Skip to content

Instantly share code, notes, and snippets.

View leslie-fang-intel's full-sized avatar

leslie-fang-intel

  • INTC/SJTU
  • Shanghai
View GitHub Profile
import time
import torch
from torch import nn
class M(torch.nn.Module):
def __init__(self,):
super().__init__()
self.linear = torch.nn.Linear(1024, 512)
self.relu = torch.nn.ReLU()

from setuptools import setup, find_packages, Extension, Command import glob import os import pybind11 import shutil

import torch from torch.utils.cpp_extension import ( CUDA_HOME, IS_WINDOWS,

import torch
import sglang
import sgl_kernel
if __name__ == "__main__":
a = torch.randn((1, 1024), dtype=torch.float32).to("xpu")
ref_res = a + a
res3 = torch.ops.sgl_kernel.sgl_test_sycl(a, a)
import torch
import torch._inductor.config as config
# config.realize_opcount_threshold = 1
class SimpleModel(torch.nn.Module):
def forward(self, x0, x1, x2):
tmp = x0 + x1
tmp2 = tmp * x2
return tmp2
# TORCHINDUCTOR_FREEZING=1 TORCH_LOGS="+output_code" numactl -C 56-111 -m 1 python test.py
import torch
import time
import random
import numpy as np
local_seed= 2024
torch.manual_seed(local_seed) # Set PyTorch seed
import requests
import torch
print(torch.__version__, flush=True)
import torch.nn as nn
import os, pickle
import numpy as np
import torch._inductor.config as config
import torch._dynamo.config as dynamo_config
import gc
import time
import requests
import torch
print(torch.__version__, flush=True)
import torch.nn as nn
import os, pickle
import numpy as np
import torch._inductor.config as config
import torch._dynamo.config as dynamo_config
import gc
import time
import torch
from transformers import TorchAoConfig, AutoModelForCausalLM, AutoTokenizer
from torchao.quantization import int4_weight_only
from torchao.dtypes import Int4CPULayout
import torch._inductor.config as config
config.freezing = True
# config.max_autotune = True
with torch.no_grad():
import requests
import torch
print(torch.__version__, flush=True)
import torch.nn as nn
import os, pickle
import numpy as np
import torch._inductor.config as config
import torch._dynamo.config as dynamo_config
import gc
import time
import requests
import torch
print(torch.__version__, flush=True)
import torch.nn as nn
import os, pickle
import numpy as np
import torch._inductor.config as config
import torch._dynamo.config as dynamo_config
import gc
import time