Create a gist now

Instantly share code, notes, and snippets.

What would you like to do?
Priority queues (pairing heaps) in Erlang
% Copyright (c) 2010-2014, Lars Buitinck
% May be used, redistributed and modified under the terms of the
% GNU Lesser General Public License (LGPL), version 2.1 or later
% Heaps/priority queues in Erlang
% Heaps are data structures that return the entries inserted into them in
% sorted order. This makes them the data structure of choice for implementing
% priority queues, a central element of algorithms such as best-first/A*
% search and Kruskal's minimum-spanning-tree algorithm.
% This module implements min-heaps, meaning that items are retrieved in
% ascending order of key/priority.
% The current version implements pairing heaps. All operations except
% from_list/1, sort/1 and to_list/1 can be performed in at most O(lg n)
% amortized time.
% (The actual time complexity of pairing heaps is complicated and not yet
% determined conclusively; see, e.g. S. Pettie (2005), Towards a final
% analysis of pairing heaps, Proc. FOCS'05.)
% Ported from an earlier Prolog version, now available as part of SWI-Prolog,
-export([add/2, delete_min/1, from_list/1, empty/1, merge/2, new/0, min/1,
size/1, sort/1, to_list/1]).
% Public interface: priority queues
% Add element X to priority queue
add(X, {prioq, Heap, N}) ->
{prioq, meld(Heap, {X, []}), N + 1}.
% Return new priority queue with minimum element removed
delete_min({prioq, {_, Sub}, N}) ->
{prioq, pair(Sub), N - 1}.
% Construct priority queue from list
from_list(L) ->
lists:foldl(fun(X, Q) -> add(X, Q) end, new(), L).
% True iff argument is an empty priority queue
empty({prioq, nil, 0}) -> true;
empty(_) -> false.
% Merge two priority queues
merge({prioq, Heap0, M}, {prioq, Heap1, N}) ->
{prioq, meld(Heap0, Heap1), M + N}.
% Get minimum element
min({prioq, Heap, _}) -> heap_min(Heap).
% Returns new, empty priority queue
new() -> {prioq, nil, 0}.
% Number of elements in queue
size({prioq, _, N}) -> N.
% Heap sort a list
sort(L) -> to_list(from_list(L)).
% List elements in priority queue in sorted order
to_list({prioq, nil, _}) -> [];
to_list(Q) ->
[min(Q) | to_list(delete_min(Q))].
% Guts: pairing heaps
% A pairing heap is either nil or a term {Item, SubHeaps}
% where SubHeaps is a list of heaps.
heap_min({X, _}) -> X.
meld(nil, Q) -> Q;
meld(Q, nil) -> Q;
meld(L = {X, SubL}, R = {Y, SubR}) ->
X < Y ->
{X, [R|SubL]};
true ->
{Y, [L|SubR]}
% "Pair up" (recursively meld) a list of pairing heaps.
pair([]) -> nil;
pair([Q]) -> Q;
pair([Q0, Q1 | Qs]) ->
Q2 = meld(Q0, Q1),
meld(Q2, pair(Qs)).

Using this I noticed delete_min runtime about linear in the size of the heap on randomly generated data. Comparing with and, I think the last line of pair should be meld(Q2, pair(Qs)) in order to get the (conjectured) amortized logarithmic runtime, and timings of the revised version supported this. It made a big difference for size 1000.


larsmans commented Jan 14, 2014

@xmhbbovru You're right, fixed it. I'll have to fix the version in SWI-Prolog as well.

mxm commented Apr 24, 2014

The -import(lists) compiler declarative is not necessary and also not a part of the language anymore since R16. Great job!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment