs/loss") | |
writer_fake = SummaryWriter(f"logs/fake") | |
writer_real = SummaryWriter(f"logs/real") | |
step = 0 | |
i = 0 | |
for epoch in range(epochs): | |
print(epoch) | |
for batch_idx, (real, _) in enumerate(data_loader): | |
i = i + 1 | |
noise = torch.randn((batch_size, 64), device=device) | |
fake = gen(noise) | |
disc_real = disc(real) | |
lossD_real = criterian(disc_real, torch.ones_like(disc_real, device=device)) | |
disc_fake = disc(fake) | |
lossD_fake = criterian(disc_fake, torch.zeros_like(disc_fake, device=device)) | |
lossD = (lossD_real + lossD_fake) / 2 | |
disc.zero_grad() | |
lossD.backward(retain_graph=True) | |
opt_disc.step() | |
output = disc(fake) | |
lossG = criterian(output, torch.ones_like(output)) | |
gen.zero_grad() | |
lossG.backward() | |
opt_gen.step() | |
if batch_idx == 0: | |
with torch.no_grad(): | |
fake = gen(fixed_noise).reshape(-1, 1, 28, 28) | |
data = real.reshape(-1, 1, 28, 28) | |
img_grid_fake = torchvision.utils.make_grid(fake, normalize=True) | |
img_grid_real = torchvision.utils.make_grid(data, normalize=True) | |
writer_fake.add_image( | |
"Fake", img_grid_fake, global_step=step | |
) | |
writer_real.add_image( | |
"Real", img_grid_real, global_step=step | |
) | |
if batch_idx % 100 == 0: | |
scaler_writer.add_scalar("Discriminator", lossD, global_step=step) | |
scaler_writer.add_scalar("Generator", lossG, global_step=step) | |
step = step + 1 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment