Created
July 3, 2017 16:30
-
-
Save lannp/9d0e2871067a42c170008aab15f7a587 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import sys | |
import os | |
import numpy as np | |
import cv2 | |
import scipy | |
from scipy.stats import norm | |
from scipy.signal import convolve2d | |
import math | |
def split_rgb(image): | |
red = None | |
green = None | |
blue = None | |
(blue, green, red) = cv2.split(image) | |
return red, green, blue | |
def generating_kernel(a): | |
w_1d = np.array([0.25 - a/2.0, 0.25, a, 0.25, 0.25 - a/2.0]) | |
return np.outer(w_1d, w_1d) | |
def ireduce(image): | |
out = None | |
kernel = generating_kernel(0.4) | |
outimage = scipy.signal.convolve2d(image,kernel,'same') | |
out = outimage[::2,::2] | |
return out | |
def iexpand(image): | |
out = None | |
kernel = generating_kernel(0.4) | |
outimage = np.zeros((image.shape[0]*2, image.shape[1]*2), dtype=np.float64) | |
outimage[::2,::2]=image[:,:] | |
out = 4*scipy.signal.convolve2d(outimage,kernel,'same') | |
return out | |
def gauss_pyramid(image, levels): | |
output = [] | |
output.append(image) | |
tmp = image | |
for i in range(0,levels): | |
tmp = ireduce(tmp) | |
output.append(tmp) | |
return output | |
def lapl_pyramid(gauss_pyr): | |
output = [] | |
k = len(gauss_pyr) | |
for i in range(0,k-1): | |
gu = gauss_pyr[i] | |
egu = iexpand(gauss_pyr[i+1]) | |
if egu.shape[0] > gu.shape[0]: | |
egu = np.delete(egu,(-1),axis=0) | |
if egu.shape[1] > gu.shape[1]: | |
egu = np.delete(egu,(-1),axis=1) | |
output.append(gu - egu) | |
output.append(gauss_pyr.pop()) | |
return output | |
def blend(lapl_pyr_white, lapl_pyr_black, gauss_pyr_mask): | |
blended_pyr = [] | |
k= len(gauss_pyr_mask) | |
for i in range(0,k): | |
# print gauss_pyr_mask[i] | |
p1= gauss_pyr_mask[i]*lapl_pyr_white[i] | |
p2=(1 - gauss_pyr_mask[i])*lapl_pyr_black[i] | |
blended_pyr.append(p1 + p2) | |
return blended_pyr | |
def collapse(lapl_pyr): | |
output = None | |
output = np.zeros((lapl_pyr[0].shape[0],lapl_pyr[0].shape[1]), dtype=np.float64) | |
for i in range(len(lapl_pyr)-1,0,-1): | |
lap = iexpand(lapl_pyr[i]) | |
lapb = lapl_pyr[i-1] | |
if lap.shape[0] > lapb.shape[0]: | |
lap = np.delete(lap,(-1),axis=0) | |
if lap.shape[1] > lapb.shape[1]: | |
lap = np.delete(lap,(-1),axis=1) | |
tmp = lap + lapb | |
lapl_pyr.pop() | |
lapl_pyr.pop() | |
lapl_pyr.append(tmp) | |
output = tmp | |
return output | |
def main(): | |
image1 = cv2.imread("C:\Users\PhuongLan\Desktop\apple1.jpg") | |
image2 = cv2.imread("C:\Users\PhuongLan\Desktop\orange1.jpg") | |
mask = cv2.imread('mask216.jpg') | |
r1= None | |
g1= None | |
b1= None | |
r2= None | |
g2= None | |
b2= None | |
rm= None | |
gm = None | |
bm = None | |
(r1,g1,b1) = split_rgb(image1) | |
(r2,g2,b2) = split_rgb(image2) | |
(rm,gm,bm) = split_rgb(mask) | |
r1 = r1.astype(float) | |
g1 = g1.astype(float) | |
b1 = b1.astype(float) | |
r2 = r2.astype(float) | |
g2 = g2.astype(float) | |
b2 = b2.astype(float) | |
rm = rm.astype(float)/255 | |
gm = gm.astype(float)/255 | |
bm = bm.astype(float)/255 | |
min_size = min(r1.shape) | |
depth = int(math.floor(math.log(min_size, 2))) - 4 # at least 16x16 at the highest level. | |
gauss_pyr_maskr = gauss_pyramid(rm, depth) | |
gauss_pyr_maskg = gauss_pyramid(gm, depth) | |
gauss_pyr_maskb = gauss_pyramid(bm, depth) | |
gauss_pyr_image1r = gauss_pyramid(r1, depth) | |
gauss_pyr_image1g = gauss_pyramid(g1, depth) | |
gauss_pyr_image1b = gauss_pyramid(b1, depth) | |
gauss_pyr_image2r = gauss_pyramid(r2, depth) | |
gauss_pyr_image2g = gauss_pyramid(g2, depth) | |
gauss_pyr_image2b = gauss_pyramid(b2, depth) | |
lapl_pyr_image1r = lapl_pyramid(gauss_pyr_image1r) | |
lapl_pyr_image1g = lapl_pyramid(gauss_pyr_image1g) | |
lapl_pyr_image1b = lapl_pyramid(gauss_pyr_image1b) | |
lapl_pyr_image2r = lapl_pyramid(gauss_pyr_image2r) | |
lapl_pyr_image2g = lapl_pyramid(gauss_pyr_image2g) | |
lapl_pyr_image2b = lapl_pyramid(gauss_pyr_image2b) | |
print gauss_pyr_image1r, gauss_pyr_image2r | |
outimgr = collapse(blend(lapl_pyr_image2r, lapl_pyr_image1r, gauss_pyr_maskr)) | |
outimgg = collapse(blend(lapl_pyr_image2g, lapl_pyr_image1g, gauss_pyr_maskg)) | |
outimgb = collapse(blend(lapl_pyr_image2b, lapl_pyr_image1b, gauss_pyr_maskb)) | |
outimgr[outimgr < 0] = 0 | |
outimgr[outimgr > 255] = 255 | |
outimgr = outimgr.astype(np.uint8) | |
outimgg[outimgg < 0] = 0 | |
outimgg[outimgg > 255] = 255 | |
outimgg = outimgg.astype(np.uint8) | |
outimgb[outimgb < 0] = 0 | |
outimgb[outimgb > 255] = 255 | |
outimgb = outimgb.astype(np.uint8) | |
result = np.zeros(image1.shape,dtype=image1.dtype) | |
tmp = [] | |
tmp.append(outimgb) | |
tmp.append(outimgg) | |
tmp.append(outimgr) | |
result = cv2.merge(tmp,result) | |
cv2.imwrite("C:\Users\PhuongLan\Desktop\blended.jpg", result) | |
if __name__ =='__main__': | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment