Skip to content

Instantly share code, notes, and snippets.

@letouzey
Created December 15, 2017 18:10
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save letouzey/9d99b4ffb307eaf84b91486f2375dcd0 to your computer and use it in GitHub Desktop.
Save letouzey/9d99b4ffb307eaf84b91486f2375dcd0 to your computer and use it in GitHub Desktop.
Sketch of the Coq proof of {p:nat|p<=n} = {p:nat|p<=m} -> n=m
(** Sketch of the proof of {p:nat|p<=n} = {p:nat|p<=m} -> n=m
- preliminary results on the irrelevance of boundedness proofs
- introduce the notion of finite cardinal |A|
- prove that |{p:nat|p<=n}| = n
- prove that |A| = n /\ |A| = m -> n = m if equality is decidable on A
- prove that equality is decidable on A
- conclude
*)
(** * Preliminary results on [nat] and [le] *)
(** Proving axiom K on [nat] *)
Require Import Eqdep_dec.
Require Import Arith.
Theorem eq_rect_eq_nat :
forall (p:nat) (Q:nat->Type) (x:Q p) (h:p=p), x = eq_rect p Q x p h.
Proof.
intros.
apply K_dec_set with (p := h).
apply eq_nat_dec.
reflexivity.
Qed.
(** Proving unicity of proofs of [(n<=m)%nat] *)
Scheme le_ind' := Induction for le Sort Prop.
Theorem le_uniqueness_proof : forall (n m : nat) (p q : n <= m), p = q.
Proof.
induction p using le_ind'; intro q.
replace (le_n n) with
(eq_rect _ (fun n0 => n <= n0) (le_n n) _ eq_refl).
2:reflexivity.
generalize (eq_refl n).
pattern n at 2 4 6 10, q; case q; [intro | intros m l e].
rewrite <- eq_rect_eq_nat; trivial.
contradiction (le_Sn_n m); rewrite <- e; assumption.
replace (le_S n m p) with
(eq_rect _ (fun n0 => n <= n0) (le_S n m p) _ eq_refl).
2:reflexivity.
generalize (eq_refl (S m)).
pattern (S m) at 1 3 4 6, q; case q; [intro Heq | intros m0 l HeqS].
contradiction (le_Sn_n m); rewrite Heq; assumption.
injection HeqS; intro Heq; generalize l HeqS.
rewrite <- Heq; intros; rewrite <- eq_rect_eq_nat.
rewrite (IHp l0); reflexivity.
Qed.
(** Proving irrelevance of boundedness proofs while building
elements of interval *)
Lemma dep_pair_intro :
forall (n x y:nat) (Hx : x<=n) (Hy : y<=n), x=y ->
exist (fun x => x <= n) x Hx = exist (fun x => x <= n) y Hy.
Proof.
intros n x y Hx Hy Heq.
generalize Hy.
rewrite <- Heq.
intros.
rewrite (le_uniqueness_proof x n Hx Hy0).
reflexivity.
Qed.
(** * Proving that {p:nat|p<=n} = {p:nat|p<=m} -> n=m *)
(** Definition of having finite cardinality [n+1] for a set [A] *)
Definition card (A:Set) n :=
exists f,
(forall x:A, f x <= n) /\
(forall x y:A, f x = f y -> x = y) /\
(forall m, m <= n -> exists x:A, f x = m).
Require Import Arith.
(** Showing that the interval [0;n] has cardinality [n+1] *)
Theorem card_interval : forall n, card {x:nat|x<=n} n.
Proof.
intro n.
exists (fun x:{x:nat|x<=n} => proj1_sig x).
split.
(* bounded *)
intro x; apply (proj2_sig x).
split.
(* injectivity *)
intros (p,Hp) (q,Hq).
simpl.
intro Hpq.
apply dep_pair_intro; assumption.
(* surjectivity *)
intros m Hmn.
exists (exist (fun x : nat => x <= n) m Hmn).
reflexivity.
Qed.
(** Showing that equality on the interval [0;n] is decidable *)
Lemma interval_dec :
forall n (x y : {m:nat|m<=n}), {x=y}+{x<>y}.
Proof.
intros n (p,Hp).
induction p; intros ([|q],Hq).
left.
apply dep_pair_intro.
reflexivity.
right.
intro H; discriminate H.
right.
intro H; discriminate H.
assert (Hp' : p <= n).
apply le_Sn_le; assumption.
assert (Hq' : q <= n).
apply le_Sn_le; assumption.
destruct (IHp Hp' (exist (fun m => m <= n) q Hq'))
as [Heq|Hneq].
left.
injection Heq; intro Heq'.
apply dep_pair_intro.
apply eq_S.
assumption.
right.
intro HeqS.
injection HeqS; intro Heq.
apply Hneq.
apply dep_pair_intro.
assumption.
Qed.
(** Showing that the cardinality relation is functional on decidable sets *)
Lemma card_inj_aux :
forall (A:Type) f g n,
(forall x:A, f x <= 0) ->
(forall x y:A, f x = f y -> x = y) ->
(forall m, m <= S n -> exists x:A, g x = m)
-> False.
Proof.
intros A f g n Hfbound Hfinj Hgsurj.
destruct (Hgsurj (S n) (le_n _)) as (x,Hx).
destruct (Hgsurj n (le_S _ _ (le_n _))) as (x',Hx').
assert (Hfx : 0 = f x).
apply le_n_O_eq.
apply Hfbound.
assert (Hfx' : 0 = f x').
apply le_n_O_eq.
apply Hfbound.
assert (x=x').
apply Hfinj.
rewrite <- Hfx.
rewrite <- Hfx'.
reflexivity.
rewrite H in Hx.
rewrite Hx' in Hx.
apply (n_Sn _ Hx).
Qed.
(** For [dec_restrict], we use a lemma on the negation of equality
that requires proof-irrelevance. It should be possible to avoid this
lemma by generalizing over a first-order definition of [x<>y], say
[neq] such that [{x=y}+{neq x y}] and [~(x=y /\ neq x y)]; for such
[neq], unicity of proofs could be proven *)
Require Import Classical.
Lemma neq_dep_intro :
forall (A:Set) (z x y:A) (p:x<>z) (q:y<>z), x=y ->
exist (fun x => x <> z) x p = exist (fun x => x <> z) y q.
Proof.
intros A z x y p q Heq.
generalize q; clear q; rewrite <- Heq; intro q.
rewrite (proof_irrelevance _ p q); reflexivity.
Qed.
Lemma dec_restrict :
forall (A:Set),
(forall x y :A, {x=y}+{x<>y}) ->
forall z (x y :{a:A|a<>z}), {x=y}+{x<>y}.
Proof.
intros A Hdec z (x,Hx) (y,Hy).
destruct (Hdec x y) as [Heq|Hneq].
left; apply neq_dep_intro; assumption.
right; intro Heq; injection Heq; exact Hneq.
Qed.
Lemma pred_inj : forall n m,
0 <> n -> 0 <> m -> pred m = pred n -> m = n.
Proof.
destruct n.
intros m H; destruct H; reflexivity.
destruct m.
intros _ H; destruct H; reflexivity.
simpl; intros _ _ H.
rewrite H.
reflexivity.
Qed.
Lemma le_neq_lt : forall n m, n <= m -> n<>m -> n < m.
Proof.
intros n m Hle Hneq.
destruct (le_lt_eq_dec n m Hle).
assumption.
contradiction.
Qed.
Lemma inj_restrict :
forall (A:Set) (f:A->nat) x y z,
(forall x y : A, f x = f y -> x = y)
-> x <> z -> f y < f z -> f z <= f x
-> pred (f x) = f y
-> False.
(* Search error sans le type de f !! *)
Proof.
intros A f x y z Hfinj Hneqx Hfy Hfx Heq.
assert (f z <> f x).
apply not_eq_sym.
intro Heqf.
apply Hneqx.
apply Hfinj.
assumption.
assert (f x = S (f y)).
assert (0 < f x).
apply le_lt_trans with (f z).
apply le_O_n.
apply le_neq_lt; assumption.
apply pred_inj.
apply O_S.
apply lt_O_neq; assumption.
exact Heq.
assert (f z <= f y).
destruct (le_lt_or_eq _ _ Hfx).
apply lt_n_Sm_le.
rewrite <- H0.
assumption.
contradiction Hneqx.
symmetry.
apply Hfinj.
assumption.
contradiction (lt_not_le (f y) (f z)).
Qed.
Theorem card_inj : forall m n (A:Set),
(forall x y :A, {x=y}+{x<>y}) ->
card A m -> card A n -> m = n.
Proof.
induction m; destruct n;
intros A Hdec
(f,(Hfbound,(Hfinj,Hfsurj)))
(g,(Hgbound,(Hginj,Hgsurj))).
(* 0/0 *)
reflexivity.
(* 0/Sm *)
destruct (card_inj_aux _ _ _ _ Hfbound Hfinj Hgsurj).
(* Sn/0 *)
destruct (card_inj_aux _ _ _ _ Hgbound Hginj Hfsurj).
(* Sn/Sm *)
destruct (Hgsurj (S n) (le_n _)) as (xSn,HSnx).
rewrite IHm with (n:=n) (A := {x:A|x<>xSn}).
reflexivity.
(* decidability of eq on {x:A|x<>xSm} *)
apply dec_restrict.
assumption.
(* cardinality of {x:A|x<>xSn} is m *)
pose (f' := fun x' : {x:A|x<>xSn} =>
let (x,Hneq) := x' in
if le_lt_dec (f xSn) (f x)
then pred (f x)
else f x).
exists f'.
split.
(* f' is bounded *)
unfold f'.
intros (x,_).
destruct (le_lt_dec (f xSn) (f x)) as [Hle|Hge].
change m with (pred (S m)).
apply le_pred.
apply Hfbound.
apply le_S_n.
apply le_trans with (f xSn).
exact Hge.
apply Hfbound.
split.
(* f' is injective *)
unfold f'.
intros (x,Hneqx) (y,Hneqy) Heqf'.
destruct (le_lt_dec (f xSn) (f x)) as [Hlefx|Hgefx];
destruct (le_lt_dec (f xSn) (f y)) as [Hlefy|Hgefy].
(* f xSn <= f x et f xSn <= f y *)
assert (Heq : x = y).
apply Hfinj.
assert (f xSn <> f y).
apply not_eq_sym.
intro Heqf.
apply Hneqy.
apply Hfinj.
assumption.
assert (0 < f y).
apply le_lt_trans with (f xSn).
apply le_O_n.
apply le_neq_lt; assumption.
assert (f xSn <> f x).
apply not_eq_sym.
intro Heqf.
apply Hneqx.
apply Hfinj.
assumption.
assert (0 < f x).
apply le_lt_trans with (f xSn).
apply le_O_n.
apply le_neq_lt; assumption.
apply pred_inj.
apply lt_O_neq; assumption.
apply lt_O_neq; assumption.
assumption.
apply neq_dep_intro; assumption.
(* f y < f xSn <= f x *)
destruct (inj_restrict A f x y xSn); assumption.
(* f x < f xSn <= f y *)
symmetry in Heqf'.
destruct (inj_restrict A f y x xSn); assumption.
(* f x < f xSn et f y < f xSn *)
assert (Heq : x=y).
apply Hfinj; assumption.
apply neq_dep_intro; assumption.
(* f' is surjective *)
intros p Hlep.
destruct (le_lt_dec (f xSn) p) as [Hle|Hlt].
(* case f xSn <= p *)
destruct (Hfsurj (S p) (le_n_S _ _ Hlep)) as (x,Hx).
assert (Hneq : x <> xSn).
intro Heqx.
rewrite Heqx in Hx.
rewrite Hx in Hle.
apply le_Sn_n with p; assumption.
exists (exist (fun a => a<>xSn) x Hneq).
unfold f'.
destruct (le_lt_dec (f xSn) (f x)) as [Hle'|Hlt'].
rewrite Hx; reflexivity.
rewrite Hx in Hlt'.
contradiction (le_not_lt (f xSn) p).
apply lt_trans with (S p).
apply lt_n_Sn.
assumption.
(* case p < f xSn *)
destruct (Hfsurj p (le_S _ _ Hlep)) as (x,Hx).
assert (Hneq : x <> xSn).
intro Heqx.
rewrite Heqx in Hx.
rewrite Hx in Hlt.
apply (lt_irrefl p).
assumption.
exists (exist (fun a => a<>xSn) x Hneq).
unfold f'.
destruct (le_lt_dec (f xSn) (f x)) as [Hle'|Hlt'].
rewrite Hx in Hle'.
contradiction (lt_irrefl p).
apply lt_le_trans with (f xSn); assumption.
assumption.
(* cardinality of {x:A|x<>xSn} is n *)
pose (g' := fun x' : {x:A|x<>xSn} =>
let (x,Hneq) := x' in
if Hdec x xSn then 0 else g x).
exists g'.
split.
(* g is bounded *)
unfold g'.
intros (x,_).
destruct (Hdec x xSn) as [_|Hneq].
apply le_O_n.
assert (Hle_gx:=Hgbound x).
destruct (le_lt_or_eq _ _ Hle_gx).
apply lt_n_Sm_le.
assumption.
contradiction Hneq.
apply Hginj.
rewrite HSnx.
assumption.
split.
(* g is injective *)
unfold g'.
intros (x,Hneqx) (y,Hneqy) Heqg'.
destruct (Hdec x xSn) as [Heqx|_].
contradiction Hneqx.
destruct (Hdec y xSn) as [Heqy|_].
contradiction Hneqy.
assert (Heq : x=y).
apply Hginj; assumption.
apply neq_dep_intro; assumption.
(* g is surjective *)
intros p Hlep.
destruct (Hgsurj p (le_S _ _ Hlep)) as (x,Hx).
assert (Hneq : x<>xSn).
intro Heq.
rewrite Heq in Hx.
rewrite Hx in HSnx.
rewrite HSnx in Hlep.
contradiction (le_Sn_n _ Hlep).
exists (exist (fun a => a<>xSn) x Hneq).
simpl.
destruct (Hdec x xSn) as [Heqx|_].
contradiction Hneq.
assumption.
Qed.
(** Conclusion *)
Theorem interval_discr :
forall n m, {p:nat|p<=n} = {p:nat|p<=m} -> n=m.
Proof.
intros n m Heq.
apply card_inj with (A := {p:nat|p<=n}).
apply interval_dec.
apply card_interval.
rewrite Heq.
apply card_interval.
Qed.
@letouzey
Copy link
Author

This file is part of Coq FAQ. I'm not sure who is the initial author, probably Hugo Herbelin.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment