Skip to content

Instantly share code, notes, and snippets.

simulate_pack <- function(...) {
very_rare_pool <- c(paste0("sr", 1:n_super_rare),
paste0("ur", 1:n_ultra_rare),
paste0("secr", 1:n_secret_rare))
very_rare_prob_vec <- c(rep(prob_super_rare / n_super_rare, n_super_rare),
rep(prob_ultra_rare / n_ultra_rare, n_ultra_rare),
rep(prob_secret_rare / n_secret_rare, n_secret_rare))
commons <- sample(paste0("c", 1:n_commons), 7, replace = T)
@latlio
latlio / calculate_expected_number.R
Created June 12, 2023 04:11
Calculate expected number of trials of yugioh cards
get_expected_events <- function(x) {
#' take in a number of elements in a set
#' and a probability
out <- x * log(x) + 0.577 * x + 0.5
return(out)
}
n_commons <- 48
n_rare <- 20
n_super_rare <- 12
@latlio
latlio / .gitignore
Created December 29, 2021 01:28 — forked from octocat/.gitignore
Some common .gitignore configurations
# Compiled source #
###################
*.com
*.class
*.dll
*.exe
*.o
*.so
# Packages #
@latlio
latlio / gl_translate_language_learning.R
Last active June 18, 2021 19:48
Enhancing language learning with text frequency
vocab <- readxl::read_excel("insert_your_excel.xlsx") %>%
tidytext::unnest_tokens(word, text) %>%
dplyr::count(word, sort = TRUE) %>%
anti_join(stopwords::stop_words) %>%
dplyr::mutate(french_text = googleLanguageR::gl_translate(word, target = "fr", source = "en")$translatedText)
bigram_constructions <- readxl::read_excel("insert_your_excel.xlsx") %>%
unnest_tokens(bigram, text) %>%
count(bigram, sort = TRUE) %>%
mutate(french_text = googleLanguageR::gl_translate(bigram, target = "fr", source = "en")$translatedText)
#functions.R
create_plot <- function(data) {
ggplot(data) +
geom_histogram(aes(x = hp_per_cyl)) +
theme_bw()
}
validate_data <- function(data) {
rules <- validator(hp > 0,
# _targets.R
## installs and loads libraries
pacman::p_load(targets, tidyverse, validate)
source("R/functions.R")
options(tidyverse.quiet = TRUE)
#sets package(s) globally for all subsequent targets
tar_option_set(packages = c("tidyverse"))
list(
#record state of R environment
SAFFRONres <- SAFFRON(sample.df)
new_data <- SAFFRONres%>%
mutate(index = row_number(),
SAFFRON = log(alphai),
Bonferroni = log(0.05/index),
Unadjusted = rep(log(0.05), nrow(.))) %>%
pivot_longer(cols = c(SAFFRON, Bonferroni, Unadjusted),
names_to = "adjustment",
values_to = "alpha")
sample.df <- data.frame(
id = c('A15432', 'B90969', 'C18705', 'B49731', 'E99902',
'C38292', 'A30619', 'D46627', 'E29198', 'A41418',
'D51456', 'C88669', 'E03673', 'A63155', 'B66033'),
pval = c(2.90e-08, 0.06743, 0.01514, 0.08174, 0.00171,
3.60e-05, 0.79149, 0.27201, 0.28295, 7.59e-08,
0.69274, 0.30443, 0.00136, 0.72342, 0.54757),
batch = c(rep(1,5), rep(2,6), rep(3,4)))
@latlio
latlio / server.R
Last active August 27, 2020 18:19
server <- function(input, output, session) {
#reset
observeEvent(input$reset, {
updateSelectInput(session, 'cyl')
updateNumericInput(session, 'disp', value = 100)
updateNumericInput(session, 'hp', value = 100)
updateNumericInput(session, "drat", value = 3)
updateNumericInput(session, "wt", value = 3)
updateNumericInput(session, "qsec", value = 20)
body <- dashboardBody(
h2("The predicted miles per gallon is: "),
h3(verbatimTextOutput("pred", placeholder = T)),
tags$head(tags$style("#pred{color: black;
font-size: 20px;
font-family: Source Sans Pro
}")),
fluidRow(
infoBox(
"What", "is this model for?", icon = icon("line-chart"),