Created
April 5, 2011 04:15
-
-
Save leegao/903021 to your computer and use it in GitHub Desktop.
Fast matrix pow function in lua (O(1) running time, for whatever n)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
function m_pow(matrix, n) | |
local a1 = -(matrix[1][1]+matrix[2][2]) | |
local a2 = (matrix[1][1]*matrix[2][2]-matrix[1][2]*matrix[2][1]) -- determinant | |
-- r^2 + a1*r + a2 = 0, find rs -> (1/2)*(-a1 +- sqrt(a1^2 - 4*a2)) | |
local rt = math.sqrt(a1^2-4*a2) | |
local r1 = (-a1+rt)/2 | |
local r2 = (-a1-rt)/2 | |
local r1n = r1^n | |
local r2n = r2^n | |
local b2 = (r2n-r1n)/(r2-r1) | |
local b1 = (r2*r1n - r1*r2n)/(r2-r1) | |
return {{b2*matrix[1][1]+b1, b2*matrix[1][2]}, {b2*matrix[2][1], b2*matrix[2][2]+b1}} | |
end | |
function print_matrix(matrix) | |
print(unpack(matrix[1])) | |
print(unpack(matrix[2])) | |
end | |
matrix = {{1,2}, | |
{3,4}} | |
print_matrix(m_pow(matrix, 400)) |
oh and if rt is 0 then ull divide by zero lol
yeah, 0 gives me indeterminant for the identity matrix, or anytime when a+d = 2sqrt(ad-bc), rare cases though so I'm not gonna lose sleep :P
uh... if rt=0 then do it the normal way with a for loop or something?
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
take out the negative sign from a1 to make it even faster xdddddddddd
btw r2-r1 = -rt