from setuptools import setup, find_packages, Extension, Command import glob import os import pybind11 import shutil
import torch from torch.utils.cpp_extension import ( CUDA_HOME, IS_WINDOWS,
import time | |
import torch | |
from torch import nn | |
class M(torch.nn.Module): | |
def __init__(self,): | |
super().__init__() | |
self.linear = torch.nn.Linear(1024, 512) | |
self.relu = torch.nn.ReLU() |
from setuptools import setup, find_packages, Extension, Command import glob import os import pybind11 import shutil
import torch from torch.utils.cpp_extension import ( CUDA_HOME, IS_WINDOWS,
import torch | |
import sglang | |
import sgl_kernel | |
if __name__ == "__main__": | |
a = torch.randn((1, 1024), dtype=torch.float32).to("xpu") | |
ref_res = a + a | |
res3 = torch.ops.sgl_kernel.sgl_test_sycl(a, a) |
import torch | |
import torch._inductor.config as config | |
# config.realize_opcount_threshold = 1 | |
class SimpleModel(torch.nn.Module): | |
def forward(self, x0, x1, x2): | |
tmp = x0 + x1 | |
tmp2 = tmp * x2 | |
return tmp2 |
# TORCHINDUCTOR_FREEZING=1 TORCH_LOGS="+output_code" numactl -C 56-111 -m 1 python test.py | |
import torch | |
import time | |
import random | |
import numpy as np | |
local_seed= 2024 | |
torch.manual_seed(local_seed) # Set PyTorch seed |
import requests | |
import torch | |
print(torch.__version__, flush=True) | |
import torch.nn as nn | |
import os, pickle | |
import numpy as np | |
import torch._inductor.config as config | |
import torch._dynamo.config as dynamo_config | |
import gc | |
import time |
import requests | |
import torch | |
print(torch.__version__, flush=True) | |
import torch.nn as nn | |
import os, pickle | |
import numpy as np | |
import torch._inductor.config as config | |
import torch._dynamo.config as dynamo_config | |
import gc | |
import time |
import torch | |
from transformers import TorchAoConfig, AutoModelForCausalLM, AutoTokenizer | |
from torchao.quantization import int4_weight_only | |
from torchao.dtypes import Int4CPULayout | |
import torch._inductor.config as config | |
config.freezing = True | |
# config.max_autotune = True | |
with torch.no_grad(): |
import requests | |
import torch | |
print(torch.__version__, flush=True) | |
import torch.nn as nn | |
import os, pickle | |
import numpy as np | |
import torch._inductor.config as config | |
import torch._dynamo.config as dynamo_config | |
import gc | |
import time |
import requests | |
import torch | |
print(torch.__version__, flush=True) | |
import torch.nn as nn | |
import os, pickle | |
import numpy as np | |
import torch._inductor.config as config | |
import torch._dynamo.config as dynamo_config | |
import gc | |
import time |