Created
February 1, 2010 02:08
-
-
Save leegao/291401 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#Newbie programmer | |
def factorial(x): | |
if x == 0: | |
return 1 | |
else: | |
return x * factorial(x - 1) | |
print factorial(6) | |
#First year programmer, studied Pascal | |
def factorial(x): | |
result = 1 | |
i = 2 | |
while i <= x: | |
result = result * i | |
i = i + 1 | |
return result | |
print factorial(6) | |
#First year programmer, studied C | |
def fact(x): #{ | |
result = i = 1; | |
while (i <= x): #{ | |
result *= i; | |
i += 1; | |
#} | |
return result; | |
#} | |
print(fact(6)) | |
#First year programmer, SICP | |
@tailcall | |
def fact(x, acc=1): | |
if (x > 1): return (fact((x - 1), (acc * x))) | |
else: return acc | |
print(fact(6)) | |
#First year programmer, Python | |
def Factorial(x): | |
res = 1 | |
for i in xrange(2, x + 1): | |
res *= i | |
return res | |
print Factorial(6) | |
#Lazy Python programmer | |
def fact(x): | |
return x > 1 and x * fact(x - 1) or 1 | |
print fact(6) | |
#Lazier Python programmer | |
f = lambda x: x and x * f(x - 1) or 1 | |
print f(6) | |
#Python expert programmer | |
import operator as op | |
import functional as f | |
fact = lambda x: f.foldl(op.mul, 1, xrange(2, x + 1)) | |
print fact(6) | |
#Python hacker | |
import sys | |
@tailcall | |
def fact(x, acc=1): | |
if x: return fact(x.__sub__(1), acc.__mul__(x)) | |
return acc | |
sys.stdout.write(str(fact(6)) + '\n') | |
#EXPERT PROGRAMMER | |
import c_math | |
fact = c_math.fact | |
print fact(6) | |
#ENGLISH EXPERT PROGRAMMER | |
import c_maths | |
fact = c_maths.fact | |
print fact(6) | |
#Web designer | |
def factorial(x): | |
#------------------------------------------------- | |
#--- Code snippet from The Math Vault --- | |
#--- Calculate factorial (C) Arthur Smith 1999 --- | |
#------------------------------------------------- | |
result = str(1) | |
i = 1 #Thanks Adam | |
while i <= x: | |
#result = result * i #It's faster to use *= | |
#result = str(result * result + i) | |
#result = int(result *= i) #?????? | |
result str(int(result) * i) | |
#result = int(str(result) * i) | |
i = i + 1 | |
return result | |
print factorial(6) | |
#Unix programmer | |
import os | |
def fact(x): | |
os.system('factorial ' + str(x)) | |
fact(6) | |
#Windows programmer | |
NULL = None | |
def CalculateAndPrintFactorialEx(dwNumber, | |
hOutputDevice, | |
lpLparam, | |
lpWparam, | |
lpsscSecurity, | |
*dwReserved): | |
if lpsscSecurity != NULL: | |
return NULL #Not implemented | |
dwResult = dwCounter = 1 | |
while dwCounter <= dwNumber: | |
dwResult *= dwCounter | |
dwCounter += 1 | |
hOutputDevice.write(str(dwResult)) | |
hOutputDevice.write('\n') | |
return 1 | |
import sys | |
CalculateAndPrintFactorialEx(6, sys.stdout, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL) | |
#Enterprise programmer | |
def new(cls, *args, **kwargs): | |
return cls(*args, **kwargs) | |
class Number(object): | |
pass | |
class IntegralNumber(int, Number): | |
def toInt(self): | |
return new (int, self) | |
class InternalBase(object): | |
def __init__(self, base): | |
self.base = base.toInt() | |
def getBase(self): | |
return new (IntegralNumber, self.base) | |
class MathematicsSystem(object): | |
def __init__(self, ibase): | |
Abstract | |
@classmethod | |
def getInstance(cls, ibase): | |
try: | |
cls.__instance | |
except AttributeError: | |
cls.__instance = new (cls, ibase) | |
return cls.__instance | |
class StandardMathematicsSystem(MathematicsSystem): | |
def __init__(self, ibase): | |
if ibase.getBase() != new (IntegralNumber, 2): | |
raise NotImplementedError | |
self.base = ibase.getBase() | |
def calculateFactorial(self, target): | |
result = new (IntegralNumber, 1) | |
i = new (IntegralNumber, 2) | |
while i <= target: | |
result = result * i | |
i = i + new (IntegralNumber, 1) | |
return result | |
print StandardMathematicsSystem.getInstance(new (InternalBase, new (IntegralNumber, 2))).calculateFactorial(new (IntegralNumber, 6)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment