Skip to content

Instantly share code, notes, and snippets.

@leocrawford
Last active October 26, 2016 10:24
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save leocrawford/28d8b469c576871c46edef48e1863ddd to your computer and use it in GitHub Desktop.
Save leocrawford/28d8b469c576871c46edef48e1863ddd to your computer and use it in GitHub Desktop.
D3 Venn with Constrained Children
license: gpl-3.0
height: 800
border: no

D3 Venn with Constrained Children

<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Dynamic venn.js example</title>
<style>
body {
font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;
font-size: 14px;
}
</style>
</head>
<body>
<div id="venn"></div>
<div style="float:left;padding:20px">
<table>
<tr>
<td>|A|</td>
<td>
<input class="input-mini venn_area" id="A" type="number" value="16">
</td>
</tr>
<tr>
<td>|B|</td>
<td>
<input class="input-mini venn_area" id="B" type="number" value="16">
</td>
</tr>
<tr>
<td>|C|</td>
<td>
<input class="input-mini venn_area" id="C" type="number" value="12">
</td>
</tr>
<tr>
<td>|A&#8745B|</td>
<td>
<input class="input-mini venn_area" id="A,B" type="number" value="4">
</td>
</tr>
<tr>
<td>|A&#8745C|</td>
<td>
<input class="input-mini venn_area" id="A,C" type="number" value="4">
</td>
</tr>
<tr>
<td>|B&#8745C|</td>
<td>
<input class="input-mini venn_area" id="B,C" type="number" value="3">
</td>
</tr>
<tr>
<td>|A&#8745B&#8745C|&nbsp</td>
<td>
<input class="input-mini venn_area" id="A,B,C" type="number" value="2">
</td>
</tr>
</table>
</div>
<div style="clear: both;"></div>
</body>
<script src="https://d3js.org/d3.v4.min.js"></script>
<script src="venn.js"></script>
<script>
function getSetIntersections() {
areas = d3.selectAll("table .venn_area").nodes().map(
function(element) {
var size = parseFloat(element.value);
return {
sets: element.id.split(","),
size: size,
children: fillArrayWithLetters(size, element.id.replace(/\,/g, ""))
};
});
return areas;
function fillArrayWithLetters(n, prefix) {
return Array.apply(null, Array(n)).map((x, i) => ({
name: prefix + i
}));
}
}
// draw the initial set
var chart = venn.VennDiagram()
.width(600)
.height(500);
function ticked() {
d3.select("svg").selectAll(".point")
.attr("cx", d => d.x)
.attr("cy", d => d.y)
.style("fill", d => d.highlight ? "black" : getColour(d.parent.data))
.style("fill-opacity", d => d.highlight ? 1 : 0.6);
}
var simulation = d3.forceSimulation()
.force("collide", d3.forceCollide(8))
.force("x", d3.forceX(node => node.parent.data.centerx).strength(0.2))
.force("y", d3.forceY(node => node.parent.data.centery).strength(0.2))
.force("constrain", constrain())
.on("tick", ticked);
function constrain() {
var nodes;
var items = 6;
var r = 8;
function force(alpha) {
// for each circle let's check its inside its containing venn
for (var i = 0, n = nodes.length, node, k = alpha * 0.1; i < n; ++i) {
node = nodes[i];
var highlight = false;
// check for a bunch of points around the circumference of the circle
for (var it = 0; it < items; it++) {
var x = node.x + node.vx + r * Math.cos(2 * Math.PI * it / items);
var y = node.y + node.vy + r * Math.sin(2 * Math.PI * it / items);
highlight = highlight || !d3.polygonContains(
node.parent.data.shape, [x, y])
}
node.highlight = highlight;
if (node.highlight) {
node.x = node.x + (node.parent.data.x - node.x) / 4;
node.y = node.y + (node.parent.data.y - node.y) / 4;
}
}
}
force.initialize = function(_) {
nodes = _;
}
return force;
}
var setIntersections;
// initial draw
recalc();
// redraw the sets on any change in input
d3.selectAll("input").on("change", recalc);
function recalc() {
setIntersections = getSetIntersections();
d3.select("#venn").datum(setIntersections).call(chart).call(update);
}
d3.selectAll("#venn .venn-circle path")
.style("fill-opacity", 0.2)
.style("fill", d => getColour(d))
.style("stroke-width", 0)
d3.selectAll("#venn .venn-intersection path")
.style("fill-opacity", 0.4)
.style("stroke-width", 0)
.style("fill", d => getColour(d))
.style("stroke", "black");
d3.selectAll("#venn .venn-circle").selectAll("text")
.style("font-size", "32px")
.style("font-weight", "100");
function getColour(d) {
return "#" + (d.sets.indexOf("A") >= 0 ? "FF" : "00") + (d.sets.indexOf("B") >= 0 ? "FF" : "00") + (d.sets.indexOf("C") >= 0 ? "FF" : "00");
}
function dragstarted(d) {
if (!d3.event.active) {
simulation.alphaTarget(0.3).restart();
}
d.fx = d.x;
d.fy = d.y;
}
function dragged(d) {
d.fx = d3.event.x;
d.fy = d3.event.y;
}
function dragended(d) {
if (!d3.event.active) simulation.alphaTarget(0);
d.fx = null;
d.fy = null;
}
function update() {
d3.selectAll("#venn .venn-area")
.each(setPx)
.each(setPy)
.each(setPShape);
simulation
.nodes(addPoints())
.alpha(1)
.restart()
}
function addPoints() {
var hierarchy = d3.hierarchy(setIntersections,
d => (typeof d.children == "undefined") ? d : d.children)
var nodes = hierarchy.leaves();
// make sure there is a <g> points
d3.selectAll("#venn svg").selectAll(".points")
.data([null]).enter().append("g")
.attr("class", "points")
.style("fill-opacity", 0.6)
// .style("fill",d=> getColour(d))
.style("stroke-width", 0.1)
.style("stroke", "black");
var points = d3.select(".points");
var datapoints = points.selectAll(".point")
.data(nodes, d => d.data.name);
// lets copy the current x and y value back from object to data so that
// the simulation carries on rather than restarting
datapoints.each(function(d, i) {
d.x = this.cx.animVal.value;
d.y = this.cy.animVal.value;
});
var node = datapoints.enter()
.append("circle")
.attr("class", "point")
.attr("r", 8)
.call(d3.drag()
.on("start", dragstarted)
.on("drag", dragged)
.on("end", dragended));
datapoints.exit().remove();
return nodes;
}
function bbox(t) {
return t.firstChild.getBBox();
}
function setPx(d) {
d.x = bbox(this).x + bbox(this).width / 2;
}
function setPy(d) {
d.y = bbox(this).y + bbox(this).height / 2;
}
function setPShape(d) {
var path = this.firstChild;
var length = path.getTotalLength();
var polygon = [];
for (var loop = 0; loop < length; loop += length / 100) {
var sample = path.getPointAtLength(loop);
polygon.push([sample.x, sample.y]);
}
d.shape = polygon;
var bbox = path.getBBox();
d.centerx = Math.floor(bbox.x + bbox.width / 2.0);
d.centery = Math.floor(bbox.y + bbox.height / 2.0);
}
</script>
</html>
(function (global, factory) {
typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports, require('d3-selection'), require('d3-transition')) :
typeof define === 'function' && define.amd ? define(['exports', 'd3-selection', 'd3-transition'], factory) :
(factory((global.venn = global.venn || {}),global.d3,global.d3));
}(this, (function (exports,d3Selection,d3Transition) { 'use strict';
/** finds the zeros of a function, given two starting points (which must
* have opposite signs */
function bisect(f, a, b, parameters) {
parameters = parameters || {};
var maxIterations = parameters.maxIterations || 100,
tolerance = parameters.tolerance || 1e-10,
fA = f(a),
fB = f(b),
delta = b - a;
if (fA * fB > 0) {
throw "Initial bisect points must have opposite signs";
}
if (fA === 0) return a;
if (fB === 0) return b;
for (var i = 0; i < maxIterations; ++i) {
delta /= 2;
var mid = a + delta,
fMid = f(mid);
if (fMid * fA >= 0) {
a = mid;
}
if ((Math.abs(delta) < tolerance) || (fMid === 0)) {
return mid;
}
}
return a + delta;
}
// need some basic operations on vectors, rather than adding a dependency,
// just define here
function zeros(x) { var r = new Array(x); for (var i = 0; i < x; ++i) { r[i] = 0; } return r; }
function zerosM(x,y) { return zeros(x).map(function() { return zeros(y); }); }
function dot(a, b) {
var ret = 0;
for (var i = 0; i < a.length; ++i) {
ret += a[i] * b[i];
}
return ret;
}
function norm2(a) {
return Math.sqrt(dot(a, a));
}
function multiplyBy(a, c) {
for (var i = 0; i < a.length; ++i) {
a[i] *= c;
}
}
function weightedSum(ret, w1, v1, w2, v2) {
for (var j = 0; j < ret.length; ++j) {
ret[j] = w1 * v1[j] + w2 * v2[j];
}
}
/** minimizes a function using the downhill simplex method */
function fmin(f, x0, parameters) {
parameters = parameters || {};
var maxIterations = parameters.maxIterations || x0.length * 200,
nonZeroDelta = parameters.nonZeroDelta || 1.1,
zeroDelta = parameters.zeroDelta || 0.001,
minErrorDelta = parameters.minErrorDelta || 1e-6,
minTolerance = parameters.minErrorDelta || 1e-5,
rho = parameters.rho || 1,
chi = parameters.chi || 2,
psi = parameters.psi || -0.5,
sigma = parameters.sigma || 0.5,
callback = parameters.callback,
maxDiff,
temp;
// initialize simplex.
var N = x0.length,
simplex = new Array(N + 1);
simplex[0] = x0;
simplex[0].fx = f(x0);
for (var i = 0; i < N; ++i) {
var point = x0.slice();
point[i] = point[i] ? point[i] * nonZeroDelta : zeroDelta;
simplex[i+1] = point;
simplex[i+1].fx = f(point);
}
var sortOrder = function(a, b) { return a.fx - b.fx; };
var centroid = x0.slice(),
reflected = x0.slice(),
contracted = x0.slice(),
expanded = x0.slice();
for (var iteration = 0; iteration < maxIterations; ++iteration) {
simplex.sort(sortOrder);
if (callback) {
callback(simplex);
}
maxDiff = 0;
for (i = 0; i < N; ++i) {
maxDiff = Math.max(maxDiff, Math.abs(simplex[0][i] - simplex[1][i]));
}
if ((Math.abs(simplex[0].fx - simplex[N].fx) < minErrorDelta) &&
(maxDiff < minTolerance)) {
break;
}
// compute the centroid of all but the worst point in the simplex
for (i = 0; i < N; ++i) {
centroid[i] = 0;
for (var j = 0; j < N; ++j) {
centroid[i] += simplex[j][i];
}
centroid[i] /= N;
}
// reflect the worst point past the centroid and compute loss at reflected
// point
var worst = simplex[N];
weightedSum(reflected, 1+rho, centroid, -rho, worst);
reflected.fx = f(reflected);
// if the reflected point is the best seen, then possibly expand
if (reflected.fx <= simplex[0].fx) {
weightedSum(expanded, 1+chi, centroid, -chi, worst);
expanded.fx = f(expanded);
if (expanded.fx < reflected.fx) {
temp = simplex[N];
simplex[N] = expanded;
expanded = temp;
} else {
temp = simplex[N];
simplex[N] = reflected;
reflected = temp;
}
}
// if the reflected point is worse than the second worst, we need to
// contract
else if (reflected.fx >= simplex[N-1].fx) {
var shouldReduce = false;
if (reflected.fx > worst.fx) {
// do an inside contraction
weightedSum(contracted, 1+psi, centroid, -psi, worst);
contracted.fx = f(contracted);
if (contracted.fx < worst.fx) {
temp = simplex[N];
simplex[N] = contracted;
contracted = temp;
} else {
shouldReduce = true;
}
} else {
// do an outside contraction
weightedSum(contracted, 1-psi * rho, centroid, psi*rho, worst);
contracted.fx = f(contracted);
if (contracted.fx <= reflected.fx) {
temp = simplex[N];
simplex[N] = contracted;
contracted = temp;
} else {
shouldReduce = true;
}
}
if (shouldReduce) {
// do reduction. doesn't actually happen that often
for (i = 1; i < simplex.length; ++i) {
weightedSum(simplex[i], 1 - sigma, simplex[0], sigma, simplex[i]);
simplex[i].fx = f(simplex[i]);
}
}
} else {
temp = simplex[N];
simplex[N] = reflected;
reflected = temp;
}
}
simplex.sort(sortOrder);
return {f : simplex[0].fx,
solution : simplex[0]};
}
function minimizeConjugateGradient(f, initial, params) {
// allocate all memory up front here, keep out of the loop for perfomance
// reasons
var current = {x: initial.slice(), fx: 0, fxprime: initial.slice()},
next = {x: initial.slice(), fx: 0, fxprime: initial.slice()},
yk = initial.slice(),
pk, temp,
a = 1,
maxIterations;
params = params || {};
maxIterations = params.maxIterations || initial.length * 5;
current.fx = f(current.x, current.fxprime);
pk = current.fxprime.slice();
multiplyBy(pk, -1);
for (var i = 0; i < maxIterations; ++i) {
if (params.history) {
params.history.push({x: current.x.slice(),
fx: current.fx,
fxprime: current.fxprime.slice()});
}
a = wolfeLineSearch(f, pk, current, next, a);
if (!a) {
// faiiled to find point that satifies wolfe conditions.
// reset direction for next iteration
for (var j = 0; j < pk.length; ++j) {
pk[j] = -1 * current.fxprime[j];
}
} else {
// update direction using Polak–Ribiere CG method
weightedSum(yk, 1, next.fxprime, -1, current.fxprime);
var delta_k = dot(current.fxprime, current.fxprime),
beta_k = Math.max(0, dot(yk, next.fxprime) / delta_k);
weightedSum(pk, beta_k, pk, -1, next.fxprime);
temp = current;
current = next;
next = temp;
}
if (norm2(current.fxprime) <= 1e-5) {
break;
}
}
if (params.history) {
params.history.push({x: current.x.slice(),
fx: current.fx,
fxprime: current.fxprime.slice()});
}
return current;
}
var c1 = 1e-6;
var c2 = 0.1;
/// searches along line 'pk' for a point that satifies the wolfe conditions
/// See 'Numerical Optimization' by Nocedal and Wright p59-60
function wolfeLineSearch(f, pk, current, next, a) {
var phi0 = current.fx, phiPrime0 = dot(current.fxprime, pk),
phi = phi0, phi_old = phi0,
phiPrime = phiPrime0,
a0 = 0;
a = a || 1;
function zoom(a_lo, a_high, phi_lo) {
for (var iteration = 0; iteration < 16; ++iteration) {
a = (a_lo + a_high)/2;
weightedSum(next.x, 1.0, current.x, a, pk);
phi = next.fx = f(next.x, next.fxprime);
phiPrime = dot(next.fxprime, pk);
if ((phi > (phi0 + c1 * a * phiPrime0)) ||
(phi >= phi_lo)) {
a_high = a;
} else {
if (Math.abs(phiPrime) <= -c2 * phiPrime0) {
return a;
}
if (phiPrime * (a_high - a_lo) >=0) {
a_high = a_lo;
}
a_lo = a;
phi_lo = phi;
}
}
return 0;
}
for (var iteration = 0; iteration < 10; ++iteration) {
weightedSum(next.x, 1.0, current.x, a, pk);
phi = next.fx = f(next.x, next.fxprime);
phiPrime = dot(next.fxprime, pk);
if ((phi > (phi0 + c1 * a * phiPrime0)) ||
(iteration && (phi >= phi_old))) {
return zoom(a0, a, phi_old);
}
if (Math.abs(phiPrime) <= -c2 * phiPrime0) {
return a;
}
if (phiPrime >= 0 ) {
return zoom(a, a0, phi);
}
phi_old = phi;
a0 = a;
a *= 2;
}
return 0;
}
var SMALL = 1e-10;
/** Returns the intersection area of a bunch of circles (where each circle
is an object having an x,y and radius property). Any circles which are specified as
allcircles which are not in circles will have their area subtracted from the result.
This allows the area A,B to not overlap with both A and B */
function intersectionArea(circles, allcircles, stats) {
// set default
allcircles = (allcircles == null) ? circles : allcircles;
// find just the circles that aren't in circles, i.e. those that intrude on the result
var intrudeCircles = allcircles.filter(x => circles.indexOf(x) == -1);
// find all the intersection points that are incide the circles
var containingPoints = getIntersectionPoints(circles).filter(
p => containedInCircles(p, circles));
var arcArea = 0,
polygonArea = 0,
arcs = [],
i;
// get all the intersection points of the circles
var innerPoints = getIntersectionPoints(allcircles);
// count how many edges on the intersection are bounding (ignoring those that
// simply intrude). Result is 2 if both circles of the intersection are in circles,
// 1 if only one is and 0 if neither is
innerPoints.forEach(p =>
p.containingArcs = [0, 1].map(b =>
circles.includes(allcircles[p.parentIndex[b]])
).reduce((acc, cur) => cur ? acc + 1 : acc, 0)
);
// lets find the set of intersections that are inside circles and aren't
// inside intrudeCircles (this will be our boundary)
innerPoints = innerPoints
.filter(p => containedInCircles(p, circles))
.filter(p => notContainedInCircles(p, intrudeCircles));
// if we have intersection points that are within all the circles,
// then figure out the area contained by them
if (innerPoints.length > 1) {
// sort the points by angle from the center of the polygon, which lets
// us just iterate over points to get the edges
var center = getCenter(containingPoints);
innerPoints.forEach(p => p.angle = Math.atan2(p.x - center.x, p.y - center.y));
innerPoints.sort((a, b) => b.angle - a.angle);
// iterate over all points, get arc between the points
// and update the areas
var p2 = innerPoints[innerPoints.length - 1];
for (i = 0; i < innerPoints.length; ++i) {
var p1 = innerPoints[i];
// polygon area updates easily ...
polygonArea += (p2.x + p1.x) * (p1.y - p2.y);
// updating the arc area is a little more involved
var midPoint = {
x: (p1.x + p2.x) / 2,
y: (p1.y + p2.y) / 2
},
arc = null;
for (var j = 0; j < p1.parentIndex.length; ++j) {
if (p2.parentIndex.indexOf(p1.parentIndex[j]) > -1) {
// figure out the angle halfway between the two points
// on the current circle
var circle = allcircles[p1.parentIndex[j]],
a1 = Math.atan2(p1.x - circle.x, p1.y - circle.y),
a2 = Math.atan2(p2.x - circle.x, p2.y - circle.y);
var angleDiff = (a2 - a1);
if (angleDiff < 0) {
angleDiff += 2 * Math.PI;
}
// and use that angle to figure out the width of the
// arc
var a = a2 - angleDiff / 2,
width = distance(midPoint, {
x: circle.x + circle.radius * Math.sin(a),
y: circle.y + circle.radius * Math.cos(a)
});
// pick the circle whose arc has the smallest width
if ((arc === null) || (arc.width > width)) {
arc = {
circle: circle,
width: width,
p1: p1,
p2: p2,
center: center,
within: circles.includes(circle)
};
}
}
}
if (arc !== null) {
arcs.push(arc);
arcArea += circleArea(arc.circle.radius, arc.width);
p2 = p1;
}
}
} else {
// no intersection points, is either disjoint - or is completely
// overlapped. figure out which by examining the smallest circle
var smallest = circles[0];
for (i = 1; i < circles.length; ++i) {
if (circles[i].radius < smallest.radius) {
smallest = circles[i];
}
}
// make sure the smallest circle is completely contained in all
// the other circles
var disjoint = false;
for (i = 0; i < circles.length; ++i) {
if (distance(circles[i], smallest) > Math.abs(smallest.radius - circles[i].radius)) {
disjoint = true;
break;
}
}
if (disjoint) {
arcArea = polygonArea = 0;
} else {
arcArea = smallest.radius * smallest.radius * Math.PI;
arcs.push({
circle: smallest,
p1: {
x: smallest.x,
y: smallest.y + smallest.radius
},
p2: {
x: smallest.x - SMALL,
y: smallest.y + smallest.radius
},
width: smallest.radius * 2
});
}
}
polygonArea /= 2;
if (stats) {
stats.area = arcArea + polygonArea;
stats.arcArea = arcArea;
stats.polygonArea = polygonArea;
stats.arcs = arcs;
stats.innerPoints = innerPoints;
}
return arcArea + polygonArea;
}
function containedInCircle(point, circle, tolerance) {
return distance(point, circle) <= (circle.radius + tolerance);
}
function notContainedInCircles(point, circles) {
// check point is not within any circle
return !circles.some(circle => containedInCircle(point, circle, -SMALL));
}
function containedInCircles(point, circles, every = true) {
// check point is within all circles
return circles.every(circle => containedInCircle(point, circle, SMALL));
}
/** Gets all intersection points between a bunch of circles */
function getIntersectionPoints(circles) {
var ret = [];
for (var i = 0; i < circles.length; ++i) {
for (var j = i + 1; j < circles.length; ++j) {
var intersect = circleCircleIntersection(circles[i],
circles[j]);
for (var k = 0; k < intersect.length; ++k) {
var p = intersect[k];
p.parentIndex = [i,j];
ret.push(p);
}
}
}
return ret;
}
function circleIntegral(r, x) {
var y = Math.sqrt(r * r - x * x);
return x * y + r * r * Math.atan2(x, y);
}
/** Returns the area of a circle of radius r - up to width */
function circleArea(r, width) {
return circleIntegral(r, width - r) - circleIntegral(r, -r);
}
/** euclidean distance between two points */
function distance(p1, p2) {
return Math.sqrt((p1.x - p2.x) * (p1.x - p2.x) +
(p1.y - p2.y) * (p1.y - p2.y));
}
/** Returns the overlap area of two circles of radius r1 and r2 - that
have their centers separated by distance d. Simpler faster
circle intersection for only two circles */
function circleOverlap(r1, r2, d) {
// no overlap
if (d >= r1 + r2) {
return 0;
}
// completely overlapped
if (d <= Math.abs(r1 - r2)) {
return Math.PI * Math.min(r1, r2) * Math.min(r1, r2);
}
var w1 = r1 - (d * d - r2 * r2 + r1 * r1) / (2 * d),
w2 = r2 - (d * d - r1 * r1 + r2 * r2) / (2 * d);
return circleArea(r1, w1) + circleArea(r2, w2);
}
/** Given two circles (containing a x/y/radius attributes),
returns the intersecting points if possible.
note: doesn't handle cases where there are infinitely many
intersection points (circles are equivalent):, or only one intersection point*/
function circleCircleIntersection(p1, p2) {
var d = distance(p1, p2),
r1 = p1.radius,
r2 = p2.radius;
// if to far away, or self contained - can't be done
if ((d >= (r1 + r2)) || (d <= Math.abs(r1 - r2))) {
return [];
}
var a = (r1 * r1 - r2 * r2 + d * d) / (2 * d),
h = Math.sqrt(r1 * r1 - a * a),
x0 = p1.x + a * (p2.x - p1.x) / d,
y0 = p1.y + a * (p2.y - p1.y) / d,
rx = -(p2.y - p1.y) * (h / d),
ry = -(p2.x - p1.x) * (h / d);
return [{x: x0 + rx, y : y0 - ry },
{x: x0 - rx, y : y0 + ry }];
}
/** Returns the center of a bunch of points */
function getCenter(points) {
var center = {x: 0, y: 0};
for (var i =0; i < points.length; ++i ) {
center.x += points[i].x;
center.y += points[i].y;
}
center.x /= points.length;
center.y /= points.length;
return center;
}
/** given a list of set objects, and their corresponding overlaps.
updates the (x, y, radius) attribute on each set such that their positions
roughly correspond to the desired overlaps */
function venn(areas, parameters) {
parameters = parameters || {};
parameters.maxIterations = parameters.maxIterations || 500;
var initialLayout = parameters.initialLayout || bestInitialLayout;
// add in missing pairwise areas as having 0 size
areas = addMissingAreas(areas);
// initial layout is done greedily
var circles = initialLayout(areas);
// transform x/y coordinates to a vector to optimize
var initial = [], setids = [], setid;
for (setid in circles) {
if (circles.hasOwnProperty(setid)) {
initial.push(circles[setid].x);
initial.push(circles[setid].y);
setids.push(setid);
}
}
// optimize initial layout from our loss function
var totalFunctionCalls = 0;
var solution = fmin(
function(values) {
totalFunctionCalls += 1;
var current = {};
for (var i = 0; i < setids.length; ++i) {
var setid = setids[i];
current[setid] = {x: values[2 * i],
y: values[2 * i + 1],
radius : circles[setid].radius,
// size : circles[setid].size
};
}
return lossFunction(current, areas);
},
initial,
parameters);
// transform solution vector back to x/y points
var positions = solution.solution;
for (var i = 0; i < setids.length; ++i) {
setid = setids[i];
circles[setid].x = positions[2 * i];
circles[setid].y = positions[2 * i + 1];
}
return circles;
}
var SMALL$1 = 1e-10;
/** Returns the distance necessary for two circles of radius r1 + r2 to
have the overlap area 'overlap' */
function distanceFromIntersectArea(r1, r2, overlap) {
// handle complete overlapped circles
if (Math.min(r1, r2) * Math.min(r1,r2) * Math.PI <= overlap + SMALL$1) {
return Math.abs(r1 - r2);
}
return bisect(function(distance$$1) {
return circleOverlap(r1, r2, distance$$1) - overlap;
}, 0, r1 + r2);
}
/** Missing pair-wise intersection area data can cause problems:
treating as an unknown means that sets will be laid out overlapping,
which isn't what people expect. To reflect that we want disjoint sets
here, set the overlap to 0 for all missing pairwise set intersections */
function addMissingAreas(areas) {
areas = areas.slice();
// two circle intersections that aren't defined
var ids = [], pairs = {}, i, j, a, b;
for (i = 0; i < areas.length; ++i) {
var area = areas[i];
if (area.sets.length == 1) {
ids.push(area.sets[0]);
} else if (area.sets.length == 2) {
a = area.sets[0];
b = area.sets[1];
pairs[[a, b]] = true;
pairs[[b, a]] = true;
}
}
ids.sort(function(a, b) { return a > b; });
for (i = 0; i < ids.length; ++i) {
a = ids[i];
for (j = i + 1; j < ids.length; ++j) {
b = ids[j];
if (!([a, b] in pairs)) {
areas.push({'sets': [a, b],
'size': 0});
}
}
}
return areas;
}
/// Returns two matrices, one of the euclidean distances between the sets
/// and the other indicating if there are subset or disjoint set relationships
function getDistanceMatrices(areas, sets, setids) {
// initialize an empty distance matrix between all the points
var distances = zerosM(sets.length, sets.length),
constraints = zerosM(sets.length, sets.length);
// compute required distances between all the sets such that
// the areas match
areas.filter(function(x) { return x.sets.length == 2; })
.map(function(current) {
var left = setids[current.sets[0]],
right = setids[current.sets[1]],
r1 = Math.sqrt(sets[left].size / Math.PI),
r2 = Math.sqrt(sets[right].size / Math.PI),
distance$$1 = distanceFromIntersectArea(r1, r2, current.size);
distances[left][right] = distances[right][left] = distance$$1;
// also update constraints to indicate if its a subset or disjoint
// relationship
var c = 0;
if (current.size + 1e-10 >= Math.min(sets[left].size,
sets[right].size)) {
c = 1;
} else if (current.size <= 1e-10) {
c = -1;
}
constraints[left][right] = constraints[right][left] = c;
});
return {distances: distances, constraints: constraints};
}
/// computes the gradient and loss simulatenously for our constrained MDS optimizer
function constrainedMDSGradient(x, fxprime, distances, constraints) {
var loss = 0, i;
for (i = 0; i < fxprime.length; ++i) {
fxprime[i] = 0;
}
for (i = 0; i < distances.length; ++i) {
var xi = x[2 * i], yi = x[2 * i + 1];
for (var j = i + 1; j < distances.length; ++j) {
var xj = x[2 * j], yj = x[2 * j + 1],
dij = distances[i][j],
constraint = constraints[i][j];
var squaredDistance = (xj - xi) * (xj - xi) + (yj - yi) * (yj - yi),
distance$$1 = Math.sqrt(squaredDistance),
delta = squaredDistance - dij * dij;
if (((constraint > 0) && (distance$$1 <= dij)) ||
((constraint < 0) && (distance$$1 >= dij))) {
continue;
}
loss += 2 * delta * delta;
fxprime[2*i] += 4 * delta * (xi - xj);
fxprime[2*i + 1] += 4 * delta * (yi - yj);
fxprime[2*j] += 4 * delta * (xj - xi);
fxprime[2*j + 1] += 4 * delta * (yj - yi);
}
}
return loss;
}
/// takes the best working variant of either constrained MDS or greedy
function bestInitialLayout(areas, params) {
var initial = greedyLayout(areas, params);
// greedylayout is sufficient for all 2/3 circle cases. try out
// constrained MDS for higher order problems, take its output
// if it outperforms. (greedy is aesthetically better on 2/3 circles
// since it axis aligns)
if (areas.length >= 8) {
var constrained = constrainedMDSLayout(areas, params),
constrainedLoss = lossFunction(constrained, areas),
greedyLoss = lossFunction(initial, areas);
if (constrainedLoss + 1e-8 < greedyLoss) {
initial = constrained;
}
}
return initial;
}
/// use the constrained MDS variant to generate an initial layout
function constrainedMDSLayout(areas, params) {
params = params || {};
var restarts = params.restarts || 10;
// bidirectionally map sets to a rowid (so we can create a matrix)
var sets = [], setids = {}, i;
for (i = 0; i < areas.length; ++i ) {
var area = areas[i];
if (area.sets.length == 1) {
setids[area.sets[0]] = sets.length;
sets.push(area);
}
}
var matrices = getDistanceMatrices(areas, sets, setids),
distances = matrices.distances,
constraints = matrices.constraints;
// keep distances bounded, things get messed up otherwise.
// TODO: proper preconditioner?
var norm = norm2(distances.map(norm2))/(distances.length);
distances = distances.map(function (row) {
return row.map(function (value) { return value / norm; });});
var obj = function(x, fxprime) {
return constrainedMDSGradient(x, fxprime, distances, constraints);
};
var best, current;
for (i = 0; i < restarts; ++i) {
var initial = zeros(distances.length*2).map(Math.random);
current = minimizeConjugateGradient(obj, initial, params);
if (!best || (current.fx < best.fx)) {
best = current;
}
}
var positions = best.x;
// translate rows back to (x,y,radius) coordinates
var circles = {};
for (i = 0; i < sets.length; ++i) {
var set = sets[i];
circles[set.sets[0]] = {
x: positions[2*i] * norm,
y: positions[2*i + 1] * norm,
radius: Math.sqrt(set.size / Math.PI)
};
}
if (params.history) {
for (i = 0; i < params.history.length; ++i) {
multiplyBy(params.history[i].x, norm);
}
}
return circles;
}
/** Lays out a Venn diagram greedily, going from most overlapped sets to
least overlapped, attempting to position each new set such that the
overlapping areas to already positioned sets are basically right */
function greedyLayout(areas) {
// define a circle for each set
var circles = {}, setOverlaps = {}, set;
for (var i = 0; i < areas.length; ++i) {
var area = areas[i];
if (area.sets.length == 1) {
set = area.sets[0];
circles[set] = {x: 1e10, y: 1e10,
rowid: circles.length,
size: area.size,
radius: Math.sqrt(area.size / Math.PI)};
setOverlaps[set] = [];
}
}
areas = areas.filter(function(a) { return a.sets.length == 2; });
// map each set to a list of all the other sets that overlap it
for (i = 0; i < areas.length; ++i) {
var current = areas[i];
var weight = current.hasOwnProperty('weight') ? current.weight : 1.0;
var left = current.sets[0], right = current.sets[1];
// completely overlapped circles shouldn't be positioned early here
if (current.size + SMALL$1 >= Math.min(circles[left].size,
circles[right].size)) {
weight = 0;
}
setOverlaps[left].push ({set:right, size:current.size, weight:weight});
setOverlaps[right].push({set:left, size:current.size, weight:weight});
}
// get list of most overlapped sets
var mostOverlapped = [];
for (set in setOverlaps) {
if (setOverlaps.hasOwnProperty(set)) {
var size = 0;
for (i = 0; i < setOverlaps[set].length; ++i) {
size += setOverlaps[set][i].size * setOverlaps[set][i].weight;
}
mostOverlapped.push({set: set, size:size});
}
}
// sort by size desc
function sortOrder(a,b) {
return b.size - a.size;
}
mostOverlapped.sort(sortOrder);
// keep track of what sets have been laid out
var positioned = {};
function isPositioned(element) {
return element.set in positioned;
}
// adds a point to the output
function positionSet(point, index) {
circles[index].x = point.x;
circles[index].y = point.y;
positioned[index] = true;
}
// add most overlapped set at (0,0)
positionSet({x: 0, y: 0}, mostOverlapped[0].set);
// get distances between all points. TODO, necessary?
// answer: probably not
// var distances = venn.getDistanceMatrices(circles, areas).distances;
for (i = 1; i < mostOverlapped.length; ++i) {
var setIndex = mostOverlapped[i].set,
overlap = setOverlaps[setIndex].filter(isPositioned);
set = circles[setIndex];
overlap.sort(sortOrder);
if (overlap.length === 0) {
// this shouldn't happen anymore with addMissingAreas
throw "ERROR: missing pairwise overlap information";
}
var points = [];
for (var j = 0; j < overlap.length; ++j) {
// get appropriate distance from most overlapped already added set
var p1 = circles[overlap[j].set],
d1 = distanceFromIntersectArea(set.radius, p1.radius,
overlap[j].size);
// sample positions at 90 degrees for maximum aesthetics
points.push({x : p1.x + d1, y : p1.y});
points.push({x : p1.x - d1, y : p1.y});
points.push({y : p1.y + d1, x : p1.x});
points.push({y : p1.y - d1, x : p1.x});
// if we have at least 2 overlaps, then figure out where the
// set should be positioned analytically and try those too
for (var k = j + 1; k < overlap.length; ++k) {
var p2 = circles[overlap[k].set],
d2 = distanceFromIntersectArea(set.radius, p2.radius,
overlap[k].size);
var extraPoints = circleCircleIntersection(
{ x: p1.x, y: p1.y, radius: d1},
{ x: p2.x, y: p2.y, radius: d2});
for (var l = 0; l < extraPoints.length; ++l) {
points.push(extraPoints[l]);
}
}
}
// we have some candidate positions for the set, examine loss
// at each position to figure out where to put it at
var bestLoss = 1e50, bestPoint = points[0];
for (j = 0; j < points.length; ++j) {
circles[setIndex].x = points[j].x;
circles[setIndex].y = points[j].y;
var loss = lossFunction(circles, areas);
if (loss < bestLoss) {
bestLoss = loss;
bestPoint = points[j];
}
}
positionSet(bestPoint, setIndex);
}
return circles;
}
/** Given a bunch of sets, and the desired overlaps between these sets - computes
the distance from the actual overlaps to the desired overlaps. Note that
this method ignores overlaps of more than 2 circles */
function lossFunction(sets, overlaps) {
var output = 0;
function getCircles(indices) {
return indices.map(function(i) { return sets[i]; });
}
for (var i = 0; i < overlaps.length; ++i) {
var area = overlaps[i], overlap;
if (area.sets.length == 1) {
continue;
} else if (area.sets.length == 2) {
var left = sets[area.sets[0]],
right = sets[area.sets[1]];
overlap = circleOverlap(left.radius, right.radius,
distance(left, right));
} else {
overlap = intersectionArea(getCircles(area.sets));
}
var weight = area.hasOwnProperty('weight') ? area.weight : 1.0;
output += weight * (overlap - area.size) * (overlap - area.size);
}
return output;
}
// orientates a bunch of circles to point in orientation
function orientateCircles(circles, orientation, orientationOrder) {
if (orientationOrder === null) {
circles.sort(function (a, b) { return b.radius - a.radius; });
} else {
circles.sort(orientationOrder);
}
var i;
// shift circles so largest circle is at (0, 0)
if (circles.length > 0) {
var largestX = circles[0].x,
largestY = circles[0].y;
for (i = 0; i < circles.length; ++i) {
circles[i].x -= largestX;
circles[i].y -= largestY;
}
}
// rotate circles so that second largest is at an angle of 'orientation'
// from largest
if (circles.length > 1) {
var rotation = Math.atan2(circles[1].x, circles[1].y) - orientation,
c = Math.cos(rotation),
s = Math.sin(rotation), x, y;
for (i = 0; i < circles.length; ++i) {
x = circles[i].x;
y = circles[i].y;
circles[i].x = c * x - s * y;
circles[i].y = s * x + c * y;
}
}
// mirror solution if third solution is above plane specified by
// first two circles
if (circles.length > 2) {
var angle = Math.atan2(circles[2].x, circles[2].y) - orientation;
while (angle < 0) { angle += 2* Math.PI; }
while (angle > 2*Math.PI) { angle -= 2* Math.PI; }
if (angle > Math.PI) {
var slope = circles[1].y / (1e-10 + circles[1].x);
for (i = 0; i < circles.length; ++i) {
var d = (circles[i].x + slope * circles[i].y) / (1 + slope*slope);
circles[i].x = 2 * d - circles[i].x;
circles[i].y = 2 * d * slope - circles[i].y;
}
}
}
}
function disjointCluster(circles) {
// union-find clustering to get disjoint sets
circles.map(function(circle) { circle.parent = circle; });
// path compression step in union find
function find(circle) {
if (circle.parent !== circle) {
circle.parent = find(circle.parent);
}
return circle.parent;
}
function union(x, y) {
var xRoot = find(x), yRoot = find(y);
xRoot.parent = yRoot;
}
// get the union of all overlapping sets
for (var i = 0; i < circles.length; ++i) {
for (var j = i + 1; j < circles.length; ++j) {
var maxDistance = circles[i].radius + circles[j].radius;
if (distance(circles[i], circles[j]) + 1e-10 < maxDistance) {
union(circles[j], circles[i]);
}
}
}
// find all the disjoint clusters and group them together
var disjointClusters = {}, setid;
for (i = 0; i < circles.length; ++i) {
setid = find(circles[i]).parent.setid;
if (!(setid in disjointClusters)) {
disjointClusters[setid] = [];
}
disjointClusters[setid].push(circles[i]);
}
// cleanup bookkeeping
circles.map(function(circle) { delete circle.parent; });
// return in more usable form
var ret = [];
for (setid in disjointClusters) {
if (disjointClusters.hasOwnProperty(setid)) {
ret.push(disjointClusters[setid]);
}
}
return ret;
}
function getBoundingBox(circles) {
var minMax = function(d) {
var hi = Math.max.apply(null, circles.map(
function(c) { return c[d] + c.radius; } )),
lo = Math.min.apply(null, circles.map(
function(c) { return c[d] - c.radius;} ));
return {max:hi, min:lo};
};
return {xRange: minMax('x'), yRange: minMax('y')};
}
function normalizeSolution(solution, orientation, orientationOrder) {
if (orientation === null){
orientation = Math.PI/2;
}
// work with a list instead of a dictionary, and take a copy so we
// don't mutate input
var circles = [], i, setid;
for (setid in solution) {
if (solution.hasOwnProperty(setid)) {
var previous = solution[setid];
circles.push({x: previous.x,
y: previous.y,
radius: previous.radius,
setid: setid});
}
}
// get all the disjoint clusters
var clusters = disjointCluster(circles);
// orientate all disjoint sets, get sizes
for (i = 0; i < clusters.length; ++i) {
orientateCircles(clusters[i], orientation, orientationOrder);
var bounds = getBoundingBox(clusters[i]);
clusters[i].size = (bounds.xRange.max - bounds.xRange.min) * (bounds.yRange.max - bounds.yRange.min);
clusters[i].bounds = bounds;
}
clusters.sort(function(a, b) { return b.size - a.size; });
// orientate the largest at 0,0, and get the bounds
circles = clusters[0];
var returnBounds = circles.bounds;
var spacing = (returnBounds.xRange.max - returnBounds.xRange.min)/50;
function addCluster(cluster, right, bottom) {
if (!cluster) return;
var bounds = cluster.bounds, xOffset, yOffset, centreing;
if (right) {
xOffset = returnBounds.xRange.max - bounds.xRange.min + spacing;
} else {
xOffset = returnBounds.xRange.max - bounds.xRange.max;
centreing = (bounds.xRange.max - bounds.xRange.min) / 2 -
(returnBounds.xRange.max - returnBounds.xRange.min) / 2;
if (centreing < 0) xOffset += centreing;
}
if (bottom) {
yOffset = returnBounds.yRange.max - bounds.yRange.min + spacing;
} else {
yOffset = returnBounds.yRange.max - bounds.yRange.max;
centreing = (bounds.yRange.max - bounds.yRange.min) / 2 -
(returnBounds.yRange.max - returnBounds.yRange.min) / 2;
if (centreing < 0) yOffset += centreing;
}
for (var j = 0; j < cluster.length; ++j) {
cluster[j].x += xOffset;
cluster[j].y += yOffset;
circles.push(cluster[j]);
}
}
var index = 1;
while (index < clusters.length) {
addCluster(clusters[index], true, false);
addCluster(clusters[index+1], false, true);
addCluster(clusters[index+2], true, true);
index += 3;
// have one cluster (in top left). lay out next three relative
// to it in a grid
returnBounds = getBoundingBox(circles);
}
// convert back to solution form
var ret = {};
for (i = 0; i < circles.length; ++i) {
ret[circles[i].setid] = circles[i];
}
return ret;
}
/** Scales a solution from venn.venn or venn.greedyLayout such that it fits in
a rectangle of width/height - with padding around the borders. also
centers the diagram in the available space at the same time */
function scaleSolution(solution, width, height, padding) {
var circles = [], setids = [];
for (var setid in solution) {
if (solution.hasOwnProperty(setid)) {
setids.push(setid);
circles.push(solution[setid]);
}
}
width -= 2*padding;
height -= 2*padding;
var bounds = getBoundingBox(circles),
xRange = bounds.xRange,
yRange = bounds.yRange,
xScaling = width / (xRange.max - xRange.min),
yScaling = height / (yRange.max - yRange.min),
scaling = Math.min(yScaling, xScaling),
// while we're at it, center the diagram too
xOffset = (width - (xRange.max - xRange.min) * scaling) / 2,
yOffset = (height - (yRange.max - yRange.min) * scaling) / 2;
var scaled = {};
for (var i = 0; i < circles.length; ++i) {
var circle = circles[i];
scaled[setids[i]] = {
radius: scaling * circle.radius,
x: padding + xOffset + (circle.x - xRange.min) * scaling,
y: padding + yOffset + (circle.y - yRange.min) * scaling,
};
}
return scaled;
}
/*global console:true*/
function VennDiagram() {
var width = 600,
height = 350,
padding = 15,
duration = 1000,
orientation = Math.PI / 2,
normalize = true,
wrap = true,
styled = true,
fontSize = null,
orientationOrder = null,
// mimic the behaviour of d3.scale.category10 from the previous
// version of d3
colourMap = {},
// so this is the same as d3.schemeCategory10, which is only defined in d3 4.0
// since we can support older versions of d3 as long as we don't force this,
// I'm hackily redefining below. TODO: remove this and change to d3.schemeCategory10
colourScheme = ["#1f77b4", "#ff7f0e", "#2ca02c", "#d62728", "#9467bd", "#8c564b", "#e377c2", "#7f7f7f", "#bcbd22", "#17becf"],
colourIndex = 0,
colours = function(key) {
if (key in colourMap) {
return colourMap[key];
}
var ret = colourMap[key] = colourScheme[colourIndex];
colourIndex += 1;
if (colourIndex >= colourScheme.length) {
colourIndex = 0;
}
return ret;
},
layoutFunction = venn;
function chart(selection) {
var data = selection.datum();
var solution = layoutFunction(data);
if (normalize) {
solution = normalizeSolution(solution,
orientation,
orientationOrder);
}
var circles = scaleSolution(solution, width, height, padding);
var textCentres = computeTextCentres(circles, data);
// create svg if not already existing
selection.selectAll("svg").data([circles]).enter().append("svg");
var svg = selection.select("svg")
.attr("width", width)
.attr("height", height);
// to properly transition intersection areas, we need the
// previous circles locations. load from elements
var previous = {}, hasPrevious = false;
svg.selectAll("g path").each(function (d) {
var path = d3Selection.select(this).attr("d");
if ((d.sets.length == 1) && path) {
hasPrevious = true;
previous[d.sets[0]] = circleFromPath(path);
}
});
// interpolate intersection area paths between previous and
// current paths
var pathTween = function(d) {
return function(t) {
var c = d.sets.map(function(set) {
var start = previous[set], end = circles[set];
if (!start) {
start = {x : width/2, y : height/2, radius : 1};
}
if (!end) {
end = {x : width/2, y : height/2, radius : 1};
}
return {'x' : start.x * (1 - t) + end.x * t,
'y' : start.y * (1 - t) + end.y * t,
'radius' : start.radius * (1 - t) + end.radius * t};
});
return intersectionAreaPath(c);
};
};
// update data, joining on the set ids
var nodes = svg.selectAll(".venn-area")
.data(data, function(d) { return d.sets; });
// create new nodes
var enter = nodes.enter()
.append('g')
.attr("class", function(d) {
return "venn-area venn-" +
(d.sets.length == 1 ? "circle" : "intersection");
})
.attr("data-venn-sets", function(d) {
return d.sets.join("_");
});
var enterPath = enter.append("path"),
enterText = enter.append("text")
.attr("class", "label")
.text(function (d) { return label(d); } )
.attr("text-anchor", "middle")
.attr("dy", ".35em")
.attr("x", width/2)
.attr("y", height/2);
// apply minimal style if wanted
if (styled) {
enterPath.style("fill-opacity", "0")
.filter(function (d) { return d.sets.length == 1; } )
.style("fill", function(d) { return colours(label(d)); })
.style("fill-opacity", ".25");
enterText
.style("fill", function(d) { return d.sets.length == 1 ? colours(label(d)) : "#444"; });
}
// update existing, using pathTween if necessary
var update = selection;
{
update.selectAll("path")
.attr("d", function(d) {
return intersectionAreaPath(
d.sets.map(function (set) { return circles[set]; }),
Object.keys(circles).map(e => circles[e]));
});
}
var updateText = update.selectAll("text")
.filter(function (d) { return d.sets in textCentres; })
.text(function (d) { return label(d); } )
.attr("x", function(d) { return Math.floor(textCentres[d.sets].x);})
.attr("y", function(d) { return Math.floor(textCentres[d.sets].y);});
if (wrap) {
if (hasPrevious) {
// d3 4.0 uses 'on' for events on transitions,
// but d3 3.0 used 'each' instead. switch appropiately
if ('on' in updateText) {
updateText.on("end", wrapText(circles, label));
} else {
updateText.each("end", wrapText(circles, label));
}
} else {
updateText.each(wrapText(circles, label));
}
}
// remove old
var exit = nodes.exit().transition('venn').duration(duration).remove();
exit.selectAll("path")
.attrTween("d", pathTween);
var exitText = exit.selectAll("text")
.attr("x", width/2)
.attr("y", height/2);
// if we've been passed a fontSize explicitly, use it to
// transition
if (fontSize !== null) {
enterText.style("font-size", "0px");
updateText.style("font-size", fontSize);
exitText.style("font-size", "0px");
}
return {'circles': circles,
'textCentres': textCentres,
'nodes': nodes,
'enter': enter,
'update': update,
'exit': exit};
}
function label(d) {
if (d.label) {
return d.label;
}
if (d.sets.length == 1) {
return '' + d.sets[0];
}
}
chart.wrap = function(_) {
if (!arguments.length) return wrap;
wrap = _;
return chart;
};
chart.width = function(_) {
if (!arguments.length) return width;
width = _;
return chart;
};
chart.height = function(_) {
if (!arguments.length) return height;
height = _;
return chart;
};
chart.padding = function(_) {
if (!arguments.length) return padding;
padding = _;
return chart;
};
chart.colours = function(_) {
if (!arguments.length) return colours;
colours = _;
return chart;
};
chart.fontSize = function(_) {
if (!arguments.length) return fontSize;
fontSize = _;
return chart;
};
chart.duration = function(_) {
if (!arguments.length) return duration;
duration = _;
return chart;
};
chart.layoutFunction = function(_) {
if (!arguments.length) return layoutFunction;
layoutFunction = _;
return chart;
};
chart.normalize = function(_) {
if (!arguments.length) return normalize;
normalize = _;
return chart;
};
chart.styled = function(_) {
if (!arguments.length) return styled;
styled = _;
return chart;
};
chart.orientation = function(_) {
if (!arguments.length) return orientation;
orientation = _;
return chart;
};
chart.orientationOrder = function(_) {
if (!arguments.length) return orientationOrder;
orientationOrder = _;
return chart;
};
return chart;
}
// sometimes text doesn't fit inside the circle, if thats the case lets wrap
// the text here such that it fits
// todo: looks like this might be merged into d3 (
// https://github.com/mbostock/d3/issues/1642),
// also worth checking out is
// http://engineering.findthebest.com/wrapping-axis-labels-in-d3-js/
// this seems to be one of those things that should be easy but isn't
function wrapText(circles, labeller) {
return function() {
var text = d3Selection.select(this),
data = text.datum(),
width = circles[data.sets[0]].radius || 50,
label = labeller(data) || '';
var words = label.split(/\s+/).reverse(),
maxLines = 3,
minChars = (label.length + words.length) / maxLines,
word = words.pop(),
line = [word],
joined,
lineNumber = 0,
lineHeight = 1.1, // ems
tspan = text.text(null).append("tspan").text(word);
while (true) {
word = words.pop();
if (!word) break;
line.push(word);
joined = line.join(" ");
tspan.text(joined);
if (joined.length > minChars && tspan.node().getComputedTextLength() > width) {
line.pop();
tspan.text(line.join(" "));
line = [word];
tspan = text.append("tspan").text(word);
lineNumber++;
}
}
var initial = 0.35 - lineNumber * lineHeight / 2,
x = text.attr("x"),
y = text.attr("y");
text.selectAll("tspan")
.attr("x", x)
.attr("y", y)
.attr("dy", function(d, i) {
return (initial + i * lineHeight) + "em";
});
};
}
function circleMargin(current, interior, exterior) {
var margin = interior[0].radius - distance(interior[0], current), i, m;
for (i = 1; i < interior.length; ++i) {
m = interior[i].radius - distance(interior[i], current);
if (m <= margin) {
margin = m;
}
}
for (i = 0; i < exterior.length; ++i) {
m = distance(exterior[i], current) - exterior[i].radius;
if (m <= margin) {
margin = m;
}
}
return margin;
}
// compute the center of some circles by maximizing the margin of
// the center point relative to the circles (interior) after subtracting
// nearby circles (exterior)
function computeTextCentre(interior, exterior) {
// get an initial estimate by sampling around the interior circles
// and taking the point with the biggest margin
var points = [], i;
for (i = 0; i < interior.length; ++i) {
var c = interior[i];
points.push({x: c.x, y: c.y});
points.push({x: c.x + c.radius/2, y: c.y});
points.push({x: c.x - c.radius/2, y: c.y});
points.push({x: c.x, y: c.y + c.radius/2});
points.push({x: c.x, y: c.y - c.radius/2});
}
var initial = points[0], margin = circleMargin(points[0], interior, exterior);
for (i = 1; i < points.length; ++i) {
var m = circleMargin(points[i], interior, exterior);
if (m >= margin) {
initial = points[i];
margin = m;
}
}
// maximize the margin numerically
var solution = fmin(
function(p) { return -1 * circleMargin({x: p[0], y: p[1]}, interior, exterior); },
[initial.x, initial.y],
{maxIterations:500, minErrorDelta:1e-10}).solution;
var ret = {x: solution[0], y: solution[1]};
// check solution, fallback as needed (happens if fully overlapped
// etc)
var valid = true;
for (i = 0; i < interior.length; ++i) {
if (distance(ret, interior[i]) > interior[i].radius) {
valid = false;
break;
}
}
for (i = 0; i < exterior.length; ++i) {
if (distance(ret, exterior[i]) < exterior[i].radius) {
valid = false;
break;
}
}
if (!valid) {
if (interior.length == 1) {
ret = {x: interior[0].x, y: interior[0].y};
} else {
var areaStats = {};
intersectionArea(interior, null, areaStats);
if (areaStats.arcs.length === 0) {
ret = {'x': 0, 'y': -1000, disjoint:true};
} else if (areaStats.arcs.length == 1) {
ret = {'x': areaStats.arcs[0].circle.x,
'y': areaStats.arcs[0].circle.y};
} else if (exterior.length) {
// try again without other circles
ret = computeTextCentre(interior, []);
} else {
// take average of all the points in the intersection
// polygon. this should basically never happen
// and has some issues:
// https://github.com/benfred/venn.js/issues/48#issuecomment-146069777
ret = getCenter(areaStats.arcs.map(function (a) { return a.p1; }));
}
}
}
return ret;
}
// given a dictionary of {setid : circle}, returns
// a dictionary of setid to list of circles that completely overlap it
function getOverlappingCircles(circles) {
var ret = {}, circleids = [];
for (var circleid in circles) {
circleids.push(circleid);
ret[circleid] = [];
}
for (var i = 0; i < circleids.length; i++) {
var a = circles[circleids[i]];
for (var j = i + 1; j < circleids.length; ++j) {
var b = circles[circleids[j]],
d = distance(a, b);
if (d + b.radius <= a.radius + 1e-10) {
ret[circleids[j]].push(circleids[i]);
} else if (d + a.radius <= b.radius + 1e-10) {
ret[circleids[i]].push(circleids[j]);
}
}
}
return ret;
}
function computeTextCentres(circles, areas) {
var ret = {}, overlapped = getOverlappingCircles(circles);
for (var i = 0; i < areas.length; ++i) {
var area = areas[i].sets, areaids = {}, exclude = {};
for (var j = 0; j < area.length; ++j) {
areaids[area[j]] = true;
var overlaps = overlapped[area[j]];
// keep track of any circles that overlap this area,
// and don't consider for purposes of computing the text
// centre
for (var k = 0; k < overlaps.length; ++k) {
exclude[overlaps[k]] = true;
}
}
var interior = [], exterior = [];
for (var setid in circles) {
if (setid in areaids) {
interior.push(circles[setid]);
} else if (!(setid in exclude)) {
exterior.push(circles[setid]);
}
}
var centre = computeTextCentre(interior, exterior);
ret[area] = centre;
if (centre.disjoint && (areas[i].size > 0)) {
console.log("WARNING: area " + area + " not represented on screen");
}
}
return ret;
}
// sorts all areas in the venn diagram, so that
// a particular area is on top (relativeTo) - and
// all other areas are so that the smallest areas are on top
function sortAreas(div, relativeTo) {
// figure out sets that are completly overlapped by relativeTo
var overlaps = getOverlappingCircles(div.selectAll("svg").datum());
var exclude = {};
for (var i = 0; i < relativeTo.sets.length; ++i) {
var check = relativeTo.sets[i];
for (var setid in overlaps) {
var overlap = overlaps[setid];
for (var j = 0; j < overlap.length; ++j) {
if (overlap[j] == check) {
exclude[setid] = true;
break;
}
}
}
}
// checks that all sets are in exclude;
function shouldExclude(sets) {
for (var i = 0; i < sets.length; ++i) {
if (!(sets[i] in exclude)) {
return false;
}
}
return true;
}
// need to sort div's so that Z order is correct
div.selectAll("g").sort(function (a, b) {
// highest order set intersections first
if (a.sets.length != b.sets.length) {
return a.sets.length - b.sets.length;
}
if (a == relativeTo) {
return shouldExclude(b.sets) ? -1 : 1;
}
if (b == relativeTo) {
return shouldExclude(a.sets) ? 1 : -1;
}
// finally by size
return b.size - a.size;
});
}
function circlePath(x, y, r) {
var ret = [];
ret.push("\nM", x, y);
ret.push("\nm", -r, 0);
ret.push("\na", r, r, 0, 1, 0, r *2, 0);
ret.push("\na", r, r, 0, 1, 0,-r *2, 0);
return ret.join(" ");
}
// inverse of the circlePath function, returns a circle object from an svg path
function circleFromPath(path) {
var tokens = path.split(' ');
return {'x' : parseFloat(tokens[1]),
'y' : parseFloat(tokens[2]),
'radius' : -parseFloat(tokens[4])
};
}
/** returns a svg path of the intersection area of a bunch of circles */
function intersectionAreaPath(circles, allcircles) {
var stats = {};
intersectionArea(circles, allcircles, stats);
var arcs = stats.arcs;
if (arcs.length === 0) {
return "M 0 0";
} else if (arcs.length == 1) {
var circle = arcs[0].circle;
return circlePath(circle.x, circle.y, circle.radius);
} else {
// draw path around arcs
var ret = ["\nM", arcs[0].p2.x, arcs[0].p2.y];
for (var i = 0; i < arcs.length; ++i) {
var arc = arcs[i], r = arc.circle.radius, wide = arc.width > r;
if (!arc.within)
ret.push("\nA", r, r, 0, wide ? 0 : 1, 0,
arc.p1.x, arc.p1.y);
else
ret.push("\nA", r, r, 0, wide ? 1 : 0, 1,
arc.p1.x, arc.p1.y);
}
return ret.join(" ");
}
}
exports.fmin = fmin;
exports.minimizeConjugateGradient = minimizeConjugateGradient;
exports.bisect = bisect;
exports.intersectionArea = intersectionArea;
exports.circleCircleIntersection = circleCircleIntersection;
exports.circleOverlap = circleOverlap;
exports.circleArea = circleArea;
exports.distance = distance;
exports.circleIntegral = circleIntegral;
exports.venn = venn;
exports.greedyLayout = greedyLayout;
exports.scaleSolution = scaleSolution;
exports.normalizeSolution = normalizeSolution;
exports.bestInitialLayout = bestInitialLayout;
exports.lossFunction = lossFunction;
exports.disjointCluster = disjointCluster;
exports.distanceFromIntersectArea = distanceFromIntersectArea;
exports.VennDiagram = VennDiagram;
exports.wrapText = wrapText;
exports.computeTextCentres = computeTextCentres;
exports.computeTextCentre = computeTextCentre;
exports.sortAreas = sortAreas;
exports.circlePath = circlePath;
exports.circleFromPath = circleFromPath;
exports.intersectionAreaPath = intersectionAreaPath;
Object.defineProperty(exports, '__esModule', { value: true });
})));
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment