Skip to content

Instantly share code, notes, and snippets.

@lannp
Created July 3, 2017 16:30
Show Gist options
  • Save lannp/9d0e2871067a42c170008aab15f7a587 to your computer and use it in GitHub Desktop.
Save lannp/9d0e2871067a42c170008aab15f7a587 to your computer and use it in GitHub Desktop.
import sys
import os
import numpy as np
import cv2
import scipy
from scipy.stats import norm
from scipy.signal import convolve2d
import math
def split_rgb(image):
red = None
green = None
blue = None
(blue, green, red) = cv2.split(image)
return red, green, blue
def generating_kernel(a):
w_1d = np.array([0.25 - a/2.0, 0.25, a, 0.25, 0.25 - a/2.0])
return np.outer(w_1d, w_1d)
def ireduce(image):
out = None
kernel = generating_kernel(0.4)
outimage = scipy.signal.convolve2d(image,kernel,'same')
out = outimage[::2,::2]
return out
def iexpand(image):
out = None
kernel = generating_kernel(0.4)
outimage = np.zeros((image.shape[0]*2, image.shape[1]*2), dtype=np.float64)
outimage[::2,::2]=image[:,:]
out = 4*scipy.signal.convolve2d(outimage,kernel,'same')
return out
def gauss_pyramid(image, levels):
output = []
output.append(image)
tmp = image
for i in range(0,levels):
tmp = ireduce(tmp)
output.append(tmp)
return output
def lapl_pyramid(gauss_pyr):
output = []
k = len(gauss_pyr)
for i in range(0,k-1):
gu = gauss_pyr[i]
egu = iexpand(gauss_pyr[i+1])
if egu.shape[0] > gu.shape[0]:
egu = np.delete(egu,(-1),axis=0)
if egu.shape[1] > gu.shape[1]:
egu = np.delete(egu,(-1),axis=1)
output.append(gu - egu)
output.append(gauss_pyr.pop())
return output
def blend(lapl_pyr_white, lapl_pyr_black, gauss_pyr_mask):
blended_pyr = []
k= len(gauss_pyr_mask)
for i in range(0,k):
# print gauss_pyr_mask[i]
p1= gauss_pyr_mask[i]*lapl_pyr_white[i]
p2=(1 - gauss_pyr_mask[i])*lapl_pyr_black[i]
blended_pyr.append(p1 + p2)
return blended_pyr
def collapse(lapl_pyr):
output = None
output = np.zeros((lapl_pyr[0].shape[0],lapl_pyr[0].shape[1]), dtype=np.float64)
for i in range(len(lapl_pyr)-1,0,-1):
lap = iexpand(lapl_pyr[i])
lapb = lapl_pyr[i-1]
if lap.shape[0] > lapb.shape[0]:
lap = np.delete(lap,(-1),axis=0)
if lap.shape[1] > lapb.shape[1]:
lap = np.delete(lap,(-1),axis=1)
tmp = lap + lapb
lapl_pyr.pop()
lapl_pyr.pop()
lapl_pyr.append(tmp)
output = tmp
return output
def main():
image1 = cv2.imread("C:\Users\PhuongLan\Desktop\apple1.jpg")
image2 = cv2.imread("C:\Users\PhuongLan\Desktop\orange1.jpg")
mask = cv2.imread('mask216.jpg')
r1= None
g1= None
b1= None
r2= None
g2= None
b2= None
rm= None
gm = None
bm = None
(r1,g1,b1) = split_rgb(image1)
(r2,g2,b2) = split_rgb(image2)
(rm,gm,bm) = split_rgb(mask)
r1 = r1.astype(float)
g1 = g1.astype(float)
b1 = b1.astype(float)
r2 = r2.astype(float)
g2 = g2.astype(float)
b2 = b2.astype(float)
rm = rm.astype(float)/255
gm = gm.astype(float)/255
bm = bm.astype(float)/255
min_size = min(r1.shape)
depth = int(math.floor(math.log(min_size, 2))) - 4 # at least 16x16 at the highest level.
gauss_pyr_maskr = gauss_pyramid(rm, depth)
gauss_pyr_maskg = gauss_pyramid(gm, depth)
gauss_pyr_maskb = gauss_pyramid(bm, depth)
gauss_pyr_image1r = gauss_pyramid(r1, depth)
gauss_pyr_image1g = gauss_pyramid(g1, depth)
gauss_pyr_image1b = gauss_pyramid(b1, depth)
gauss_pyr_image2r = gauss_pyramid(r2, depth)
gauss_pyr_image2g = gauss_pyramid(g2, depth)
gauss_pyr_image2b = gauss_pyramid(b2, depth)
lapl_pyr_image1r = lapl_pyramid(gauss_pyr_image1r)
lapl_pyr_image1g = lapl_pyramid(gauss_pyr_image1g)
lapl_pyr_image1b = lapl_pyramid(gauss_pyr_image1b)
lapl_pyr_image2r = lapl_pyramid(gauss_pyr_image2r)
lapl_pyr_image2g = lapl_pyramid(gauss_pyr_image2g)
lapl_pyr_image2b = lapl_pyramid(gauss_pyr_image2b)
print gauss_pyr_image1r, gauss_pyr_image2r
outimgr = collapse(blend(lapl_pyr_image2r, lapl_pyr_image1r, gauss_pyr_maskr))
outimgg = collapse(blend(lapl_pyr_image2g, lapl_pyr_image1g, gauss_pyr_maskg))
outimgb = collapse(blend(lapl_pyr_image2b, lapl_pyr_image1b, gauss_pyr_maskb))
outimgr[outimgr < 0] = 0
outimgr[outimgr > 255] = 255
outimgr = outimgr.astype(np.uint8)
outimgg[outimgg < 0] = 0
outimgg[outimgg > 255] = 255
outimgg = outimgg.astype(np.uint8)
outimgb[outimgb < 0] = 0
outimgb[outimgb > 255] = 255
outimgb = outimgb.astype(np.uint8)
result = np.zeros(image1.shape,dtype=image1.dtype)
tmp = []
tmp.append(outimgb)
tmp.append(outimgg)
tmp.append(outimgr)
result = cv2.merge(tmp,result)
cv2.imwrite("C:\Users\PhuongLan\Desktop\blended.jpg", result)
if __name__ =='__main__':
main()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment